Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
Total Page:16
File Type:pdf, Size:1020Kb
MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS A Thesis Presented to The Academic Faculty by Benjamin Haile Loeffler In Partial Fulfillment of the Requirements for the Degree Master of Science in the G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology December 2012 MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS Approved by: Dr. J. Rhett Mayor, Advisor Dr. Sheldon Jeter G. W. Woodruff School of Mechanical G. W. Woodruff School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Srinivas Garimella G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Date Approved: 11/12/2012 ACKNOWLEDGEMENTS I would like to first thank my committee members, Dr. Jeter and Dr. Garimella, for their time and consideration in evaluating this work. Their edits and feedback are much appreciated. I would also like to acknowledge my lab mates for the free exchange and discussion of ideas that has challenged all of us to solve problems in new and better ways. In particular, I am grateful to Sam Glauber, Chad Bednar, and David Judah for their hard work on the pragmatic tasks essential to this project. Andrew Semidey has been a patient and insightful mentor since my final terms as an undergrad. I thank him for his tutelage and advice over the years. Without him I would have remained a mediocre heat transfer student at best. Andrew was truly indispensable to my graduate education. I must also thank Dr. Mayor for his guidance, insight, and enthusiasm over the course of this work. He has been rigorous in his teaching and steadfast in holding us to high standards. I am grateful for the engineering student he has helped me become. I thank Steven Sheffield for his expert machining and instruction. Georgia Tech is lucky to have him. I also thank Craig Wooden for his welding work and instruction. This project was funded by ARPA-E Agile Delivery of Electrical Power Technology (ADEPT) program, managed by Rajeev Ram. I also thank Hussam Al-Amin at Midel® for arranging a generous donation of their Midel® 7131 synthetic ester heat transfer fluid for our full scale testing. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................... iv LIST OF TABLES ....................................................................................................... ix LIST OF FIGURES ..................................................................................................... xi SUMMARY xiv CHAPTER 1 1 1.1 Smart and controllable grid ............................................................................1 1.2 Power electronics for power routing ..............................................................2 1.3 Passive thermal management .........................................................................6 1.4 Single phase closed loop thermosiphon .......................................................11 CHAPTER 2 17 2.1 Introduction ..................................................................................................17 2.2 Single phase closed loop thermosiphon .......................................................19 2.2.1 Vertical heat transfer sections ..............................................................19 2.2.2 Horizontal heat transfer sections ..........................................................22 2.3 High Power Electronic and transformer cooling ..........................................24 2.4 Solar water heater thermosiphons ................................................................27 2.5 Numerical optimization ................................................................................30 2.5.1 Thermosiphon design optimization ......................................................30 v 2.5.2 Particle swarm optimization (PSO) ......................................................31 2.6 Summary ......................................................................................................33 CHAPTER 3 35 3.1 Introduction ..................................................................................................35 3.2 General problem statement ...........................................................................35 3.3 Model assumptions .......................................................................................37 3.4 Parametric model geometries .......................................................................37 3.5 Analytic model development .......................................................................39 3.6 Inputs to the model .......................................................................................46 3.7 Solution algorithm ........................................................................................47 3.8 Model validation ..........................................................................................50 3.9 Discussion ....................................................................................................59 3.10 Summary ......................................................................................................61 CHAPTER 4 62 4.1 Introduction ..................................................................................................62 4.2 Design problem statement ............................................................................63 4.2.1 Problem definition ................................................................................63 4.2.2 Design variables and domains ..............................................................64 4.3 Implementation .............................................................................................65 4.3.1 Objective function ................................................................................65 vi 4.3.2 PSO program structure .........................................................................66 4.3.3 Particle weighting and convergence criteria ........................................68 4.4 Optimal design space investigation ..............................................................68 4.5 Final design ..................................................................................................69 4.5.1 Design selection ...................................................................................70 4.5.2 Predicted performance..........................................................................73 4.6 Discussion ....................................................................................................74 4.7 Conclusion ....................................................................................................76 CHAPTER 5 77 5.1 Introduction ..................................................................................................77 5.2 Approach ......................................................................................................78 5.3 Apparatus .....................................................................................................78 5.3.1 Passive thermal management system ...................................................79 5.3.2 Elevated Ambient Testing Chamber ....................................................84 5.3.3 Data collection......................................................................................91 5.4 Methodology ................................................................................................95 5.5 Experimental results .....................................................................................95 5.6 Analysis ........................................................................................................98 5.6.1 Uncertainty analysis .............................................................................99 5.6.2 Cold Side Performance Analysis........................................................102 vii 5.7 Fluid temperature investigation ..................................................................105 5.7.1 Low Reynolds flow model .................................................................106 5.8 Discussion ..................................................................................................110 5.8.1 Extended Cold Side Length................................................................112 5.9 Conclusion ..................................................................................................114 CHAPTER 6 116 6.1 Summary and conclusions ..........................................................................116 6.2 Contributions ..............................................................................................118 6.3 Recommendations and future work ............................................................120 Appendix a 128 viii LIST OF TABLES Table 1.1 Device Operation Limitations at Maximum Loss............................................... 5 Table 3.1 Critical system geometries ................................................................................ 39 Table 3.2. Multi-physics model input parameters ............................................................ 46 Table 3.3. Multi-physics model output parameters .......................................................... 49 Table 3.4. Selected parameters for model verification ..................................................... 50 Table 3.5. 300W predicted operating parameters ............................................................. 51