Tethers in Space Handbook
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Modular Spacecraft with Integrated Structural Electrodynamic Propulsion
NAS5-03110-07605-003-050 Modular Spacecraft with Integrated Structural Electrodynamic Propulsion Nestor R. Voronka, Robert P. Hoyt, Jeff Slostad, Brian E. Gilchrist (UMich/EDA), Keith Fuhrhop (UMich) Tethers Unlimited, Inc. 11807 N. Creek Pkwy S., Suite B-102 Bothell, WA 98011 Period of Performance: 1 September 2005 through 30 April 2006 Report Date: 1 May 2006 Phase I Final Report Contract: NAS5-03110 Subaward: 07605-003-050 Prepared for: NASA Institute for Advanced Concepts Universities Space Research Association Atlanta, GA 30308 NAS5-03110-07605-003-050 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................................................1 TABLE OF FIGURES.................................................................................................................................................2 I. PHASE I SUMMARY ........................................................................................................................................4 I.A. INTRODUCTION .............................................................................................................................................4 I.B. MOTIVATION .................................................................................................................................................4 I.C. ELECTRODYNAMIC PROPULSION...................................................................................................................5 I.D. INTEGRATED STRUCTURAL -
Stable Orbits of Rigid, Rotating, Precessing, Massive Rings
Stable Orbits of Rigid, Rotating, Precessing, Massive Rings Edward D. Rippert Whitehawk Systems, 3 Whitehawk Circle, Boise, ID, 83716, USA. [email protected] The dynamics of a rigid, rotating, precessing, massive ring orbiting a point mass within the perimeter of the ring are considered. It is demonstrated that orbits dynamically stable against perturbations in three dimensions exist for a range of rigid body rotation parameters of the ring. Previous analysis and some well-known works of fiction have considered the stability of both rigid and flexible, non-precessing ring systems and found that they are unstable in the plane of the ring unless an active stabilization system is employed. There does not appear to be any analyses previously published considering rigid body precession of such a system or that demonstrate passive stability in three dimensions. Deviations from perfect rigidity and possible applications of such a system are discussed. Keywords: Orbital Ring, Ring World, Stability, Precession, Magic Angle I. Introduction Solid rings rotating about a central mass have been considered for various applications ranging from a ring of geosynchronous satellites around the Earth [1] (Polyakov-Ring) to fictional accounts of a gigantic artificial habitat around a star rotating to provide artificial gravity [2] (Niven-Ring). A Polyakov-Ring rotates at or slightly above the orbital speed at its distance from the central mass. As such it lacks significant tension on the ring and is a flexible structure. It has been shown that such a structure is unstable against perturbations in the plane of the ring but can be stabilized by a feedback control system controlling the local length of ring segments [3]. -
Exploring Design and Policy Options for Orbital Infrastructure Projects by Lieutenant Junior Grade Benjamin L. Putbrese, U.S. Na
Exploring Design and Policy Options for Orbital Infrastructure Projects by Lieutenant Junior Grade Benjamin L. Putbrese, U.S. Navy B.S. Aerospace Engineering United States Naval Academy, 2013 Submitted to the Engineering Systems Division in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology June 2015 ©2015 Benjamin L. Putbrese. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ________________________________________________________________ Engineering Systems Division May 8, 2015 Certified by:_______________________________________________________________________ Daniel E. Hastings Cecil and Ida Green Education Professor of Engineering Systems and Aeronautics and Astronautics Thesis Supervisor Accepted by: _____________________________________________________________________ Dava J. Newman Professor of Aeronautics and Astronautics and Engineering Systems Director, Technology and Policy Program 2 This work is sponsored by the United States Department of Defense under Contract FA8721-05- C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government. 3 Exploring Design and Policy Options for Orbital Infrastructure Projects by Lieutenant Junior Grade Benjamin L. -
Tethers in Space Handbook - Second Edition
Tethers In Space Handbook - Second Edition - (NASA-- - I SECOND LU IT luN (Spectr Rsdrci ystLSw) 259 P C'C1 ? n: 1 National Aeronautics and Space Administration Office of Space Flight Advanced Program Development NASA Headquarters Code MD Washington, DC 20546 This document is the product of support from many organizations and individuals. SRS Technologies, under contract to NASA Headquarters, compiled, updated, and prepared the final document. Sponsored by: National Aeronautics and Space Administration NASA Headquarters, Code MD Washington, DC 20546 Contract Monitor: Edward J. Brazil!, NASA Headquarters Contract Number: NASW-4341 Contractor: SRS Technologies Washington Operations Division 1500 Wilson Boulevard, Suite 800 Arlington, Virginia 22209 Project Manager: Dr. Rodney W. Johnson, SRS Technologies Handbook Editors: Dr. Paul A. Penzo, Jet Propulsion Laboratory Paul W. Ammann, SRS Technologies Tethers In Space Handbook - Second Edition - May 1989 Prepared For: National Aeronautics and Space Administration Office of Space Flight Advanced Program Development NASA National Aeronautics and Space Administration FOREWORD The Tethers in Space Handbook Second Edition represents an update to the initial volume issued in September 1986. As originally intended, this handbook is designed to serve as a reference manual for policy makers, program managers, educators, engineers, and scientists alike. It contains information for the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with space tethers, it summarizes past and ongoing studies and programs, a complete bibliography of tether publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most valuable asset is the brief description of nearly 50 tether applications which have been proposed and analyzed over the past 10 years. -
A Rapid and Scalable Approach to Planetary Defense Against Asteroid Impactors
THE LEAGUE OF EXTRAORDINARY MACHINES: A RAPID AND SCALABLE APPROACH TO PLANETARY DEFENSE AGAINST ASTEROID IMPACTORS Version 1.0 NASA INSTITUTE FOR ADVANCED CONCEPTS (NIAC) PHASE I FINAL REPORT THE LEAGUE OF EXTRAORDINARY MACHINES: A RAPID AND SCALABLE APPROACH TO PLANETARY DEFENSE AGAINST ASTEROID IMPACTORS Prepared by J. OLDS, A. CHARANIA, M. GRAHAM, AND J. WALLACE SPACEWORKS ENGINEERING, INC. (SEI) 1200 Ashwood Parkway, Suite 506 Atlanta, GA 30338 (770) 379-8000, (770)379-8001 Fax www.sei.aero [email protected] 30 April 2004 Version 1.0 Prepared for ROBERT A. CASSANOVA NASA INSTITUTE FOR ADVANCED CONCEPTS (NIAC) UNIVERSITIES SPACE RESEARCH ASSOCIATION (USRA) 75 5th Street, N.W. Suite 318 Atlanta, GA 30308 (404) 347-9633, (404) 347-9638 Fax www.niac.usra.edu [email protected] NIAC CALL FOR PROPOSALS CP-NIAC 02-02 PUBLIC RELEASE IS AUTHORIZED The League of Extraordinary Machines: NIAC CP-NIAC 02-02 Phase I Final Report A Rapid and Scalable Approach to Planetary Defense Against Asteroid Impactors Table of Contents List of Acronyms ________________________________________________________________________________________ iv Foreword and Acknowledgements___________________________________________________________________________ v Executive Summary______________________________________________________________________________________ vi 1.0 Introduction _________________________________________________________________________________________ 1 2.0 Background _________________________________________________________________________________________ -
20090015024.Pdf
Wireless Power Transmission Options for Space Solar Power Seth Potter1, Mark Henley1, Dean Davis1, Andrew Born1, Martin Bayer1, Joe Howell2, and John Mankins3 1The Boeing Company, 2NASA Marshall Space Flight Center, 3formerly NASA HQ, currently Artemis Innovation Management Solutions LLC Abstract for a presentation to be given at the State of Space Solar Power Technology Workshop Lake Buena Vista, Florida 2-3 October 2008 Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today’s technology. In recent studies, a 100 kWe-class “Power Plug” Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth. Wireless Power Transmission Options for Space Solar Power Seth Potter -
Achievable Space Elevators for Space Transportation and Starship
1991012826-321 :1 TRANSPORTATIONACHIEVABLE SPACEAND ELEVATORSTARSHIPSACCELERATFOR SP_CEION ._ Fl_t_ Dynamic_L',_rator_ N91-22162 Wright-PattersonAFB,Ohio ABSTRACT Spaceelevatorconceptslorlow-costspacelau,'x,,hea_rereviewed.Previousconceptssuffered;rein requirementsforultra-high-strengthmaterials,dynamicallyunstablesystems,orfromdangerofoollisionwith spacedeb._s.Theuseofmagneticgrain_reams,firstF_posedby BenoitLeben,solvestheseproblems. Magneticgrain_reamscansupportshortspace6!evatorsforliftingpayloadscheaplyintoEarthorbit, overcomingthematerialstrengthp_Oiemin.buildingspaceelevators.Alternatively,thestreamcouldsupport an internationaspaceportl circling__heEarthdailyt_nsofmilesabovetheequator,accessibleto adv_ncad aircraft.Marscouldbe equippedwitha similargrainstream,usingmaterialfromitsmoonsPhobosandDefines. Grain-streamarcsaboutthesuncould_ usedforfastlaunchestotheouterplanetsandforaccelerating starshipsto nearikjhtspeedforinterstella:recor_naisar',cGraie. nstreamsareessentiallyimperviousto collisions,andcouldreducethecost_f spacetranspo_ationbyan o_er c,,fmagnih_e. iNTRODUCTION Themajorob_,tacletorapi( spacedevei,apmentisthehighco_ oflaunct_!,'D_gayloadsintoEarthorbit. Currentlaunchcostsare morethan_3000per kilogramand, rocketvehicles_ch asNASP,S,_nger_,'_the AdvancedLaunchSystemwiltstillcost$500perkilogram.Theprospectsforspaceente_dseandsettlement. arenotgoodunlessthesehighlaunchc_stsarereducedsignificantly. Overthepastthirtyyears,severalconceptshavebeendevelopedforlaunchir_la{_opayloadsintoEarth orbitcheaplyusing"_rJeceelevators."The._estructurescanbesupportedbyeithe.rs_ati,for:: -
Siewnarine Vishal 2015 Masters
THE IMPACT OF ATMOSPHERIC MODELS ON THE DYNAMICS OF SPACE TETHER SYSTEMS Vishal Siewnarine A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Graduate Program in Physics and Astronomy York University Toronto, Ontario September 2015 Vishal Siewnarine, 2015 Abstract Space debris has become an increasingly larger concern for aerospace travel and exploration. One idea to control the space debris population is to de-orbit defunct satellites using a space tether system. A space tether system is often made up of three parts: the main satellite, the tether and the sub-satellite. The tether connects the main satellite and the sub-satellite. Space tether systems make use of the Lorentz force as an electrodynamic drag for de-orbit. We use an established model of a space tether system to observe how satellites de- orbit. This model was constructed in MATLAB (Simulink) and uses the 1976 U.S. Standard Atmosphere. However, we wish to investigate how the model behaves using newer and more accurate atmospheric models, namely, the Jacchia-Bowman 2008 model and the Drag Temperature Model 2013. We also investigate the effect of controlling the tether's libration energy under the three aforementioned atmospheric models. ii Acknowledgements First of all, I would like to thank God for bringing me to this point. Without her, nothing is possible. Next, I would like to thank Professor Zheng Hong Zhu for his enduring patience and effort in being my supervisor and mentor whose sincerity, encouragement, late nights and tireless efforts helped shape my focus and inspire me as I hurdle all the obstacles and barriers in the completion of this work. -
The E-Magazine of the British Interplanetary Society Reaching Beyond the Earth
The e-Magazine of the British Interplanetary Society Reaching Beyond the Earth ne of the most dynamic and System is obsolete almost before it starts. again we look forward to seeing more of exciting areas of current human This is just one of the many fascinating areas these showcases in the future. Also, John Oendeavour must surely be the which lie at the very heart of this key area of Silvester completes his review of Britain’s aerospace industry. It represents mankind’s the Society’s remit, and which we hope to be first space rocket and I talk about the latest achievements at their very best, and offers exploring in future issues of Odyssey. I am updates with Mars One. hope for the great enterprise of space travel sure that, like me, you look forward to reading to which the British Interplanetary Society Terry’s future speculations. In the next issue we delve into the strange aspires. and murky world of conspiracy theories, Also in this issue we are very pleased to with a short story and Richard’s Radical For that reason, I am delighted to introduce have a short story entitled “Shadows” from Vectors column devoted to this endlessly a new occasional column of “Aerospace Stephen Baxter, the well known author and fascinating subject. Richard will also be Speculations” to Odyssey which focuses BIS member. We are hoping to have a series telling us more about Alex Storer’s artwork, on this area of activity, written by our of these 500 word short stories from other and is writing an article about Alex’s latest own Assistant Editor Terry Don with his authors in due course. -
Space Tethers and Small Satellites: Formation Flight and Propulsion
SpaceSpace TethersTethers andand SmallSmall Satellites:Satellites: FormationFormation FlightFlight andand PropulsionPropulsion ApplicationsApplications NestorNestor VoronkaVoronka TTETHERSETHERS UUNLIMITED,NLIMITED, IINC.NC. 11711 N. Creek Pkwy S., Suite D-113 Bothell, WA 98011 (425) 486-0100x678 Fax: (425) 482-9670 [email protected] SpaceSpace TetherTether ApplicationsApplications && BenefitsBenefits – EnableEnable highhigh ∆∆VV missionsmissions byby usingusing mechanicalmechanical oror electrodynamicelectrodynamic propulsionpropulsion andand motionmotion controlcontrol – ReduceReduce systemsystem massmass byby eliminatingeliminating complexcomplex subsystemssubsystems – MinimizeMinimize formationformation flyingflying systemsystem complexitycomplexity andand risksrisks – EnableEnable newnew missionsmissions byby nonnon-- KeplerianKeplerian motionmotion ofof tetheredtethered satellitessatellites Provide new and improved system capabilities by exploiting unique motion of tethered satellite system Orbit-Raising and Repositioning Launch-Assist & of LEO Spacecraft Space Tethers LEO to GTO Payload Transfer for Propellantless Propulsion Propellantless propulsion enables large ∆V missions with low mass impact Drag-Makeup Stationkeeping Capture & Deorbit of Space Debris for LEO Assets Formation Flying for Long-Baseline SAR & Interferometry PastPast TetherTether FlightFlight ExperimentsExperiments – ≥≥ 1717 tethertether experimentsexperiments flown,flown, startingstarting withwith GeminiGemini capsulecapsule tethertether – SmallSmall ExpendableExpendable -
Open Access Proceedings Journal of Physics: Conference Series
Journal of Physics: Conference Series PAPER • OPEN ACCESS Celestial Mechanics: from the bases of the past to the challenges of the future To cite this article: C F de Melo et al 2015 J. Phys.: Conf. Ser. 641 011001 View the article online for updates and enhancements. This content was downloaded from IP address 186.217.236.55 on 17/05/2019 at 17:44 XVII Colóquio Brasileiro de Dinâmica Orbital – CBDO IOP Publishing Journal of Physics: Conference Series 641 (2015) 011001 doi:10.1088/1742-6596/641/1/011001 Celestial Mechanics: from the bases of the past to the challenges of the future C F de Melo1, A F B A Prado2, E E N Macau2, O C Winter3, V M Gomes3 1 Federal University of Minas Gerais – UFMG, Belo Horizonte (MG), Brazil 2 National Institute for Space Research – INPE, São José dos Campos (SP), Brazil 3 São Paulo University State – UNESP, Guaratinguetá (SP), Brazil E-mail: [email protected] Abstract: This special issue of Journal of Physics: Conference Series brings a set of 31 papers presented in the Brazilian Colloquium on Orbital Dynamics (CBDO), held on December 1 - 5, 2014, in the city of Águas de Lindoia (SP), Brazil. CBDO is a traditional and important scientific meeting in the areas of Theoretical and Applied Celestial Mechanics. The meeting takes place every two years, when researchers from South America and also guests from other continents present their works and discuss the paths trodden by the space sciences. 1. Introduction Astronomy is considered the oldest of the sciences because of interest and, especially, the need to understand the celestial phenomena since the beginning of mankind. -
Space Webs Final Report
Space Webs Final Report Authors: David McKenzie, Matthew Cartmell, Gianmarco Radice, Massimiliano Vasile Affiliation: University of Glasgow ESA Research Fellow/Technical Officer: Dario Izzo Contacts: Matthew Cartmell Tel: +44(0)141 330 4337 Fax: +44(0)141 330 4343 e-mail: [email protected] Dario Izzo Tel: +31(0)71 565 3511 Fax: +31(0)71 565 8018 e-mail: [email protected] Ariadna ID: 05/4109 Study Duration: 4 months Available on the ACT website http://www.esa.int/act Contract Number: 4919/05/NL/HE Contents 1 Introduction 4 2 Literature Review 7 3 Modelling of Space-webs 9 3.1 Introduction............................ 9 3.2 ModellingMethodology. 9 3.3 WebMeshing ........................... 10 3.3.1 WebStructure... .. .. .. .. .. ... .. .. .. 10 3.3.2 DividingtheWeb . 10 3.3.3 Web Divisions . 11 3.4 EquationsofMotion . 12 3.4.1 Centre of Mass Modelling . 12 3.4.2 Rotations ......................... 13 3.4.3 Position equations . 15 3.5 EnergyModelling ......................... 15 3.5.1 SimplifyingAssumptions . 17 3.5.2 Robot Position Modelling . 17 4 Space-web Dynamics 19 4.1 Dynamical Simulation . 19 4.2 Investigating the Stability of the Space-web . 19 4.2.1 Massoftheweb...................... 20 1 4.2.2 Robot crawl velocity . 20 4.2.3 Robotmass ........................ 21 4.2.4 WebAsymmetry ..................... 21 4.3 Numerical Investigation into Stability . 23 4.3.1 Masses of the Web and Satellite . 24 4.3.2 Masses of the Web and Robot . 25 4.3.3 Mass of the Web and Angular Velocity . 26 4.3.4 Mass of the Robot and Angular Velocity .