Energy Recovery Ventilation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanomaterial Safety
Nanomaterial Safety What are Nanomaterials? Nanomaterials or nanoparticles are human engineered particles with at least one dimension in the range of one to one hundred nanometers. They can be composed of many different base materials (carbon, silicon, and various metals). Research involving nanomaterials ranges from nano-particle synthesis to antineoplastic drug implants to cell culture work. Material Scientists, Chemists, Biologists, Biochemists, Physicists, Microbiologists, Medical-related disciplines and many engineering disciplines (Mechanical, Chemical, Biological and Environmental, etc.) perform research using nanomaterials. Naturally created particles of this size range are normally called ultra-fine particles. Examples are welding fumes, volcanic ash, motor vehicle exhaust, and combustion products. Nanomaterials come in many different shapes and dimensions, such as: • 0-dimensional: quantum dots • 1-dimensional: nanowires, nanotubes, • 2-dimensional: nanoplates, nanoclays • 3-dimensional: Buckyballs, Fullerenes, nanoropes, crystalline structures Nanoparticles exhibit very different properties than their respective bulk materials, including greater strength, conductivity, fluorescence and surface reactivity. Health Effects Results from studies on rodents and in cell cultures exposed to ultrafine and nanoparticles have shown that these particles are more toxic than larger ones on a mass-for-mass basis. Animal studies indicate that nanoparticles cause more pulmonary inflammation, tissue damage, and lung tumors than larger particles Solubility, shape, surface area and surface chemistry are all determinants of nanoparticle toxicity There is uncertainty as to the levels above which these particles become toxic and whether the concentrations found in the workplace are hazardous Respiratory Hazards: • Nanoparticles are deposited in the lungs to a greater extent than larger particles • Based on animal studies, nanoparticles may enter the bloodstream from the lungs and translocate to other organs and they are able to cross the blood brain barrier. -
ACT-ATA-Heat-Exchangers
Advanced Cooling Technologies, Inc. Innovations in Action Energy Recovery Systems ACT-HP-ERS/A-A Series Passive Air-to-Air Heat Pipe Heat Exchangers Highly Recommended for Dedicated Outside Air Installations Limited Lifetime Warranty Start Saving Energy Today: Energy cost savings over 40%, cold or hot climates No cross-contamination between isolated airstreams Economically Improves Indoor Air Quality Quick return on investment from energy savings Reduce Heating or Cooling Requirements Totally passive, no moving parts or system maintenance Engineered efficient & compact design ApplicationApplication & & Specification Specification Guide Guide ACT Energy Recovery Systems ACT’s Heat Pipe Core Thermal Competence Thermal Expertise From Electronics to Space Flight Basic Heat Pipe for Electronics Cooling Heat Pipes for Loop Heat Pipes for Space Satellite High Heat Flux Solar Cell Cooling Thermal Payload Cooling Heat pipes are a proven heat transfer technology with highly dependable operational performance in diverse applications including HVAC, industrial electronics, military and aerospace. ACT has over 100 years of accumulated engineering experience in the design, testing and manufacturing of heat pipes. ACT-HP-ERS/A-A Air to Air Heat Exchangers Utilize High Performance Heat Pipes Thousand Times Better Conductor Than Copper CONDENSER PHASE CHANGE TO LIQUID Heat Pipe Operating Principle: HEAT OUT HEAT OUT Heat pipes function by absorbing heat at the evaporator end of the cylinder, boiling and converting the fluid to vapor. The vapor travels to the condenser end, rejects the heat, and condenses to liquid. The condensed liquid flows back to the evaporator, aided by gravity. This phase change cycle continues as long as there is heat (warm outside air) at the evaporator end of the Vapor flows through center Vapor heat pipe. -
Francis (Bud) J. Offermann III PE, CIH
Francis (Bud) J. Offermann III PE, CIH Indoor Environmental Engineering 1448 Pine Street, Suite 103, San Francisco, CA 94109 Phone: 415-567-7700 Email: [email protected] http://www.iee-sf.com Education M.S. Mechanical Engineering (1985) Stanford University, Stanford, CA. Graduate Studies in Air Pollution Monitoring and Control (1980) University of California, Berkeley, CA. B.S. in Mechanical Engineering (1976) Rensselaer Polytechnic Institute, Troy, N.Y. Professional Experience President: Indoor Environmental Engineering, San Francisco, CA. December, 1981 - present. Direct team of environmental scientists, chemists, and mechanical engineers in conducting State and Federal research regarding indoor air quality instrumentation development, building air quality field studies, and ventilation and air cleaning performance measurements. Direct work of IAQ Diagnostic and Mitigation team of industrial hygienists, mechanical engineers, and building inspectors and abatement planners addressing the concerns of building developers, owners, operators, managers, tenants, architects, and ventilation engineers regarding indoor air quality and appropriate and cost effective mitigation measures where required. Manage the Mobile Response Group, a group of hygienists and engineers trained to provide timely and cost effective building inspections and abatement plans nationwide. Provide design side input to architects regarding selection of building materials and ventilation system components to ensure a superior indoor environment. Developed tracer gas techniques used to evaluate the in situ performance of mechanical ventilation systems. Developed a dynamic headspace analytical technique to quantify the in situ emission rates of contaminants from building materials, furnishings, and equipment. Developed ground flux measurement techniques for assessing the potential impact on indoor air quality of ground contaminants (e.g. -
Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS A Thesis Presented to The Academic Faculty by Benjamin Haile Loeffler In Partial Fulfillment of the Requirements for the Degree Master of Science in the G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology December 2012 MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS Approved by: Dr. J. Rhett Mayor, Advisor Dr. Sheldon Jeter G. W. Woodruff School of Mechanical G. W. Woodruff School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Srinivas Garimella G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Date Approved: 11/12/2012 ACKNOWLEDGEMENTS I would like to first thank my committee members, Dr. Jeter and Dr. Garimella, for their time and consideration in evaluating this work. Their edits and feedback are much appreciated. I would also like to acknowledge my lab mates for the free exchange and discussion of ideas that has challenged all of us to solve problems in new and better ways. In particular, I am grateful to Sam Glauber, Chad Bednar, and David Judah for their hard work on the pragmatic tasks essential to this project. Andrew Semidey has been a patient and insightful mentor since my final terms as an undergrad. I thank him for his tutelage and advice over the years. Without him I would have remained a mediocre heat transfer student at best. Andrew was truly indispensable to my graduate education. I must also thank Dr. Mayor for his guidance, insight, and enthusiasm over the course of this work. -
Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi Using Transient System Simulation
International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 451 ISSN 2229-5518 Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi using Transient System Simulation Prof. Joshua Ibrahim, Dr. Aoandona Kwaghger, Engr. Shehu Mohammed Sani ABSTRACT The modeling and simulation of a thermosyphon solar water heater at Makurdi (7.74oN) Nigeria was conducted for a period of three months (November, 2013- January, 2014). The research was aimed at simulating the performance of a solar water heater by using various parameters for greater efficiency. The solar water heater was developed and its performance was simulated at University of Agriculture Makurdi. The solar radiation on a horizontal surface was measured using a solarimeter. The water mass flow rates were measured using a Flow meter. The relative humidity data were measured using the Hygrometer. The inlet, outlet and ambient temperatures were measured using a Digital thermometer. For the simulation of the entire system the following measured parameters were used, as global solar radiation on collector plate, collector ambient temperature, heat exchanger and storage tank ambient temperature, flow rate of the collector and storage loop, the cold tap water temperature and the hot water usage. For the validation of the model and for the identification of parameters as heat loss coefficients in situ measurements were performed. Based on the developed models parameter sensitivity analysis and transient influences can be examining for the element and the entire system as well. The results obtained were simulated using Transient simulation software16 (TRNSYS). The results obtained showed that the daily average solar radiation for the period varied from 405 푊/푚2 to1008 푊/푚2. -
Permit Review Report Permit ID: 3-3926-00729/00054 Renewal Number: 2 Modification Number: 3 01/18/2019
New York State Department of Environmental Conservation Permit Review Report Permit ID: 3-3926-00729/00054 Renewal Number: 2 Modification Number: 3 01/18/2019 Facility Identification Data Name: PAR PHARMACEUTICAL INC Address: 1 RAM RIDGE RD CHESTNUT RIDGE, NY 10977 Owner/Firm Name: PAR PHARMACEUTICAL INC Address: 1 RAM RIDGE RD CHESTNUT RIDGE, NY 10977, USA Owner Classification: Corporation/Partnership Permit Contacts Division of Environmental Permits: Name: CHRISTOPHER LANG Address: NYSDEC - REGION 3 21 S PUTT CORNERS RD NEW PALTZ, NY 12561-5401 Phone: Division of Air Resources: Name: ALYSSA CARBONE Address: NYSDEC - REGION 3 21 S Putt Corners Rd New Paltz, NY 12561-1620 Phone:8452563058 Air Permitting Contact: Name: TODD ARNOLD Address: 1 RAM RIDGE RD CHESTNUT RIDGE, NY 10977 Phone:8453644868 Permit Description Introduction The Title V operating air permit is intended to be a document containing only enforceable terms and conditions as well as any additional information, such as the identification of emission units, emission points, emission sources and processes, that makes the terms meaningful. 40 CFR Part 70.7(a)(5) requires that each Title V permit have an accompanying "...statement that sets forth the legal and factual basis for the draft permit conditions". The purpose for this permit review report is to satisfy the above requirement by providing pertinent details regarding the permit/application data and permit conditions in a more easily understandable format. This report will also include background narrative and explanations of regulatory decisions made by the reviewer. It should be emphasized that this permit review report, while based on information contained in the permit, is a separate document and is not itself an enforceable term and condition of the permit. -
Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials
energies Article Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials Kyaw Zin Htoo 1 , Phuoc Hien Huynh 2, Keishi Kariya 3 and Akio Miyara 3,4,* 1 Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; [email protected] 2 Department of Heat and Refrigeration Engineering, Ho Chi Minh City University of Technology—VNU—HCM (HCMUT), 268 Ly Thuong Kiet, Ho Chi Minh City 72409, Vietnam; [email protected] 3 Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; [email protected] 4 International Institute for Carbon-Neutral Energy Research, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan * Correspondence: [email protected] Abstract: In loop heat pipes (LHPs), wick materials and their structures are important in achieving continuous heat transfer with a favorable distribution of the working fluid. This article introduces the characteristics of loop heat pipes with different wicks: (i) sintered stainless steel and (ii) ceramic. The evaporator has a flat-rectangular assembly under gravity-assisted conditions. Water was used as a working fluid, and the performance of the LHP was analyzed in terms of temperatures at different locations of the LHP and thermal resistance. As to the results, a stable operation can be maintained in the range of 50 to 520 W for the LHP with the stainless-steel wick, matching the desired limited ◦ −2 Citation: Htoo, K.Z.; Huynh, P.H.; temperature for electronics of 85 C at the heater surface at 350 W (129.6 kW·m ). -
Classification of Laboratory Ventilation Design Levels
Classification of Laboratory Ventilation Design Levels Developed by ASHRAE Technical Committee 9.10, Laboratory Systems Laboratory Classification Subcommittee In partnership with American Chemical Society Division of Chemical Health and Safety and American Industrial Hygiene Association Laboratory Health and Safety Committee Atlanta This publication was developed by the Laboratory Classification Subcommittee of ASHRAE Technical Committee (TC) 9.10, Laboratory Systems, with support from members of other organizations that specialize in laboratory health and safety. ASHRAE TC 9.10 Laboratory Classification Subcommittee Adam Bare, PE, Chair Roland Charneux, PE, HFDP, ASHRAE Fellow Newcomb & Boyd, LLP Pageau & Morel Jim Coogan Gary Goodson, PE Siemens Exposure Control Technologies, Inc. Henry Hays Nathan Ho, PE USDA Agricultural Research Service P2S Engineering, Inc. Guy Perreault Tom Smith Evap-Tech MTC Inc. Exposure Control Technologies, Inc. Contributors from Other Organizations Debbie Decker Ken Kretchman University of California, Davis North Carolina State University Rebecca Lally, CIH Elizabeth Kolacki, PE Southern California Edison Cornell University Peter Slinn Ralph Stuart, CIH Natural Resources Canada Keene State College Ellen Sweet Cornell University This work is the product of an effort started by Andrew Dymek well over 10 years ago. Thanks to everyone involved for their help in producing this document. Special thanks go to Tom Smith for his considerable efforts. Updates/errata for this publication will be posted on the ASHRAE website at www.ashrae.org/publicationupdates. ISBN 978-1-939200-90-7 (PDF) © 2018 ASHRAE 1791 Tullie Circle, NE Atlanta, GA 30329 www.ashrae.org All rights reserved. ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heat- ing, Refrigerating and Air-Conditioning Engineers, Inc. -
GG Brown Board
VARIABLE VOLUME GENERAL LAB FREE COOLING OPTIMIZE ENERGY LAB EXHAUST FANS EXHAUST AIR Because of heat gain from lab equipment lab spaces require cooling year round. At the G.G. Brown SOLAR PERFORMANCE Addition the heat from lab equipment is used to preheat ventilation air in the winter using the chilled THERMAL G.G. Brown Addition avoids excessive energy SENSIBLE HEAT water system. After the chilled water is cooled again from the cold ventilation air it is sent back to COLLECTOR use by implementing a superior building envelope cool the lab spaces. This cycle continues, creating a perpetual “Free Cooling” process. WHEEL DOMESTIC TOTAL ENTHALPY to minimize heat loss and by executing modern HOT WATER WHEEL FUME HOODS heating, ventilation and air conditioning strategies. LAB SYSTEM SUPPLY The labs at G.G. Brown implement a variety of innovative fume G.G. Brown Addition exceeds the AIR hood technologies to save energy while maintaining a performance of a code minimum safe environment. Among these technologies are PHOTO-VOLTAIC SOLARSOLAR building by 40%. variable volume fume hoods with sash SOLAR PANELS COLD WATERWATER position sensors and reduced Photo-Voltaic solar panels on the roof WATER face velocity fume HEATINGHEATIN HAZARDOUS of the G.G. Brown Addition generate hoods. SolarSolar collectorscollec on FUME HOOD enough electricity to support 1% of the roofroof useuse energy OUTSIDE AIR EXHAUST AIR the total building energy use. This PUMP fromfrom thethe sun to heat LEED PUMP INTAKE ultimately reduces the environmental domesticdomestic waterw at for use and economic impacts associated with inin lavatorieslavatories anda sinks. 40% GOLD the use of fossil fuels. -
Solar Water Heating System Requirements
Solar Water Heating Installation Requirements Adapted from The Bright Way to Heat Water™ technical requirements V 27 Energy Trust of Oregon Solar Water Heating Installation Requirements Revisions Energy Trust updates these installation requirements annually. Many thanks to the industry members and technical specialists that have invested their time to help keep this document current. The current document (v 27) underwent significant changes from previous installation requirements. Much of the redundant commentary material was removed and many requirements were evaluated based on cost effectiveness and removed or relaxed. The revisions table below summarizes many of the new changes however this document should be read in its entirety to understand the changes. August, 2012 Revisions Section Revision 2.2 Changed requirement for avoiding galvanic action, allowing aluminum Materials to galvanized steel connections. Requirements related to overheat and freeze protection were moved 2.3 to the new Solar Water Heating System Design and Eligibility Equipment and Installation Requirements document. Water quality requirements were removed. Requirements related to heat exchanger materials were moved to the 2.6 new Solar Water Heating System Design and Eligibility Requirements Plumbing document. Parts of Section 2.10 from v 26 were integrated into section 2.6. Backup water heater requirements were removed and/or deferred to code. 2.8 Anti-convective piping requirements were removed. Backup Water Heater Backup water heater R-10 floor pad was removed. Parts of Section 2.10 from v 26 were integrated into section 2.8 2.9 Storage to collector ratios were revised for single tank systems and moved to the new Solar Water Heating System Design and Eligibility Solar Storage Tank Requirements document. -
Heat Pipes Should Be Lifted with the Tubes Level
When you want Quality, specify COLMAC! COLMAC COIL Manufacturing Inc. Installation, Operation, Maintenance, and Design Guide ENG00018627 Rev B Heat Pipe Coils Contents 1. SAFETY INSTRUCTIONS .......................................................................................................... 1 2. MODEL NOMECLATURE ........................................................................................................... 4 3. GENERAL DESCRIPTION ......................................................................................................... 5 4. HEAT PIPE TYPES ..................................................................................................................... 7 5. DIMENSIONS ............................................................................................................................ 12 6. SELECTION .............................................................................................................................. 14 7. SPECIFICATIONS .................................................................................................................... 14 8. INSTALLATION ........................................................................................................................ 15 9. OPERATION ............................................................................................................................. 22 10. MAINTENANCE ...................................................................................................................... 22 COLMAC 1. SAFETY -
Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls
WHITE PAPER Automotive Off Road Heavy Power Duty Gen Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls A power generator’s engine heater is a critical component in providing fast, clean engine starts. Choosing and correctly installing a properly sized, high-quality heater protects the genset investment and ensures performance. Many diesel-power generator dealers, packagers, equipment rental companies and maintenance professionals are familiar with the frustration and cost of excessive low- coolant and low-temperature alarms resulting in service calls. Coolant evaporation can be caused by a thermosiphon circulation (TC) heater or incorrect installation of the heater. Dealers and packagers with service contracts are paying the price with replacement heaters and added service calls. Engine heater service issues are especially problematic for level-one care facilities, such as nursing homes and hospitals, where backup gensets must meet the NFPA 110, Type 10 regulation and start in less than 10 seconds. In Canada, CSA 282 requires engines to maintain a temperature between 100º and 120ºF (38º and 49ºC) to ensure quick startup. Mandatory for power generators, starting engines at these temperatures minimize wear and increase operating life. 1 WHITE PAPER Limited Engine Heater Choices To be cost-competitive, or due to lack of application information, gensets are often shipped with a low-cost engine heater. These heaters may not be suitable for all applications or meet the customer requirements. The dealer may need to upgrade the heater before the power generator is installed or in the field. To select the right engine pre-heater, it is important to be aware of new, more reliable products available today.