Air-To-Air Energy Recovery Equipment

Total Page:16

File Type:pdf, Size:1020Kb

Air-To-Air Energy Recovery Equipment CHAPTER 26 AIR-TO-AIR ENERGY RECOVERY EQUIPMENT Applications ............................................................................. 26.1 Use of Air-to-Air Heat or Heat and Mass Exchangers Basic Heat or Heat and Water Vapor Transfer Relations....... 26.2 in Systems ........................................................................... 26.27 Types of Air-to-Air Heat Exchangers ...................................... 26.5 Economic Considerations ...................................................... 26.35 Performance Ratings ............................................................. 26.19 Additional Technical Considerations .................................... 26.20 Energy and/or Mass Recovery Calculation Comparison of Air-to-Air Heat or Heat and Mass Exchanger Procedure ........................................................................... 26.36 Characteristics ................................................................... 26.26 Symbols .................................................................................. 26.41 IR-TO-AIR energy recovery is the process of recovering heat Table 1 Typical Applications for Air-to-Air Energy Recovery and/or moisture between two airstreams at different tempera- A Method Application tures and humidities. This process is important in maintaining accept- able indoor air quality (IAQ) while keeping energy costs low and Comfort-to-comfort Residences reducing overall energy consumption and carbon dioxide emission. Offices This chapter describes various technologies for air-to-air energy Classrooms Retail recovery. Thermal and economic performance, maintenance, and Bars and restaurants related operational issues are presented, with emphasis on energy Swimming pools recovery for ventilation. Locker rooms Air-to-air energy recovery should be considered for every build- Operating rooms ing in which energy is used to condition the air. This is consistent with Nursing homes ASHRAE’s strategic plan to support a sustainable built environment, Animal ventilation and aligns with the United Nations International Panel for Climate Plant ventilation Smoking exhaust Change’s call for action to reduce the emissions of carbon dioxide Process-to-process Dryers related to energy use. and Ovens Energy can be recovered either in its sensible (temperature only) or Process-to-comfort Flue stacks latent (moisture) form, or a combination of both from multiple Burners sources. Sensible energy can be extracted, for example, from outgoing Furnaces airstreams in dryers, ovens, furnaces, combustion chambers, and gas Incinerators turbine exhaust gases to heat supply air. Units used for this purpose are Paint exhaust Welding exhaust called sensible heat exchange devices or heat recovery ventilators (HRVs). Devices that transfer both heat and moisture are known as volume flow rate and pressure drop. Economic factors such as cost energy or enthalpy devices or energy recovery ventilators (ERVs). of energy recovered and capital and maintenance cost (including HRVs and ERVs are available for commercial and industrial applica- pumping power cost) play a vital role in determining the economic tions as well as for residential and small-scale commercial uses. feasibility of recovery ventilators for a given application. Air conditioners use significant energy to dehumidify moist air- streams. Excessive moisture in the air of a building can result in mold, 1. APPLICATIONS allergies, and bacterial growth. ERVs can enhance dehumidification with packaged unitary air conditioners. Introducing outdoor or venti- Air-to-air energy recovery systems may be categorized according lation air is the primary means of diluting air contaminants to achieve to their application as (1) process-to-process, (2) process-to-comfort, acceptable indoor air quality. ERVs can cost-effectively provide large or (3) comfort-to-comfort. Some typical air-to-air energy recovery amounts of outdoor air to meet a building’s minimum ventilation applications are listed in Table 1. requirements as prescribed in ASHRAE Standards 62.1 and 62.2. In comfort-to-comfort applications, the energy recovery device Types of ERVs include fixed-plate heat exchangers, rotary wheels, lowers the enthalpy of the building supply air during warm weather heat pipes, runaround loops, thermosiphons, and twin-tower enthalpy and raises it during cold weather by transferring energy between the recovery loops. Performance is typically characterized by effective- ventilation air supply and exhaust airstreams. ness; pressure drop, pumping, or fan power of fluids; cross flow (i.e., Air-to-air energy recovery devices for comfort-to-comfort appli- amount of air leakage from one stream to the other); and frost control cations may be sensible heat exchange devices (i.e., transferring sen- (used to prevent frosting on the heat exchanger). Recovery efficiency, sible energy only) or energy exchange devices (i.e., transferring both the ratio of output of a device to its input, is also often considered. In sensible energy and moisture). These devices are discussed further energy recovery ventilators, effectiveness refers to the ratio of actual in the section on Additional Technical Considerations. energy or moisture recovered to the maximum possible amount of When outdoor air humidity is low and the building space has an energy and/or moisture that can be recovered. appreciable latent load, an ERV can recover sensible energy while possibly slightly increasing the latent space load because of water Fluid stream pressure drops because of the friction between the vapor transfer within the ERV. It is therefore important to determine fluid and solid surface, and because of the geometrical complexity of whether the given application calls for HRV or ERV. the flow passages. Pumping or fan power is the product of the fluid HRVs are suitable when outdoor air humidity is low and latent space loads are high for most of the year, and also for use with swim- The preparation of this chapter is assigned to TC 5.5, Air-to-Air Energy ming pools, chemical exhaust, paint booths, and indirect evaporative Recovery. coolers. 26.1 26.2 2020 ASHRAE Handbook—HVAC Systems and Equipment ERVs are suitable for applications in schools, offices, residences Effectiveness and other applications that require year-round economical preheat- When mass flow rates, temperatures, and humidities of the inlets ing and/or precooling of outdoor supply air. and outlets are known, the sensible, latent, or total effectiveness of In process-to-process applications, heat is captured from the the exchanger for those operating conditions can be determined. process exhaust stream and transferred to the process supply air- Conversely, if the respective effectiveness of the exchanger at stream. Equipment is available to handle process exhaust tempera- specific mass flow rates is known or rated, and the temperatures and tures as high as 1600°F. humidities of the inlets are specified, it is possible to estimate con- Process-to-process recovery devices generally recover only sen- ditions at the outlets, as long as confounding variables such as sible heat and do not transfer latent heat, because moisture transfer occurrence of condensation or internal leakages are insignificant. is usually detrimental to the process. In cases involving condensable The general definition of transfer effectiveness , on which gases, less recovery may be desired to prevent condensation and ASHRAE Standard 84 bases its definitions of effectiveness, is possible corrosion. Actual transfer of moisture and/or energy In process-to-comfort applications, waste heat captured from = ----------------------------------------------------------------------------------------------------------------- (1) Maximum possible transfer between airstreams process exhaust heats building makeup air during winter. Typical applications include foundries, strip-coating plants, can plants, plat- Referring to Figure 1, the gross sensible effectiveness s or ing operations, pulp and paper plants, and other processing areas sensible of an energy recovery ventilator is given as with heated process exhaust and large makeup air volume require- · ments. m2cp 1T1 – cp 2T2 sensible = -------------------------------------------------------· (2a) Although full recovery is usually desired in process-to-process mmincp 1T1 – cp 3T3 applications, recovery for process-to-comfort applications must be modulated during warm weather to prevent overheating the makeup Referring to Figure 1, the gross latent effectiveness L or latent of an air. During summer, no recovery is required. Because energy is energy recovery ventilator is given as saved only in the winter and recovery is modulated during moderate m· h W – h W weather, process-to-comfort applications save less energy annually 2 fg 1 1 fg 2 2 latent = --------------------------------------------------------------· - (2b) than do process-to-process applications. mminhfg 1W1 – hfg 3W3 Process-to-comfort recovery devices generally recover sensible Referring to Figure 1, the gross total effectiveness T or total of an heat only and do not transfer moisture between airstreams. energy recovery ventilator is given as · 2. BASIC HEAT OR HEAT AND WATER VAPOR m2h1 – h2 ---------------------------------- TRANSFER RELATIONS total = · (2c) mminh1 – h3 The second law of thermodynamics states that heat energy always where transfers from a region of high temperature to one of low temperature. · mn = mass flow rate at station n, lbm/h This law can be extended to say
Recommended publications
  • Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
    MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS A Thesis Presented to The Academic Faculty by Benjamin Haile Loeffler In Partial Fulfillment of the Requirements for the Degree Master of Science in the G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology December 2012 MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS Approved by: Dr. J. Rhett Mayor, Advisor Dr. Sheldon Jeter G. W. Woodruff School of Mechanical G. W. Woodruff School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Srinivas Garimella G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Date Approved: 11/12/2012 ACKNOWLEDGEMENTS I would like to first thank my committee members, Dr. Jeter and Dr. Garimella, for their time and consideration in evaluating this work. Their edits and feedback are much appreciated. I would also like to acknowledge my lab mates for the free exchange and discussion of ideas that has challenged all of us to solve problems in new and better ways. In particular, I am grateful to Sam Glauber, Chad Bednar, and David Judah for their hard work on the pragmatic tasks essential to this project. Andrew Semidey has been a patient and insightful mentor since my final terms as an undergrad. I thank him for his tutelage and advice over the years. Without him I would have remained a mediocre heat transfer student at best. Andrew was truly indispensable to my graduate education. I must also thank Dr. Mayor for his guidance, insight, and enthusiasm over the course of this work.
    [Show full text]
  • Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi Using Transient System Simulation
    International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 451 ISSN 2229-5518 Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi using Transient System Simulation Prof. Joshua Ibrahim, Dr. Aoandona Kwaghger, Engr. Shehu Mohammed Sani ABSTRACT The modeling and simulation of a thermosyphon solar water heater at Makurdi (7.74oN) Nigeria was conducted for a period of three months (November, 2013- January, 2014). The research was aimed at simulating the performance of a solar water heater by using various parameters for greater efficiency. The solar water heater was developed and its performance was simulated at University of Agriculture Makurdi. The solar radiation on a horizontal surface was measured using a solarimeter. The water mass flow rates were measured using a Flow meter. The relative humidity data were measured using the Hygrometer. The inlet, outlet and ambient temperatures were measured using a Digital thermometer. For the simulation of the entire system the following measured parameters were used, as global solar radiation on collector plate, collector ambient temperature, heat exchanger and storage tank ambient temperature, flow rate of the collector and storage loop, the cold tap water temperature and the hot water usage. For the validation of the model and for the identification of parameters as heat loss coefficients in situ measurements were performed. Based on the developed models parameter sensitivity analysis and transient influences can be examining for the element and the entire system as well. The results obtained were simulated using Transient simulation software16 (TRNSYS). The results obtained showed that the daily average solar radiation for the period varied from 405 푊/푚2 to1008 푊/푚2.
    [Show full text]
  • Solar Water Heating System Requirements
    Solar Water Heating Installation Requirements Adapted from The Bright Way to Heat Water™ technical requirements V 27 Energy Trust of Oregon Solar Water Heating Installation Requirements Revisions Energy Trust updates these installation requirements annually. Many thanks to the industry members and technical specialists that have invested their time to help keep this document current. The current document (v 27) underwent significant changes from previous installation requirements. Much of the redundant commentary material was removed and many requirements were evaluated based on cost effectiveness and removed or relaxed. The revisions table below summarizes many of the new changes however this document should be read in its entirety to understand the changes. August, 2012 Revisions Section Revision 2.2 Changed requirement for avoiding galvanic action, allowing aluminum Materials to galvanized steel connections. Requirements related to overheat and freeze protection were moved 2.3 to the new Solar Water Heating System Design and Eligibility Equipment and Installation Requirements document. Water quality requirements were removed. Requirements related to heat exchanger materials were moved to the 2.6 new Solar Water Heating System Design and Eligibility Requirements Plumbing document. Parts of Section 2.10 from v 26 were integrated into section 2.6. Backup water heater requirements were removed and/or deferred to code. 2.8 Anti-convective piping requirements were removed. Backup Water Heater Backup water heater R-10 floor pad was removed. Parts of Section 2.10 from v 26 were integrated into section 2.8 2.9 Storage to collector ratios were revised for single tank systems and moved to the new Solar Water Heating System Design and Eligibility Solar Storage Tank Requirements document.
    [Show full text]
  • Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls
    WHITE PAPER Automotive Off Road Heavy Power Duty Gen Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls A power generator’s engine heater is a critical component in providing fast, clean engine starts. Choosing and correctly installing a properly sized, high-quality heater protects the genset investment and ensures performance. Many diesel-power generator dealers, packagers, equipment rental companies and maintenance professionals are familiar with the frustration and cost of excessive low- coolant and low-temperature alarms resulting in service calls. Coolant evaporation can be caused by a thermosiphon circulation (TC) heater or incorrect installation of the heater. Dealers and packagers with service contracts are paying the price with replacement heaters and added service calls. Engine heater service issues are especially problematic for level-one care facilities, such as nursing homes and hospitals, where backup gensets must meet the NFPA 110, Type 10 regulation and start in less than 10 seconds. In Canada, CSA 282 requires engines to maintain a temperature between 100º and 120ºF (38º and 49ºC) to ensure quick startup. Mandatory for power generators, starting engines at these temperatures minimize wear and increase operating life. 1 WHITE PAPER Limited Engine Heater Choices To be cost-competitive, or due to lack of application information, gensets are often shipped with a low-cost engine heater. These heaters may not be suitable for all applications or meet the customer requirements. The dealer may need to upgrade the heater before the power generator is installed or in the field. To select the right engine pre-heater, it is important to be aware of new, more reliable products available today.
    [Show full text]
  • Plate Heat Exchangers for Refrigeration Applications
    Plate heat exchangers for refrigeration applications Technical reference manual A Technical Reference Manual for Plate Heat Exchangers in Refrigeration & Air conditioning Applications by Dr. Claes Stenhede/Alfa Laval AB Fifth edition, February 2nd, 2004. Alfa Laval AB II No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Alfa Laval AB. Permission is usually granted for a limited number of illustrations for non-commer- cial purposes provided proper acknowledgement of the original source is made. The information in this manual is furnished for information only. It is subject to change without notice and is not intended as a commitment by Alfa Laval, nor can Alfa Laval assume responsibility for errors and inaccuracies that might appear. This is especially valid for the various flow sheets and systems shown. These are intended purely as demonstrations of how plate heat exchangers can be used and installed and shall not be considered as examples of actual installations. Local pressure vessel codes, refrigeration codes, practice and the intended use and in- stallation of the plant affect the choice of components, safety system, materials, control systems, etc. Alfa Laval is not in the business of selling plants and cannot take any responsibility for plant designs. Copyright: Alfa Laval Lund AB, Sweden. This manual is written in Word 2000 and the illustrations are made in Designer 3.1. Word is a trademark of Microsoft Corporation and Designer of Micrografx Inc. Printed by Prinfo Paritas Kolding A/S, Kolding, Denmark ISBN 91-630-5853-7 III Content Foreword.
    [Show full text]
  • Echnica L Ssista Nce Tu Dy Umass Memorial Medical Center
    UMASS MEMORIAL MEDICAL CENTER POWER PLANT 55 LAKE AVENUE NORTH WORCESTER, MA T ECHNICAL ECHNICAL A SSISTANCE SSISTANCE PREPARED FOR S TUDY DCAMM Prepared by B2Q Associates, Inc. Andover, MA Revision Date 12/21/2015 TECHNICAL ASSISTANCE STUDY - WATERSIDE ECONOMIZER UMASS MEMORIAL MEDICAL CENTER - POWER PLANT Introduction .................................................................................................................................... 3 Contacts .......................................................................................................................................... 5 Approach & Modeling Methodology .............................................................................................. 6 Executive Summary Table ............................................................................................................... 7 Facility & Process Description ......................................................................................................... 8 Annual Chilled Water Load Profile ................................................................................................ 11 Energy Modeling Methodology .................................................................................................... 15 Baseline Chiller Plant Modeling ................................................................................................ 15 Power Plant Modeling............................................................................................................... 17 Energy Conservation
    [Show full text]
  • "Free" Cooling Using Water Economizers
    engineers newsletter volume 37–3 • providing insights for today’s hvac system designer "free" cooling using Standard 90.1 requirements Water Economizers The following sections of the Standard 90.1 prescriptive path are relevant for water economizers.[4] from the editor … Why economize? In past newsletters, we addressed the ability to accomplish "free" cooling by There are times of the year when a Section 6.5.1 Economizers. "Each artfully rearranging traditional cooling cooling system…" over the size equipment [1] and other ways to achieve system can use outdoor conditions to byproduct cooling virtually for free.[2] cool the building or process using the thresholds shown below "that has a fan We’ve also provided newsletters that standard cooling components to shall include either an air or water discussed air economizers and energy distribute its cooling effect. economizer." There are nine exceptions: code requirements.[3] small individual fan cooling units, In this EN, Susanna Hanson (Trane The most prevalent technique is an air spaces humidified above 35°F (2ºC) applications engineer) focuses on the economizer. When the temperature, or dew point for processes, systems with traditional methods of water-side enthalpy, of the outdoor air is low, condenser heat recovery, some economizing and associated energy code requirements. cooler outdoor air is used to reduce the residential applications, and systems temperature (or enthalpy) of air entering with minimal hours or cooling loads. the cooling coil. This can reduce or There is also an option to use higher eliminate mechanical cooling for much Let’s start with some definitions. efficiency equipment in lieu of an of the year in many climates.
    [Show full text]
  • A Passive Solar Retrofit in a Gloomy Climate
    Rochester Institute of Technology RIT Scholar Works Theses 5-11-2018 A Passive Solar Retrofit in a Gloomy Climate James Russell Fugate [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Fugate, James Russell, "A Passive Solar Retrofit in a Gloomy Climate" (2018). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A Passive Solar Retrofit in a Gloomy Climate By James Russell Fugate A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARCHITECTURE Department of Architecture Golisano Institute for Sustainability Rochester Institute of Technology May 11, 2018 Rochester, New York Committee Approval A Passive Solar Retrofit in a Gloomy Climate A Master of Architecture Thesis Presented by: James Russell Fugate Jules Chiavaroli, AIA Date Professor Department of Architecture Thesis Chair Dennis A. Andrejko, FAIA Date Associate Professor Head, Department of Architecture Thesis Advisor Nana-Yaw Andoh Date Assistant Professor Department of Architecture Thesis Advisor ii Acknowledgments I would like to thank the faculty and staff of the Master of Architecture program at the Rochester Institute of Technology. Being part of the original cohort of students in the program’s initial year was an honor and it has been exciting to see the program grow into the accredited and internationally respected program of today. I want to thank Dennis Andrejko for taking the chance and accepting me into the program as an older, part-time student.
    [Show full text]
  • Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter
    energies Article Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter Hafiz M. Daraghmeh 1 , Mohammed W. Sulaiman 1 , Kai-Shing Yang 2 and Chi-Chuan Wang 1,* 1 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; hafi[email protected] (H.M.D.); [email protected] (M.W.S.) 2 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-3-5712121 Received: 28 November 2018; Accepted: 24 December 2018; Published: 29 December 2018 Abstract: This study investigates the feasibility of using R-134a filled separated two-phase thermosiphon loop (STPTL) as a free cooling technique in datacenters. Two data center racks one of them is attached with fin and tube thermosiphon were cooled by CRAC unit (computer room air conditioning unit) individually. Thermosiphon can help to partially eliminate the compressor loading of the CRAC; thus, energy saving potential of thermosiphon loop was investigated. The condenser is a water-cooled design and perfluoroalkoxy pipes were used as adiabatic riser/downcomer for easier installation and mobile capability. Tests were conducted with filling ratio ranging from 0 to 90%. The test results indicate that the energy saving increases with the rise of filling ratio and an optimum energy savings of 38.7% can be achieved at filling ratios of 70%, a further increase of filling ratio leads to a reduction in energy saving. At a low filling ratio like 10%, the evaporator starves for refrigerant and a very uneven air temperature distribution occurring at the exit of data rack.
    [Show full text]
  • Download Card
    3523 Lousma Drive, SE Grand Rapids, MI 49548 Email: [email protected] Telephone: (616) 534-0032 Website: www.airtechequipment.com MISCELLANEOUS EQUIPMENT • Axial Flow • Flexble Fabric Duct • Propeller • Centrifugal • Dust Collectors •Dampers •Louvers • Mist & Chip Collectors •Access Panels • Downdraft Tables •Access Doors •Ventilators • Rotary Air Locks • AB-QM- Pressure • Data Room Units Independent Control Valve (PICV) • Ice Storage Systems • Desiccant Dehumidifers • Peak Load Shaving • JENEsys Building Operation •Oil Mist Collectors •Welding and Information Platform Fume and Filtration Systems • LYNX CyberPro • Cooling Towers • Fluid Coolers • ECM Fan Arrays •Unit Heat •Wall Hung DX Heat Pumps • Wall Convectors and Air Conditioners • Wall Heat •Air Cooled Vertical X • Baseboard Heat •Heat Pump and Air • Infrared Conditioner • Portables • Vertical Classroom • Ceiling / Cove Ventilator • Gas Detection Systems 070921 LINE CARD Our goal is to support our customers’ requirements in meeting the increasing demands in the industry for efficient and compliant air management systems with….. EXPERIENCE • TECHNOLOGY • PRODUCTS • SERVICE 3523 LOUSMA DRIVE, SE GRAND RAPIDS, MICHIGAN 49548 Telephone: (616) 534-0032 / Fax: (616) 534-0284 Email: [email protected] Website: www.airtechequipment.com 3523 Lousma Drive, SE Grand Rapids, MI 49548 Email: [email protected] Telephone: (616) 534-0032 Website: www.airtechequipment.com AIR SIDE EQUIPMENT • Custom Air Handling Units (800 – 100,000+ cfm) •Condensers & Condensing Units
    [Show full text]
  • Challenges and Limitations of Thermosiphon Cooling What We Learned from CMS…
    Challenges and limitations of thermosiphon cooling What we learned from CMS… Philippe Brédy CEA Saclay DSM/Dapnia/SACM/LCSE Symposium for the Inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06 2007 • The thermosiphon principle (example of two phase ) – Self sustained natural boiling convection • Heating applied (Heat to be removed) –Boiling – Weight unbalance between legs of a loop – Induced flow limited by friction Q Single channel Loop PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007 2 • Rising heat exchangers with various geometry • A mass flow and a flow quality deduced from geometry and heat load • An upper tank –thllhe well-namedhd phase separator- is needdded – to recover gas and to supply supply or condensation of gas (cryocooler) – for separation of the two phases ΔP flow (m,x,geometry) Ù ΔP (x, hi) Hyp: homogenous model (x << 10%) PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007 3 Advantages vs Inconveniences •A passive creation offlf flow • NdNeed a minimum hhheight – no pumps or regulation valves – Pressure head to create flow • Autonomy in case of external • Circuit geometry must avoid cryogenic failure (volume of liquid any high point or strong in the phase separator) silitiingularities – separation of the phases • Minimization of the liquid –risk of vapor lock volume – use of the phase separator • No possible external action as a back-up volume for liquid –and a po ssible fru stra tion for the operator ! •A quasi-isothermal loop - mainly function
    [Show full text]
  • Experimental Investigation of a Heat Pipe Heat Exchanger for Heat Recovery
    E3S Web of Conferences 45, 00012 (2018) https://doi.org/10.1051/e3sconf/20184500012 INFRAEKO 2018 Experimental investigation of a heat pipe heat exchanger for heat recovery Anna Bryszewska-Mazurek,1, Wojciech Mazurek Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Wyspianskiego 27, Poland Abstract. An air-to-air heat pipe heat exchanger has been designed, constructed and tested. Gravity–assisted wickless heat pipes (thermosiphons) were used to transfer heat from one air stream to another air stream, with a low temperature difference. A thermosiphon heat exchanger has its evaporation zone below the condensation zone. Heat pipes allow keeping a more uniform temperature in the heat transfer area. The heat exchanger consists of 20 copper tubes with circular copper fins on their outer surface. The tubes were arranged in a row and the air passed across the pipes. R245fa was used as a working fluid in the thermosiphons. Each heat pipe had a 40 cm evaporation section, a 20 cm adiabatic section and a 40 cm condensation section. The thermosiphon heat exchanger has been tested in different conditions of air stream parameters (flows, temperatures and humidity). The air face velocity ranged from 1,0 m/s to 4,0 m/s. The maximum thermal efficiency of the thermosiphon heat exchanger was between 26÷40%, depending on the air velocity. The freezing of moisture from indoor air was observed when the cold air temperature was below - 13oC. 1 Introduction Heat pipe heat exchangers (HPHEs) are used as an efficient air-to-air heat recovery device in many applications.
    [Show full text]