A Single-Well Egs Configuration Using a Thermosiphon

Total Page:16

File Type:pdf, Size:1020Kb

A Single-Well Egs Configuration Using a Thermosiphon PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 A SINGLE-WELL EGS CONFIGURATION USING A THERMOSIPHON Zhe Wang, Mark W. McClure and Roland N. Horne Stanford Geothermal Program Department of Energy Resources Engineering, 367 Panama St. Stanford University, CA 94305-2220, USA e-mail: [email protected], [email protected], [email protected] The design concept includes a number of novel ideas, ABSTRACT including: 1. Use of single well systems in place of This paper describes the investigation of a single-well multiwell systems, with level-to-level enhanced geothermal system comprised of a fracturing. downhole thermosiphon and a novel completion 2. Use of downhole heat exchangers in place of design using a downhole heat exchanger. The surface heat exchangers. thermosiphon is a device that takes advantage of the 3. Use of gravity head thermosiphons in place gravity head difference between liquid flowing down of well pumps. the annulus and vapor flowing up the tubing. 4. Use of downhole circulation of secondary Without a connection to a large reservoir volume, a working fluid in place of water. downhole heat exchanger will rapidly deplete the heat near the wellbore and cannot generate useful These four concepts may be expected to have a energy output for very long. Therefore to enhance number of advantages over conventional ideas, as heat extraction, the effectiveness of a second annulus will be described here. outside the casing was investigated. A working fluid would circulate by natural convection down the outer The conventional concept of an EGS includes a annulus and upwards through fractures created in the region of fractured rock, through which fluid is reservoir. This configuration has the advantages that circulated from one well to another well, Figure 1. a second injection well is not required, the need for downhole pumping is avoided by the thermosiphon effect, and the fractures carrying fluid through the reservoir makes the system sustainable. A limitation is that reliance on free convection to circulate fluid through an EGS reservoir does not result in large flow rates, which lowers the productivity. We constructed a coupled finite-difference wellbore and reservoir model representing the fluid mechanics, fluid phase behavior and heat transfer. We investigated the energy output of the system and the feasibility of sustainable deployment. INTRODUCTION Enhanced Geothermal Systems (EGS) are an attractive prospect for the development of base-load, carbon-free electricity generation. However, achieving EGS electrical generation at a reasonable cost is based upon a number of technological advances to reduce the expense of installation or to increase the rate at which energy can be recovered. Figure 1: Conventional two-well EGS configuration, This study is investigating an uncommon design for from Tester et al. (2006). an EGS system, which is a hybrid of a downhole heat exchanger and an EGS fracture network. An alternative idea is to fracture the formation and then produce and inject in the same well, as in Figure 2. The single well concept removes one of the wells, authors, including US Patent 4201060 (Outmans, and circulates fluids from one interval to another 1980). Nalla et al. (2004) analyzed the thermal output within the same well. The fluid may travel down the of this configuration, albeit with much smaller casing and back up the inner tubing. Variations of separation. In such a configuration, as shown in this idea have been suggested by a number of Figure 2, geothermal water would move convectively authors, including US Patent 4201060 (Outmans, through the annular space surrounding the heat 1980). exchanger, and circulate 500 to 1000 m through the fracture network in the formation. Hence the heat transfer to the heat exchanger is enhanced over simple conduction. It may also be feasible to use multilateral completions in place of, or as well as, fractures, although that concept is not discussed in this paper. At least in early adoption, EGS projects are likely to use binary power plants because of their ability to work effectively with lower temperature fluids. Some of the energy losses inherent in geothermal systems using binary power plants are associated with the energy required to pump the geothermal fluid to the surface to pass it through the heat exchangers. An alternative is to circulate the Figure 2: Sketch of single-well, coaxial downhole secondary fluid down the well bore, which heat exchanger with fractures. effectively puts the heat exchanger downhole. An important advantage to this is that there is no longer The advantage of a single-well system is that only any need for downhole pumps, which are one of the one well needs to be drilled (or perhaps an abandoned more problematic components in the operation of a oil or gas well could be used in which case no wells binary geothermal project. Secondary working fluid need to be drilled). could be pumped at the surface, where pumps and pump motors operate under more benevolent The disadvantage is that the connection of a fracture conditions and are easily accessible for maintenance. network to a single well in such a configuration has yet to be demonstrated in a geothermal rock. The term thermosiphon (sometimes spelled thermosyphon) is somewhat loosely applied to Our study includes the concept of a downhole heat devices that circulate fluid (and heat) due to exchanger, also shown in Figure 2. Traditional variations in buoyancy between fluids of differing coaxial downhole heat exchangers have been used in temperature and sometimes different phase (liquid direct use applications. The problem with using a and vapor). Among many other applications, the device that extracts heat only by conduction is that two-phase form of the devices has been used to cool conduction is unable to bring heat to the wellbore computer processors. It is this two-phase type of very quickly or for very long, and thus cannot be thermosiphon that seems most appropriate for used for large scale heat extraction (Nalla et al., geothermal use. 2004). One advantage of thermosiphon in downhole heat We explored the idea of connecting the heat exchanger is to remove the need for a downhole exchanger to an EGS fracture network, which would pump. Downhole pumps have drawbacks in two bring additional heat to the wellbore. Water would ways: firstly, in the harsh downhole environment circulate through the reservoir and through an outer pumps have relatively short times between repairs; annulus, between the outside of the casing and the secondly, it is less efficient thermodynamically to use drilled radius of the wellbore. Circulation through pumps to pressurize the fluid and then use it in heat the second annulus and through the reservoir exchangers on the surface (DiPippo, 2008). Another fractures is driven by free convection. The advantage of the thermosiphon is to make use of the convection brings additional heat to the heat tremendous pressure difference between the exchanger, and may extend the duration of time that outflowing and inflowing fluid to provide a source of heat can be extracted. hydraulic energy. The thermosiphon effect can be achieved by circulating the secondary working fluid Our idea of enhancing heat flow to the device would downhole, through the coaxial downhole heat be to fracture the formation from two intervals 500 to exchanger. The boiling point of the working fluid, 1000 m apart, as has been suggested by a number of (typically isopentane, but other choices are possible), 2 is lower than that of water, which results in a more The heat transfer from the reservoir by convection prominent thermosiphon effect than would be dominates because conduction through the rock to the achieved with water. A second reason to circulate the wellbore is small, especially in the long term. secondary working fluid is to prevent scaling in the However, the rate of convection is limited by the tubing. flow rate through the reservoir. In a conventional two-well EGS design, the density difference exists The concept of the downhole thermosiphon, depicted over the entire length of the wellbores from surface to in Figure 2, can be described as follows: cold bottom, and circulation by pumping from the surface secondary working fluid is injected into the annulus is also possible. Therefore a lower rate of heat between the tubing and casing, and extracts heat from extraction would be achieved in a system that uses a formation as it flows downward. In the working part downhole heat exchanger, unless the circulation rate of the formation, a second annulus outside the device in the reservoir can be improved. allows formation fluid to circulate from one fractured interval to the other. There is no contact between the working fluid in the wellbore and in the fluid in the METHODOLOGY formation. As opposed to only heat conduction, the heat transfer is enhanced by the convective flows in the fracture and in the second annulus. After the 1. Wellbore Calculations downflowing fluid is heated, it will be returned to the A numerical wellbore model was built to simulate the surface through the inner tubing. It may be useful to heat transfer between coaxial flow in the wellbore install a choke at the base of the tubing string to and the hot surrounding rock. Heat transfer occurs depressurize the upflowing fluid to achieve within the coaxial tubings between upward flow and vaporization, which would thus enhance the downward flow, as well as between the wellbore and thermosiphon behavior. Once the thermosiphon is the surroundings. Mass balance, momentum equation operating, the working fluid would circulate and energy conservation complete the wellbore spontaneously in the wellbore, and the pressure model (Ouyang and Belanger, 2004). difference between upward and downward flows at ∂ρ ∂(ρq) πr2 = (1) the surface would be recovered in the binary turbine.
Recommended publications
  • Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
    MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS A Thesis Presented to The Academic Faculty by Benjamin Haile Loeffler In Partial Fulfillment of the Requirements for the Degree Master of Science in the G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology December 2012 MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS Approved by: Dr. J. Rhett Mayor, Advisor Dr. Sheldon Jeter G. W. Woodruff School of Mechanical G. W. Woodruff School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Srinivas Garimella G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Date Approved: 11/12/2012 ACKNOWLEDGEMENTS I would like to first thank my committee members, Dr. Jeter and Dr. Garimella, for their time and consideration in evaluating this work. Their edits and feedback are much appreciated. I would also like to acknowledge my lab mates for the free exchange and discussion of ideas that has challenged all of us to solve problems in new and better ways. In particular, I am grateful to Sam Glauber, Chad Bednar, and David Judah for their hard work on the pragmatic tasks essential to this project. Andrew Semidey has been a patient and insightful mentor since my final terms as an undergrad. I thank him for his tutelage and advice over the years. Without him I would have remained a mediocre heat transfer student at best. Andrew was truly indispensable to my graduate education. I must also thank Dr. Mayor for his guidance, insight, and enthusiasm over the course of this work.
    [Show full text]
  • Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi Using Transient System Simulation
    International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 451 ISSN 2229-5518 Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi using Transient System Simulation Prof. Joshua Ibrahim, Dr. Aoandona Kwaghger, Engr. Shehu Mohammed Sani ABSTRACT The modeling and simulation of a thermosyphon solar water heater at Makurdi (7.74oN) Nigeria was conducted for a period of three months (November, 2013- January, 2014). The research was aimed at simulating the performance of a solar water heater by using various parameters for greater efficiency. The solar water heater was developed and its performance was simulated at University of Agriculture Makurdi. The solar radiation on a horizontal surface was measured using a solarimeter. The water mass flow rates were measured using a Flow meter. The relative humidity data were measured using the Hygrometer. The inlet, outlet and ambient temperatures were measured using a Digital thermometer. For the simulation of the entire system the following measured parameters were used, as global solar radiation on collector plate, collector ambient temperature, heat exchanger and storage tank ambient temperature, flow rate of the collector and storage loop, the cold tap water temperature and the hot water usage. For the validation of the model and for the identification of parameters as heat loss coefficients in situ measurements were performed. Based on the developed models parameter sensitivity analysis and transient influences can be examining for the element and the entire system as well. The results obtained were simulated using Transient simulation software16 (TRNSYS). The results obtained showed that the daily average solar radiation for the period varied from 405 푊/푚2 to1008 푊/푚2.
    [Show full text]
  • Solar Water Heating System Requirements
    Solar Water Heating Installation Requirements Adapted from The Bright Way to Heat Water™ technical requirements V 27 Energy Trust of Oregon Solar Water Heating Installation Requirements Revisions Energy Trust updates these installation requirements annually. Many thanks to the industry members and technical specialists that have invested their time to help keep this document current. The current document (v 27) underwent significant changes from previous installation requirements. Much of the redundant commentary material was removed and many requirements were evaluated based on cost effectiveness and removed or relaxed. The revisions table below summarizes many of the new changes however this document should be read in its entirety to understand the changes. August, 2012 Revisions Section Revision 2.2 Changed requirement for avoiding galvanic action, allowing aluminum Materials to galvanized steel connections. Requirements related to overheat and freeze protection were moved 2.3 to the new Solar Water Heating System Design and Eligibility Equipment and Installation Requirements document. Water quality requirements were removed. Requirements related to heat exchanger materials were moved to the 2.6 new Solar Water Heating System Design and Eligibility Requirements Plumbing document. Parts of Section 2.10 from v 26 were integrated into section 2.6. Backup water heater requirements were removed and/or deferred to code. 2.8 Anti-convective piping requirements were removed. Backup Water Heater Backup water heater R-10 floor pad was removed. Parts of Section 2.10 from v 26 were integrated into section 2.8 2.9 Storage to collector ratios were revised for single tank systems and moved to the new Solar Water Heating System Design and Eligibility Solar Storage Tank Requirements document.
    [Show full text]
  • Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls
    WHITE PAPER Automotive Off Road Heavy Power Duty Gen Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls A power generator’s engine heater is a critical component in providing fast, clean engine starts. Choosing and correctly installing a properly sized, high-quality heater protects the genset investment and ensures performance. Many diesel-power generator dealers, packagers, equipment rental companies and maintenance professionals are familiar with the frustration and cost of excessive low- coolant and low-temperature alarms resulting in service calls. Coolant evaporation can be caused by a thermosiphon circulation (TC) heater or incorrect installation of the heater. Dealers and packagers with service contracts are paying the price with replacement heaters and added service calls. Engine heater service issues are especially problematic for level-one care facilities, such as nursing homes and hospitals, where backup gensets must meet the NFPA 110, Type 10 regulation and start in less than 10 seconds. In Canada, CSA 282 requires engines to maintain a temperature between 100º and 120ºF (38º and 49ºC) to ensure quick startup. Mandatory for power generators, starting engines at these temperatures minimize wear and increase operating life. 1 WHITE PAPER Limited Engine Heater Choices To be cost-competitive, or due to lack of application information, gensets are often shipped with a low-cost engine heater. These heaters may not be suitable for all applications or meet the customer requirements. The dealer may need to upgrade the heater before the power generator is installed or in the field. To select the right engine pre-heater, it is important to be aware of new, more reliable products available today.
    [Show full text]
  • Plate Heat Exchangers for Refrigeration Applications
    Plate heat exchangers for refrigeration applications Technical reference manual A Technical Reference Manual for Plate Heat Exchangers in Refrigeration & Air conditioning Applications by Dr. Claes Stenhede/Alfa Laval AB Fifth edition, February 2nd, 2004. Alfa Laval AB II No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Alfa Laval AB. Permission is usually granted for a limited number of illustrations for non-commer- cial purposes provided proper acknowledgement of the original source is made. The information in this manual is furnished for information only. It is subject to change without notice and is not intended as a commitment by Alfa Laval, nor can Alfa Laval assume responsibility for errors and inaccuracies that might appear. This is especially valid for the various flow sheets and systems shown. These are intended purely as demonstrations of how plate heat exchangers can be used and installed and shall not be considered as examples of actual installations. Local pressure vessel codes, refrigeration codes, practice and the intended use and in- stallation of the plant affect the choice of components, safety system, materials, control systems, etc. Alfa Laval is not in the business of selling plants and cannot take any responsibility for plant designs. Copyright: Alfa Laval Lund AB, Sweden. This manual is written in Word 2000 and the illustrations are made in Designer 3.1. Word is a trademark of Microsoft Corporation and Designer of Micrografx Inc. Printed by Prinfo Paritas Kolding A/S, Kolding, Denmark ISBN 91-630-5853-7 III Content Foreword.
    [Show full text]
  • Echnica L Ssista Nce Tu Dy Umass Memorial Medical Center
    UMASS MEMORIAL MEDICAL CENTER POWER PLANT 55 LAKE AVENUE NORTH WORCESTER, MA T ECHNICAL ECHNICAL A SSISTANCE SSISTANCE PREPARED FOR S TUDY DCAMM Prepared by B2Q Associates, Inc. Andover, MA Revision Date 12/21/2015 TECHNICAL ASSISTANCE STUDY - WATERSIDE ECONOMIZER UMASS MEMORIAL MEDICAL CENTER - POWER PLANT Introduction .................................................................................................................................... 3 Contacts .......................................................................................................................................... 5 Approach & Modeling Methodology .............................................................................................. 6 Executive Summary Table ............................................................................................................... 7 Facility & Process Description ......................................................................................................... 8 Annual Chilled Water Load Profile ................................................................................................ 11 Energy Modeling Methodology .................................................................................................... 15 Baseline Chiller Plant Modeling ................................................................................................ 15 Power Plant Modeling............................................................................................................... 17 Energy Conservation
    [Show full text]
  • "Free" Cooling Using Water Economizers
    engineers newsletter volume 37–3 • providing insights for today’s hvac system designer "free" cooling using Standard 90.1 requirements Water Economizers The following sections of the Standard 90.1 prescriptive path are relevant for water economizers.[4] from the editor … Why economize? In past newsletters, we addressed the ability to accomplish "free" cooling by There are times of the year when a Section 6.5.1 Economizers. "Each artfully rearranging traditional cooling cooling system…" over the size equipment [1] and other ways to achieve system can use outdoor conditions to byproduct cooling virtually for free.[2] cool the building or process using the thresholds shown below "that has a fan We’ve also provided newsletters that standard cooling components to shall include either an air or water discussed air economizers and energy distribute its cooling effect. economizer." There are nine exceptions: code requirements.[3] small individual fan cooling units, In this EN, Susanna Hanson (Trane The most prevalent technique is an air spaces humidified above 35°F (2ºC) applications engineer) focuses on the economizer. When the temperature, or dew point for processes, systems with traditional methods of water-side enthalpy, of the outdoor air is low, condenser heat recovery, some economizing and associated energy code requirements. cooler outdoor air is used to reduce the residential applications, and systems temperature (or enthalpy) of air entering with minimal hours or cooling loads. the cooling coil. This can reduce or There is also an option to use higher eliminate mechanical cooling for much Let’s start with some definitions. efficiency equipment in lieu of an of the year in many climates.
    [Show full text]
  • A Passive Solar Retrofit in a Gloomy Climate
    Rochester Institute of Technology RIT Scholar Works Theses 5-11-2018 A Passive Solar Retrofit in a Gloomy Climate James Russell Fugate [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Fugate, James Russell, "A Passive Solar Retrofit in a Gloomy Climate" (2018). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A Passive Solar Retrofit in a Gloomy Climate By James Russell Fugate A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARCHITECTURE Department of Architecture Golisano Institute for Sustainability Rochester Institute of Technology May 11, 2018 Rochester, New York Committee Approval A Passive Solar Retrofit in a Gloomy Climate A Master of Architecture Thesis Presented by: James Russell Fugate Jules Chiavaroli, AIA Date Professor Department of Architecture Thesis Chair Dennis A. Andrejko, FAIA Date Associate Professor Head, Department of Architecture Thesis Advisor Nana-Yaw Andoh Date Assistant Professor Department of Architecture Thesis Advisor ii Acknowledgments I would like to thank the faculty and staff of the Master of Architecture program at the Rochester Institute of Technology. Being part of the original cohort of students in the program’s initial year was an honor and it has been exciting to see the program grow into the accredited and internationally respected program of today. I want to thank Dennis Andrejko for taking the chance and accepting me into the program as an older, part-time student.
    [Show full text]
  • Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter
    energies Article Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter Hafiz M. Daraghmeh 1 , Mohammed W. Sulaiman 1 , Kai-Shing Yang 2 and Chi-Chuan Wang 1,* 1 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; hafi[email protected] (H.M.D.); [email protected] (M.W.S.) 2 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-3-5712121 Received: 28 November 2018; Accepted: 24 December 2018; Published: 29 December 2018 Abstract: This study investigates the feasibility of using R-134a filled separated two-phase thermosiphon loop (STPTL) as a free cooling technique in datacenters. Two data center racks one of them is attached with fin and tube thermosiphon were cooled by CRAC unit (computer room air conditioning unit) individually. Thermosiphon can help to partially eliminate the compressor loading of the CRAC; thus, energy saving potential of thermosiphon loop was investigated. The condenser is a water-cooled design and perfluoroalkoxy pipes were used as adiabatic riser/downcomer for easier installation and mobile capability. Tests were conducted with filling ratio ranging from 0 to 90%. The test results indicate that the energy saving increases with the rise of filling ratio and an optimum energy savings of 38.7% can be achieved at filling ratios of 70%, a further increase of filling ratio leads to a reduction in energy saving. At a low filling ratio like 10%, the evaporator starves for refrigerant and a very uneven air temperature distribution occurring at the exit of data rack.
    [Show full text]
  • Air-To-Air Energy Recovery Equipment
    CHAPTER 26 AIR-TO-AIR ENERGY RECOVERY EQUIPMENT Applications ............................................................................. 26.1 Use of Air-to-Air Heat or Heat and Mass Exchangers Basic Heat or Heat and Water Vapor Transfer Relations....... 26.2 in Systems ........................................................................... 26.27 Types of Air-to-Air Heat Exchangers ...................................... 26.5 Economic Considerations ...................................................... 26.35 Performance Ratings ............................................................. 26.19 Additional Technical Considerations .................................... 26.20 Energy and/or Mass Recovery Calculation Comparison of Air-to-Air Heat or Heat and Mass Exchanger Procedure ........................................................................... 26.36 Characteristics ................................................................... 26.26 Symbols .................................................................................. 26.41 IR-TO-AIR energy recovery is the process of recovering heat Table 1 Typical Applications for Air-to-Air Energy Recovery and/or moisture between two airstreams at different tempera- A Method Application tures and humidities. This process is important in maintaining accept- able indoor air quality (IAQ) while keeping energy costs low and Comfort-to-comfort Residences reducing overall energy consumption and carbon dioxide emission. Offices This chapter describes various technologies for air-to-air
    [Show full text]
  • Download Card
    3523 Lousma Drive, SE Grand Rapids, MI 49548 Email: [email protected] Telephone: (616) 534-0032 Website: www.airtechequipment.com MISCELLANEOUS EQUIPMENT • Axial Flow • Flexble Fabric Duct • Propeller • Centrifugal • Dust Collectors •Dampers •Louvers • Mist & Chip Collectors •Access Panels • Downdraft Tables •Access Doors •Ventilators • Rotary Air Locks • AB-QM- Pressure • Data Room Units Independent Control Valve (PICV) • Ice Storage Systems • Desiccant Dehumidifers • Peak Load Shaving • JENEsys Building Operation •Oil Mist Collectors •Welding and Information Platform Fume and Filtration Systems • LYNX CyberPro • Cooling Towers • Fluid Coolers • ECM Fan Arrays •Unit Heat •Wall Hung DX Heat Pumps • Wall Convectors and Air Conditioners • Wall Heat •Air Cooled Vertical X • Baseboard Heat •Heat Pump and Air • Infrared Conditioner • Portables • Vertical Classroom • Ceiling / Cove Ventilator • Gas Detection Systems 070921 LINE CARD Our goal is to support our customers’ requirements in meeting the increasing demands in the industry for efficient and compliant air management systems with….. EXPERIENCE • TECHNOLOGY • PRODUCTS • SERVICE 3523 LOUSMA DRIVE, SE GRAND RAPIDS, MICHIGAN 49548 Telephone: (616) 534-0032 / Fax: (616) 534-0284 Email: [email protected] Website: www.airtechequipment.com 3523 Lousma Drive, SE Grand Rapids, MI 49548 Email: [email protected] Telephone: (616) 534-0032 Website: www.airtechequipment.com AIR SIDE EQUIPMENT • Custom Air Handling Units (800 – 100,000+ cfm) •Condensers & Condensing Units
    [Show full text]
  • Challenges and Limitations of Thermosiphon Cooling What We Learned from CMS…
    Challenges and limitations of thermosiphon cooling What we learned from CMS… Philippe Brédy CEA Saclay DSM/Dapnia/SACM/LCSE Symposium for the Inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06 2007 • The thermosiphon principle (example of two phase ) – Self sustained natural boiling convection • Heating applied (Heat to be removed) –Boiling – Weight unbalance between legs of a loop – Induced flow limited by friction Q Single channel Loop PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007 2 • Rising heat exchangers with various geometry • A mass flow and a flow quality deduced from geometry and heat load • An upper tank –thllhe well-namedhd phase separator- is needdded – to recover gas and to supply supply or condensation of gas (cryocooler) – for separation of the two phases ΔP flow (m,x,geometry) Ù ΔP (x, hi) Hyp: homogenous model (x << 10%) PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007 3 Advantages vs Inconveniences •A passive creation offlf flow • NdNeed a minimum hhheight – no pumps or regulation valves – Pressure head to create flow • Autonomy in case of external • Circuit geometry must avoid cryogenic failure (volume of liquid any high point or strong in the phase separator) silitiingularities – separation of the phases • Minimization of the liquid –risk of vapor lock volume – use of the phase separator • No possible external action as a back-up volume for liquid –and a po ssible fru stra tion for the operator ! •A quasi-isothermal loop - mainly function
    [Show full text]