Competitive Analysis of the P/M Industry

Total Page:16

File Type:pdf, Size:1020Kb

Competitive Analysis of the P/M Industry Competitive Analysis of the P/M Industry Report 00-2 Research Team: Walter R. Coyle (Undergraduate Assistant- Honors Thesis) Shivani Shukla (Research Assistant) Diran Apelian (Advisor) Jacqueline Isaacs (Advisor Chickery Kasouf (Advisor) Project 1: Economic Comparisons of Alternative Technologies Project Goals § To develop economic assessment tools that allow analysis and quantification of the tradeoffs and attributes of different metal processing technologies § To identify several case studies for components fabricated through machining processes § To develop appropriate technical cost models for machined components § To identify the major cost drivers by quantifying the cost breakdowns of individual manufacturing process steps § To compare economic results from machined components with results from the PowderEx P/M technical cost model, and identify opportunities for infusion of P/M technologies Achievements Since April: Since P/M parts compete with machined components in various markets, opportunities to improve P/M competitiveness are explored in this project. In an undergraduate honors thesis project started in July 2000, a new set of case studies is under investigation for large gear components. A technical cost model has been developed for machined gears to compare the economic manufacturing costs with P/M part costs generated from the PowderEx technical cost model. Each model is used to identify major cost factors within each fabrication route. Analysis of results will target the areas in the P/M process where cost reductions provide the greatest impact. Thus far, accomplishments include: § Development of a machined gear technical cost model § Identification of three potential case studies for investigation § Analysis of one component for comparative manufacturing costs The machined gear model is a stand-alone technical cost model, like the PowderEx model. Output from the model will provide P/M manufacturers with information on process economics for production of gears of varying dimensions and complexity. 1 Component size, required quantities, tolerances, performance requirements and process economics must be considered together when selecting of the best method of production. Most machined gears follow a generalized process, with small deviations for gear specific requirements or specifications. First a gear blank is produced. The gear blank may be either cast or machined. This model assumes the gear blank is outsourced and the price per piece is input. The inner and outer diameters are cut to size, and the relevant surfaces are surface ground to tolerance. Inner features, such as keyways and splines, are broached into the inner diameter. The teeth themselves are cut into the gear using a gear hobbing machine. After hobbing, shaving may be required, after which, the gear is heat- treated. The technical cost model includes manufacturing process steps for all of the processes discussed above. One of the goals for development of the machined gear model is to make the model robust enough to handle many different types of gears and machining processes. For this reason, process steps can be switched on and off as needed. For components that do not require every process step available in the model, the steps can be switched off. Additional process steps can be added to the model later if required. With each process step modeled, changes to the various input parameters can be varied and the effects on total cost can be investigated. The main goal of this project is to assess whether it is more economically advantageous to create a part using P/M processes, or by machining. Three gear components have been selected with the help of PMRC members: a timing gear, a transmission sprocket and a helical balancer gear. These gears are chosen to provide varying part complexity. Showing greater complexity than the timing gear, a transmission sprocket with a 5" total outer diameter and a 2" ID, will provide the first case study for investigation. Results from the machined gear model will be used in conjunction with results from the PowderEx model to determine the scenarios where one method of production is favorable over the other. Initial results will be presented at the Fall 2000 meeting. For each gear or case study under consideration, it is likely that different trends will result. Identification of general trends for manufacturing costs using specific case studies will allow P/M manufacturers to make more informed decisions. Future Work • Additional case studies using the machined gear technical cost model, which will be fine-tuned. • Additional case studies using the PowderEx model. • Comparative economic analysis of each component 2 Project 2. Statistical Data Base for the P/M Industry Objectives Develop of a statistical data base for the P/M parts industry to enable firms to: • Benchmark key performance data vis- -vis other part producers • Develop relationships between success measures and independent variables Strategy • Develop a relationship with the PMPA to develop a joint statistics project • Initiate a set of annual questionnaires to develop a continuing industry data base. Achievements Since April: • Chick Kasouf worked with Craig Paullin, the PMPA Statistics Committee, and MPIF to develop three questionnaires that were mailed to PMPA membership during the summer. Response rates were approximately equal to earlier PMPA efforts. After meeting with the Statistics Committee at the MPIF Fall Management Conference, a second mailing of the questionnaire will be administered to nonrespondents with final results for the year presented at the 2001 PMPA Winter Meeting. These surveys are included with this package. • The cover letter to PMPA members is attached along with a copy of the three questionnaires given in Appendix A. 3 August 28, 2000 Dear PMPA Official Representative: As we noted in our previous letter, the PMPA Statistics and Benchmarking Committee, working with WPI s Metal Processing Institute, has revised its statistics program. We will be conducting three annual surveys of the industry, each with a specific focus. Each of these new surveys is included with this mailing. These are replacing Reports 2, 3 & 4. After submitting your 2nd quarter data for these reports, please destroy any remaining forms for Reports 2, 3, and 4. Report A: Expense Asset Management/Sales Distribution Report measures your expenses and asset management to benchmark resource efficiency in the P/M parts industry. It also contains a brief section measuring sales and production distribution in the P/M parts industry. The other two surveys are Report B: Operational Benchmarking Survey (includes plant level data about operational efficiency), and Report C: Wage and Salary Survey (a continuation of the wage and salary survey with additional data on turnover and absenteeism). By participating in this study, you will have a summary of current practice in the industry. As noted in the cover letter, all responses are confidential and will be analyzed anonymously. John Pavlovsky, CPA will be collecting data for PMPA and forwarding it to the research team at WPI with identification codes to disguise the identity of participating companies. Neither the Statistics Committee nor WPI staff will have any access to your identity when dealing with your responses. Each participant in the study who completes 75% of the items will receive a customized report that includes a summary of all responses and your responses compared to the aggregate data. As noted above, this report is prepared using codes to analyze data anonymously. In order to facilitate timely analysis of the data, could you please return the questionnaires to Mr. Pavlovsky s office by September 18, 2000? If you have any questions, please feel free to call Pete Johnson (609.452.7700; [email protected]), Craig Paullin (310.715.9800; x 108; [email protected]) or Chick Kasouf (508.831.5548; [email protected]). We look forward to your participation and hope to see you at the Fall Management Conference. Best regards, Craig Paullin Chickery J. Kasouf President, Pacific Sintered Metals Metal Processing Institute Chairman, PMPA Statistics and Worcester Polytechnic Institute Benchmarking Committee 4 PMPA/WPI Report A: Expenses, Asset Management/ End Market Sales Distribution (Corporate Level) Summer/Fall 2000 5 Report A Expense, Asset Management/End Market Sales Distribution Report This questionnaire measures your expenses, asset management, and end market sales distribution to benchmark the resource efficiency of P/M part producers at the company level. By participating in this study, you will have a summary of current practice in the industry. As noted in the cover letter, all responses are confidential and will be analyzed anonymously. John Pavlovsky, CPA will be collecting data for PMPA and forwarding it to the research team with identification codes to disguise the identity of participating companies. Neither the Statistics Committee nor WPI staff will have any access to your identity when dealing with your responses. Each participant in the study who completes 75% of the items will receive a custom report that includes: • A summary of all responses • Your responses compared to the aggregate data. As noted above, this report is prepared using codes to analyze data anonymously. Please use data from your most recently completed financial statements. Section I uses data from your income statement and Section II uses data from your balance sheet. Section III asks for information about firm size to classify companies in the analysis. Section IV measures sales end market and production distribution. To facilitate timely analysis of the data, could you please return the survey to Mr. Pavlovsky s office by September 18, 2000? If you have any questions, please feel free to call: Peter Johnson (609.452.7700; [email protected]) Craig Paullin (310.715.9800; x 108; [email protected]) Chick Kasouf (508.831.5548; [email protected]). 6 Report A I. Expense Statistics Please provide information regarding aggregate company operations from your most recently completed fiscal year. Each item asks you to report data in percentage of net P/M sales, i.e, total sales of P/M parts, tooling, and services less returns.
Recommended publications
  • Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions
    Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions MASAKAZU NABEKURA*1 MICHIAKI HASHITANI*1 YUKIHISA NISHIMURA*1 MASAKATSU FUJITA*1 YOSHIKOTO YANASE*1 MASANOBU MISAKI*1 It is a never-ending theme for motorcycle and automobile manufacturers, for whom the Machine Tool Division of Mitsubishi Heavy Industries, Ltd. (MHI) manufactures and delivers gear cutting machines, gear grinding machines and precision cutting tools, to strive for high precision, low cost transmission gears. This paper reports the recent trends in the automobile industry while describing how MHI has been dealing with their needs as a manufacturer of the machines and cutting tools for gear production. process before heat treatment. A gear shaping machine, 1. Gear production process however, processes workpieces such as stepped gears and Figure 1 shows a cut-away example of an automobile internal gears that a gear hobbing machine is unable to transmission. Figure 2 is a schematic of the conven- process. Since they employ a generating process by a tional, general production processes for transmission specific number of cutting edges, several tens of microns gears. The diagram does not show processes such as of tool marks remain on the gear flanks, which in turn machining keyways and oil holes and press-fitting bushes causes vibration and noise. To cope with this issue, a that are not directly relevant to gear processing. Nor- gear shaving process improves the gear flank roughness mally, a gear hobbing machine is responsible for the and finishes the gear tooth profile to a precision of mi- crons while anticipating how the heat treatment will strain the tooth profile and tooth trace.
    [Show full text]
  • Intelligent Process Optimization „Innovation Is Our Future.“ Sascha Tschiggfrei, CEO the Future Has Begun
    Intelligent Process Optimization „Innovation is our future.“ Sascha Tschiggfrei, CEO The Future has begun As a global market leader, we manufacture technologically advanced high precision tool holders for turning centers and swiss type lathes that are known for high performance and long life-time. Using our new “smart” technology, our customers will be able to intelligently optimize and monitor their processes in the future. Intelligent Process State-of-the-art technology for maximum productivity. With this claim, WTO develops Optimization and produces superior precision tool holders in terms of technology and quality. Used intelligently, processes are optimized and production becomes more productive. WTO Driven Precision Tool Holders equipped with innovative „smart“ technology enable intelligent online process monitoring. “Consistent development - always one step ahead.” Karlheinz Jansen, CTO High Tech – Made in Germany From the technical design to the finished product we make no compromises when it comes to manufacturing our high precision tool holders. Permanent investment in state-of-the-art production technologies, high quality standards and a large manufacturing depth. Our products are in use worldwide, wherever precision parts are manufactured on turning centers with high productivity. „Our employees don‘t work for WTO. They work for the success of our customers.“ Daniel Sierra, Sales Director WTO Your Success is our Business Motivated employees are the basis for 100 % consistent customer focus. WTO offers its employees a state-of-the-art working environ- ment to work independently and ensures highly motivated employees in a family-owned technology company. To a large extent, WTO relies on its own highly qualified employees in order to achieve high quality standards.
    [Show full text]
  • Industrial Productivity Training Manual
    INDUSTRIAL PRODUCTIVITY TRAINING MANUAL Version 2.0 Written by: Dr. Michael R. Muller - Director, Don Kasten ©2006 Rutgers, the State University of New Jersey Table of Contents INTRODUCTION..............................................................................2 PRODUCTIVITY TOOLBOX ..............................................................5 Toolbox Introduction.....................................................................6 Productivity Metrics......................................................................9 Cost of Labor..............................................................................10 Space Optimization .......................................................................11 Productivity Questions...................................................................14 CONCEPTS FOR PRODUCTIVITY ENHANCEMENT, PART I INCREASING PIECES/PERSON/HOUR .............................................19 QUICK CHANGES......................................................................20 AR No. 1 Decrease Die Change-Out & Start-Up Times...................26 AR No. 2 Use Fixtures to Reduce Lathe Set-up Times....................32 AR No. 3 Install a Rotating Nozzle Carousel to Reduce Set-Up Times.34 AR No. 4 Employ Modular Jigs to Reduce Process Set-up Times.......36 BOTTLENECK MITIGATION.........................................................39 AR No. 5 Add Machine Operators to Reduce Production Bottleneck....41 AR No. 6 Install Refrigeration System to Cool Product...................45 AR No. 7 Replace Old Lathe
    [Show full text]
  • Gear Rolling for Production of High Gears Alireza Khodaee
    Gear Rolling for Production of High Gears Alireza Khodaee Gear Rolling for Production of High Gears Alireza Khodaee Licentiate Thesis, 2015 KTH Royal Institute of Technology Industrial Engineering and Management Department of Production Engineering SE-100 44 Stockholm, Sweden TRITA-IIP-15-06 ISSN: 1650-1888 ISBN: 978-91-7595-678-7 Abstract Gears are used to transmit mechanical work from one point to another. They are widely used in different mechanisms and they are the most important components of a transmission system. Thus, it is important that they are manufactured with high precision to deliver the work with highest possible efficiency. The dominant gear production method is metal cutting, like hobbing. The gear manufacturing industry aims to replace their traditional production lines with greener processes and thereby urge engineers to think about using metal forming methods instead of the traditional metal cutting solutions when possible. Gear rolling is an interesting metal forming method that can be an alternative method to fabricate gear wheels. Research on gear rolling firstly came into interest around 2000. Very few papers are published that covers the development of the method and its limitations and advantages. Almost all of these publications considered rolling of gear wheels with small modules. The focus of this study will be on application of gear rolling for gear wheels with large module (over 3 mm) where the amount of deformation is much larger than found in previous studies. In this thesis the Finite Element Method has been used to simulate and predict the results of rolling of high gears. In addition to that experiments were performed to validate the numerical results and develop the modelling technique for further investigations.
    [Show full text]
  • Gear Cutting Tools Rua André De Leão 155 Bloco a Mexiko/Mexico [email protected] CEP: 04672-030 LMT Boehlerit S.A
    Belgien/Belgium Indien/India Türkei/Turkey SA LMT Fette NV LMT Fette India Pvt. Ltd. Böhler Sert Maden Takim Sanayi Belin Yvon S.A. Industrieweg 15 B2 29, II Main Road ve Ticaret A.S. F-01590 Lavancia, Frankreich 1850 Grimbergen Gandhinagar, Adyar Ankara Asfalti ü zeri No.22 Tel. +33 (0) 4 74 75 89 89 Fon +32-2/2 51 12 36 Chennai 600 020 Kartal 81412 Fax +33 (0) 4 74 75 89 90 Fax +32-2/2 51 74 89 Fon +91-44/24 405 136 / 137 Istanbul E-mail: [email protected] Fax +91-44/24 405 1205 P.K. 167 Internet: www.belin-y.com Brasilien/Brazil [email protected] Fon +90-216/3 06 65 70 LMT Böhlerit LTDA. Fax +90-216/3 06 65 74 Gear Cutting Tools Rua André de Leão 155 Bloco A Mexiko/Mexico [email protected] CEP: 04672-030 LMT Boehlerit S.A. de C.V. • Hobbing Socorro-Santo Amaro Ungarn/Hungary Bilz Werkzeugfabrik GmbH & Co. KG Matias Romero No. 1359 • Gear Milling Vogelsangstraße 8 São Paulo Col. Letran Valle LMT Boehlerit KFT. D-73760 Ostfildern, Deutschland Fon +55/11 55 46 07 55 03650 Mexico D.F. Kis-Duma U.6 Tel. +49 (0) 711 3 48 01-0 Fax +55/11 55 46 04 76 Fon +52 (55) 56 05 82 77 PoBox 2036 Erdliget Pf. 32 Fax +49 (0) 711 3 48 12 56 [email protected] Fax +52 (55) 56 05 85 01 2030 Erd E-mail: [email protected] [email protected] Fon +36/23 52 19 10 Internet: www.bilz.de China Fax +36/23 52 19 14 Leitz Tooling Systems Österreich/Austria [email protected] (Nanjing) Co.
    [Show full text]
  • General Applications of Gears
    UNIT - III GEAR MANUFACTURING PROCESS SPRX1008 – PRODUCTION TECHNOLOGY - II Gears are widely used in various mechanisms and devices to transmit power and motion positively (without slip) between parallel, intersecting (axis) and non-intersecting non parallel shafts, •without change in the direction of rotation •with change in the direction of rotation •without change of speed (of rotation) •with change in speed at any desired ratio Often some gearing system (rack – and – pinion) is also used to transform Rotary motion into linear motion and vice-versa. Fig.1 Features of Spur Gear Gears are basically wheels having, on its periphery, equispaced teeth which are so designed that those wheels transmit, without slip, rotary motion smoothly and uniformly with minimum friction and wear at the mating tooth – profiles. To achieve those favorable conditions, most of the gears have their tooth form based on in volute curve, which can simply be defined as Locus of a point on a straight line which is rolled on the periphery of a circle or Locus of the end point of a stretched string while its unwinding over a cylinder as indicated in Fig. General Applications of Gears Gears of various type, size and material are widely used in several machines and systems requiring positive and stepped drive. The major applications are: • Speed gear box, feed gear box and some other kinematic units of machine tools • Speed drives in textile, jute and similar machineries • Gear boxes of automobiles • Speed and / or feed drives of several metal forming machines • Machineries for mining, tea processing etc. • Large and heavy duty gear boxes used in cement industries, sugar industries, cranes, conveyors etc.
    [Show full text]
  • Precision Tools
    Precision Tools Precision Tools Gear Cutting Tools & Broaches Pursuing advanced high-speed technology that is both user and environmentally friendly Since developing Japan's first broaching machine in the late 1920s, Fujikoshi has developed a variety of tools and machine tools to handle advancements in production systems. Fujikoshi continues to lead the way by developing machining systems that integrate tools and machines. Pursuing advanced high-speed technology that is both user and environmentally friendly Since developing Japan's first broaching machine in the late 1920s, Fujikoshi has developed a variety of tools and machine tools to handle advancements in production systems. Fujikoshi continues to lead the way by developing machining systems that integrate tools and machines. ndex Gear Cutting Tools Gear Cutting Comparison and Types 25 Broaches Design of Broach ools Guidance NACHI Accuracy of Gear Shaper Cutters 26 Technical Introduction Basic Design and Cutting Method 61 Materials and Coating of Gear Cutting Tools 5 Cutting Condition and Regrinding 27 Hard Broaches 45 Calculation of Pulling Load 62 Gear Cutting T Disk Type Shaper Cutters Type1Standard Dimensions 28 Broach for MQL 46 Face Angle and Relief Angle 63 Technical Introduction Disk Type Shaper Cutters Type2Standard Dimensions 30 Off-normal Gullet Helical Broach 47 Finished Size of Broaches 64 Hard Hobbing 6 Disk Type Shaper Cutters Type2Standard Dimensions 31 Micro Module Broaching 48 Helical Gear Shaper Cutters High Speed Dry Hobbing 7 Essential Points and Notice 65 Disk
    [Show full text]
  • Experimental Simulation of Gear Hobbing Through a Face Milling Concept in CNC-Machine
    Experimental simulation of gear hobbing through a face milling concept in CNC-machine SABA HOSEINI Degree project in Second cycle Stockholm, Sweden 2013 www.kth.se Powered by TCPDF (www.tcpdf.org) Experimental simulation of gear hobbing through a face milling concept in CNC-machine Author: Saba Hoseini Report No.: Kimab-2013-119 Swerea KIMAB Project No.: 265010 Date: 07.08.2013 Member program: MRC Materials in Machining i Abstract High-speed steels are the main material for cutting tools especially for producing gear boxes in the automotive industry. Cutting performance of high speed steel depends on their resistance to wear, their toughness and resistance to tempering at operating temperature. In this project, tool-life and wear type of cutting tools made of powder metallurgy high speed steel (PM-HSS) were investigated up to a flank wear width of 0.30 mm in different steels and cutting speeds. Hardness and cutting speed had a significant effect on tool-wear, tool-life and chip formation. More rake face wear was occurred by harder materials because of higher thermo- mechanical loading .Three indicators were used for representing tool life and to show the relation of cutting speed and hardness with cutting performance. Difference of tool life between the softest and the hardest steels was about two times. By increasing cutting speed in every work-material more number of passes was obtained. The required data were obtained experimentally by a 3-axis milling machine. This test method facilitates simulation of gear hobbing wear type in a less time-consuming way, compared to the other methods which have the same kinematics of real hobbing.
    [Show full text]
  • VIRTUAL HOBBING E. BERGSETH Department of Machine Design, KTH, Stockholm, Sweden SUMMARY Hobbing Is a Widely Used Machining Proc
    VIRTUAL HOBBING E. BERGSETH Department of Machine Design, KTH, Stockholm, Sweden SUMMARY Hobbing is a widely used machining process to generate high precision external spur and helical gears. The life of the hob is determined by wear and other surface damage. In this report, a CAD approach is used to simulate the machining process of a gear tooth slot. Incremental removal of material is achieved by identifying contact lines. The paper presents an example of spur gear generation by means of an unworn and a worn hob. The two CAD-generated gear surfaces are compared and showed form deviations. Keywords: gear machining, CAD, simulation 1 INTRODUCTION analysis of the tolerances applied to gears, each step in the manufacturing process must be optimized. Better The quality and cost of high precision gears are aspects understanding of the geometrical variations would which are constantly of interest. Demands stemming facilitate tolerance decisions, and make it easier to from increasing environmental awareness, such as meet new demands. lower noise and improved gear efficiency, are added to traditional demands to create (MackAldener [1]) a Gear manufacturing consists of several operations; challenging task for both manufacturers and designers. table 1 shows an example of a gear manufacturing To be able to adjust to these demands, a design must be sequence for high precision external spur or helical robust; that is, it must deliver the target performance gears. regardless of any uncontrollable variations, for example manufacturing variations. Manufacturing variations can include geometrical variations caused by imperfections in the manufacturing process, for example, wear of tools. The geometrical deviations of each part must be limited by tolerances in order to ensure that the functional requirements are met.
    [Show full text]
  • Ffg Europe & Americas Product Guide
    FFG EUROPE & AMERICAS PRODUCT GUIDE THE PERFECT MACHINE FOR YOUR APPLICATION FFG1000(04DE)en/1000/09.19 WWW.FFG-EA.COM BRANDS PORTFOLIO Universal Turning Machines Horizontal Turning and Turn/mill Pick-up Vertical Turning Machines Dual Spindle Pick-up Vertical Hobbing Machines Hobbing Machines VDF DUS SERIES Centers DVH SERIES Turning Machines H 80 – H 400 SERIES H 600 – H 2300 SERIES VDF T/TM SERIES DVT SERIES Crankshaft Machining Horizontal Turning Center Vertical Turning Machines Vertical Shaft Turning Machine Chamfering and Deburring Skiving Machine VDF 221/226 Cx VDF 350 TM SHOP VDM SERIES WDM 250 Machines VS 250 CD/CDA/CDM SERIES Evolute Spline Coldforming Universal Ball Track Cutting High Speed Tripod Grinder Soft and Hard Milling Machine Machine MECCANODORA 1200-HS Window Cage Turning and Gear Manufacturing Technology Turning XK SERIES XG SERIES MECCANODORA 4200-F Vertical Machining Centers and Large Part Systems Vertical CNC System Machines CNC Dual Spindle System Manufacturing Systems and External Grinding Machines Internal Diameter Grinding Machines SPECHT® SERIES Machines Transfer Concepts for Volume for Railway Axles MT500 ID SPECHT® DUO SERIES Production MT2500 HD AGILE MANUFACTURING SYSTEMS Horizontal Machining Center Standardized HMC 630SHOP Automation Solutions MAG CELL External Grinding Machines Universal Grinding Machines Grinding Technology CROSSFLEX A1100 ELEKTRA 1700 Multispindle and Rotary Transfer Technology Multispindle and Rotary Transfer Machining Centers and Manufacturing Systems Service, Engineering BRANDS
    [Show full text]
  • Gear Hobbing Unit
    Gear Hobbing Unit High Productive Manufacturing of Gears with CNC Turning Centers. Maximum flexibility, high surface quality, easy handling. In operation: Gear Hobbing Unit for Turn/Mill Centers | Usable for machining gear quality according to standard 8 ISO 1328, AGMA 8 | Maximum scale swing of ±30° | High stiffness and runout accuracy | Interchangeable milling arbor available in different sizes | Easy cutting tool change through removable counter support and withdrawal of the complete milling arbor | Cutting tools can be pre-set | Sine bar for high accurate angular adjustment interchangeable milling arbor Maximum angular adjustment ±30° with scale and vernier Sine bar removable counter support 2 Operation principle: Sample workpieces Gear hobbing z n c Synchronization of work piece and tool rotation. z n c Feed movement in Z axis. | Splines e.g. DIN 5480, DIN 5482, TORX When hobbing is finished the hob has to move towards X. Please consider: At the end of the gear/spline there has to be sufficient clearance for the hob. Shifting | Spur gear n Initial hob position after tool c change with new cutting tool. y n Hob position at end of c cutting tool life. | Helical gear To optimize the cutting tool life you can move the hob step by step in Y axis direction. This movement enables the usage of all cutting edges of the hob. This procedure is called shifting. © WTO GmbH I Subject to change without notice 3 Gear Hobbing Unit type 1 (up to module 2) | Max. cutting tool size Ø50x50 mm | Ratio i (n1:n2) 1:1 | Max. RPM (n2) 4,000 Maximum angular adjustment Clamping of | Max.
    [Show full text]
  • DYNAMIC ANALYSIS of the CUTTING FORCES in GEAR HOBBING Ali M. Abood, Bsc
    DYNAMIC ANALYSIS OF THE CUTTING FORCES IN GEAR HOBBING by Ali M. Abood, BSc. This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy NEWCASTLE UNIVERSITY LIBRARY 201 29637 7 School of Mechanical and Systems Engineering University of Newcastle upon Tyne, UK December 2002 LIST OF CONTENTS PAGE: i Contents I Abstract v Acknowledgments VI .. Nomenc1ature Vll Chapter One: Introduction 1 1.1 Objectives 1 1.2 Thesis layout 2 Chapter Two: The Gear Hobbing Process 4 2.1 Introduction 4 2.2 Basic principle ofhobbing 4 2.3 Advantages and limitations ofhobbing 6 2.4 Hob description 7 2.4.1 Multi start hobs 9 2.5 Methods ofhobbing 11 2.6 Kinematics requirements 16 2.6.1 Hob settings 16 2.6.2 Index ratio 17 2.7 Hobbing machine 18 2.7.1 Conventional hobbing machine 19 2.7.2 CNC hobbing machine 21 Chapter Three: Literature review 24 3. 1 Introduction 24 3.2 Numerically control hobbing machine 24 3.3 CNC gear hobbing 26 3.4 Gear hobbing kinematics 27 3.4. I Cutting zone and chip shape 28 3.4.2 Hob geometry 29 3.4.3 Cutting forces measurements and cutting parameters 31 3.4.4 Chip formation 34 UNIVERSITY OF NEWCASTLE December 2002 LIST OF CONTENTS PAGE: ii 3.4.5 Generation offinished tooth form 39 3.4.6 Cutting forces 39 3.5 Summary 45 Chapter 4: Kinematics ofhobbing 47 4. 1 Introduction 47 4.2 Time dependant kinematic parameters 49 4.3 Co-ordinate transformations 50 4.3.
    [Show full text]