Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials energies Article Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials Kyaw Zin Htoo 1 , Phuoc Hien Huynh 2, Keishi Kariya 3 and Akio Miyara 3,4,* 1 Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; [email protected] 2 Department of Heat and Refrigeration Engineering, Ho Chi Minh City University of Technology—VNU—HCM (HCMUT), 268 Ly Thuong Kiet, Ho Chi Minh City 72409, Vietnam; [email protected] 3 Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; [email protected] 4 International Institute for Carbon-Neutral Energy Research, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan * Correspondence: [email protected] Abstract: In loop heat pipes (LHPs), wick materials and their structures are important in achieving continuous heat transfer with a favorable distribution of the working fluid. This article introduces the characteristics of loop heat pipes with different wicks: (i) sintered stainless steel and (ii) ceramic. The evaporator has a flat-rectangular assembly under gravity-assisted conditions. Water was used as a working fluid, and the performance of the LHP was analyzed in terms of temperatures at different locations of the LHP and thermal resistance. As to the results, a stable operation can be maintained in the range of 50 to 520 W for the LHP with the stainless-steel wick, matching the desired limited ◦ −2 Citation: Htoo, K.Z.; Huynh, P.H.; temperature for electronics of 85 C at the heater surface at 350 W (129.6 kW·m ). Results using ◦ Kariya, K.; Miyara, A. Experimental the ceramic wick showed that a heater surface temperature of below 85 C could be obtained when −2 Study on Thermal Performance of a operating at 54 W (20 kW·m ). Loop Heat Pipe with Different Working Wick Materials. Energies Keywords: electronics cooling; loop heat pipe; wick materials; thermal conductivity 2021, 14, 2453. https://doi.org/ 10.3390/en14092453 Academic Editors: Alessandro Mauro 1. Introduction and Gabriela Huminic Loop heat pipes use a passive two-phase heat transport device in which advantageous characteristics are offered, such as operation against the gravity through the capillary effect Received: 1 March 2021 and flexible characteristics. They have been widely used in energy applications, spacecraft Accepted: 20 April 2021 Published: 25 April 2021 thermal control, electronic device cooling, and commercial radiators [1]. Zhou [2] fabri- cated a plate-type loop heat pipe (LHP) and investigated the effect on the heat transfer Publisher’s Note: MDPI stays neutral performance of the LHP with multilayer metal foams as a wick structure. Their flat evapo- with regard to jurisdictional claims in rator’s experimental results show that multilayer copper foams have better performance published maps and institutional affil- than nickel foam because of higher thermal conductivity and smaller pore size. Siedel [3] iations. presented a numerical simulation, comparing it with the experimental data of a flat disk- shaped evaporator. The results showed that the larger effective thermal conductivity of wick has an influence on the overall thermal performance of the LHP. However, other researchers, Maydanik [4] and Hoang [5], suggested the wick material, with its lower effective thermal conductivity, to handle the problem of heat leakage. In addition, the Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. hydrophilic effect on the ceramic wick structure is higher than that of stainless steel [6]. This article is an open access article Therefore, the performances of stainless-steel wicks and ceramic wicks in LHPs are com- distributed under the terms and pared in this study, of which the ceramic wick has much lower thermal conductivity and a conditions of the Creative Commons higher hydrophilic effect [7,8]. In an LHP system, the porous wicks’ structure is essential Attribution (CC BY) license (https:// because it provides the capillary force for working fluid circulations, a liquid flow path, and creativecommons.org/licenses/by/ a place for phase change heat transfer. Moreover, the porosity effect of the wick materials 4.0/). inside the evaporator is necessarily considered for improving the overall performance of Energies 2021, 14, 2453. https://doi.org/10.3390/en14092453 https://www.mdpi.com/journal/energies Energies 2021, 14, × FOR PEER REVIEW 2 of 20 Energies 2021, 14, 2453 2 of 23 wick materials inside the evaporator is necessarily considered for improving the overall performance of LHPs [9]. Therefore, the porosity, pore diameter, and thermal conductiv- LHPsity of the [9]. wicks Therefore, were themeasured. porosity, The pore influence diameter, of the and different thermal wicks conductivity on the performance of the wicks wereof LHPs measured. is tested The with influence the designed of the evaporator different wicks. Although on the this performance is a simple of case LHPs study is tested of an witharrangement the designed with different evaporator. wicks, Although the approp this isriate a simple engineering case study approach of an of arrangement the calcula- withtion procedure different wicks, related the to appropriateapplying the engineering designed evaporator approach ofis thepresented calculation in this procedure paper. It relatedmay improve to applying the understanding the designed evaporator of the problems is presented that exist in this in paper. the LHP It may evaporator improve and the understandingfuture LHP systems. of the problems that exist in the LHP evaporator and future LHP systems. The LHP hashas somesome similarsimilar operationoperation principlesprinciples withwith conventionalconventional HPs.HPs. TheThe phasephase changing process is happened in the LHP systemsystem and the capillarycapillary force isis usedused asas thethe motivation for the operation. Figure1 1 demonstrates demonstrates the the scheme scheme of of the the analytical analytical LHP LHP and and an operation cycle diagram. (a) (b) FigureFigure 1.1. Principles of LHP: (a) Scheme ofof analyticalanalytical LHP.LHP. ((bb)) LHPLHP workingworking cyclecycle diagram.diagram. Reproduced from [[1],1], Yu.F.Maydanik:Yu.F.Maydanik: 2005.2005. At first, the system is not supplied with heat load. In this case, the liquid stays at LevelAt A–A first, as the an assumption.system is not The supplied liquid with found he atat the load. evaporator In this case, zone the (Point liquid 1) andstays the at compensationLevel A–A as an chamber assumption. evaporates The fromliquid the found wick at when the evaporator heat is supplied zone to(Point the evaporator. 1) and the Thecompensation vapor from chamber the evaporator evaporates flows. from Then, the wick it approches when heat to is the supplied heating to wall. the evaporator. As a result, theThe vaporvapor pressurefrom the reduces.evaporator Simultaneously, flows. Then, itthe approches temperature to the rises heating a little wall. (Point As a 2)result, and isthe higher vapor than pressure the vapor reduces. located Simultaneously, at the compensation the temperature chamber. rises In this a little situation, (Point the2) and wick is behaveshigher than as a the thermal vapor barrier. located The at vaporthe compensation which is superheated chamber. condition In this situation, in the evaporator the wick zonebehaves cannot as a passthermal the barrier. compensation The vapor chamber which through is superheated the wick condition which is in saturated the evaporator due to thezone force cannot of capillarypass the thatcompensation keeps the chamber liquid inside. through Then, the the wick hydraulic which is lock saturated is happened due to inthe the force wick. of capillary Afterwards, that keeps the vapor the liquid continuously inside. Then, flow tothe the hydraulic condenser’s lock is inlet happened (Point 3).in Whenthe wick. vapor Afterwards, flows from the Point vapor 2 continuously to Point 3, both flow temperature to the condenser’s and pressure inlet (Point decrease. 3). When The de-superheat,vapor flows from condensation, Point 2 to andPoint subcooled 3, both temperature processes happen and pressure from Point decrease. 3 to Point The 5. de- In thissuperheat, case, there condensation, is no pressure and loss subcooled from Point processes 3 to Point happen 5 as anfrom assumption. Point 3 to Point Because 5. In of this the pressurecase, there loss is andno pressure the hydrostatic loss from resistance Point caused3 to Point by friction,5 as an theassumption. pressure differenceBecause ofD Pthe56 includespressure theloss pressure and the hydrostatic loss. Afterward, resistance the liquid caused located by friction, at Stage the 6 pressure flows into difference the chamber ∆P56 forincludes compensation. the pressure Moreover, loss. Afterward, some parts the of liqu theid heat located load areat Stage provided 6 flows to theinto evaporator the chamber at thefor expensecompensation. of the workingMoreover, fluid. some This parts condition of the isheat heated load toare temperature provided toT 7the. The evaporator progress fromat the Point expense 7 and of the Point working 8 are relative fluid. This to the condition filtration is ofheated the liquid to temperature through the T7. wick The intopro- thegress evaporation from Point place.7 and Point In this 8 are way, relative the liquid to the may filtration prove of to the be superheated.liquid through However, the wick its boiling-up does not happen because of its short duration in such a state. The state of the working fluid in the vicinity of the evaporating menisci is represented by Point 8. Energies 2021, 14, 2453 3 of 23 Pressure loss (dP1–8) corresponds to the total value of pressure losses in all the working- fluid circulation sections. From the above analysis, the function of the LHP is considered in three conditions. At first, the capillary condition is the condition for conventional HPs for an operation. DPc ≥ DPv + DPl + DPg (1) where DPv is the working fluid’s pressure loss during the vapor state’s motion. DPl is the working fluid’s pressure loss during the liquid state’s motion.
Recommended publications
  • ACT-ATA-Heat-Exchangers
    Advanced Cooling Technologies, Inc. Innovations in Action Energy Recovery Systems ACT-HP-ERS/A-A Series Passive Air-to-Air Heat Pipe Heat Exchangers Highly Recommended for Dedicated Outside Air Installations Limited Lifetime Warranty Start Saving Energy Today: Energy cost savings over 40%, cold or hot climates No cross-contamination between isolated airstreams Economically Improves Indoor Air Quality Quick return on investment from energy savings Reduce Heating or Cooling Requirements Totally passive, no moving parts or system maintenance Engineered efficient & compact design ApplicationApplication & & Specification Specification Guide Guide ACT Energy Recovery Systems ACT’s Heat Pipe Core Thermal Competence Thermal Expertise From Electronics to Space Flight Basic Heat Pipe for Electronics Cooling Heat Pipes for Loop Heat Pipes for Space Satellite High Heat Flux Solar Cell Cooling Thermal Payload Cooling Heat pipes are a proven heat transfer technology with highly dependable operational performance in diverse applications including HVAC, industrial electronics, military and aerospace. ACT has over 100 years of accumulated engineering experience in the design, testing and manufacturing of heat pipes. ACT-HP-ERS/A-A Air to Air Heat Exchangers Utilize High Performance Heat Pipes Thousand Times Better Conductor Than Copper CONDENSER PHASE CHANGE TO LIQUID Heat Pipe Operating Principle: HEAT OUT HEAT OUT Heat pipes function by absorbing heat at the evaporator end of the cylinder, boiling and converting the fluid to vapor. The vapor travels to the condenser end, rejects the heat, and condenses to liquid. The condensed liquid flows back to the evaporator, aided by gravity. This phase change cycle continues as long as there is heat (warm outside air) at the evaporator end of the Vapor flows through center Vapor heat pipe.
    [Show full text]
  • Heat Pipes Should Be Lifted with the Tubes Level
    When you want Quality, specify COLMAC! COLMAC COIL Manufacturing Inc. Installation, Operation, Maintenance, and Design Guide ENG00018627 Rev B Heat Pipe Coils Contents 1. SAFETY INSTRUCTIONS .......................................................................................................... 1 2. MODEL NOMECLATURE ........................................................................................................... 4 3. GENERAL DESCRIPTION ......................................................................................................... 5 4. HEAT PIPE TYPES ..................................................................................................................... 7 5. DIMENSIONS ............................................................................................................................ 12 6. SELECTION .............................................................................................................................. 14 7. SPECIFICATIONS .................................................................................................................... 14 8. INSTALLATION ........................................................................................................................ 15 9. OPERATION ............................................................................................................................. 22 10. MAINTENANCE ...................................................................................................................... 22 COLMAC 1. SAFETY
    [Show full text]
  • Possibilities of Using Carbon Dioxide As Fillers for Heat Pipe to Obtain Low- Potential Geothermal Energy
    EPJ Web of Conferences 45, 01123 (2013) DOI: 10.1051/epjconf/ 20134501123 C Owned by the authors, published by EDP Sciences, 2013 Possibilities of using carbon dioxide as fillers for heat pipe to obtain low- potential geothermal energy M. Kasanický1,a, S. Gavlas1, M Vantúch1 and M. Malcho1 1University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina, Slovakia Abstract. The use of low-potential heat is now possible especially in systems using heat pumps. There is a presumption that the trend will continue. Therefore, there is a need to find ways to be systems with a heat pump efficiencies. The usage of heat pipes seems to be an appropriate alternative to the established technology of obtaining heat through in-debt probes. This article describes a series of experiments on simulator for obtaining low-potential geothermal energy, in order to find the optimal amount of carbon dioxide per meter length of the heat pipe. For orientation and understanding of the conclusions of the experiment, the article has also a detailed description of the device which simulates the transport of heat through geothermal heat pipes. 1 Heat the tube in use in geothermal In the evaporating part of the working fluid in liquid field form is heated, and consequently begins to evaporate. Vapor of the working fluid passes through the adiabatic Heat pipe is a device for intensive heat flux transfer while region to the condenser, where it releases its heat. This maintaining a small temperature difference. In principle, cooled material returns in the form of condensate to the the heat transport is ensured by means of evaporation and evaporator (by gravity in gravity tubes, or by capillary condensation of the working substance.
    [Show full text]
  • Next Generation Latent Enhancement Systems for Large
    SELECTAIRE PLUS™ SERIES DEHUMIDIFIERS N 4 O TI 9 A 3 140 R 8 TU 3 A 5 S 7 7 T 3 A 130 Y 6 LP 3 A 5 TH 3 N 120 E Next Generation4 Latent 3 H 3 3 70 % R 0 9 110 2 3 H EnhancementR Systems for Large Enhancement Systems for Large 1 3 % 0 8 0 100 3 H R 9 5 % 2 6 0 Natatoriums &7 Water Parks 8 90 6 2 2 H R Natatoriums 7 5 2 60% 2 80 4 0 2 6 H R 3 % 2 0 5 2 70 2 1 H 2 R % 40 60 H AIR POUND PER DRY MOISTURE OF OF GRAINS R % 50 30 Water Parks 40 RH 20% 30 H 10% R 20 10 School Aquatic Facilities 0 50 55 60 65 70 75 80 85 90 95 100 105 13.0 CU. FT. DRY BULB °F 13.5 CU. FT. 14.0 CU. FT. Desert Aire’s patent pending SelectAire Plus™ (SP Series) dehumidification systems • SelectAire Energy Recovery recovers more exhaust air energy than any other offer you complete humidity control solutions for large indoor pool applications and technology water parks. Building on our years of design, manufacture and applications expertise of natatorium-specific equipment, Desert Aire developed the SelectAire Plus™ Series • Automated control of ventilation air and exhaust air protects the occupants and the building to provide industry leading performance, efficiency and value. The SelectAire Plus™ Series incorporates the original SelectAire™ System energy recovery technology and • Direct Expansion Technology with scroll compressors provides more adds features for applications that require the superior cabinetry, state-of-the-art fan dehumidification and higher energy efficiency than units with secondary design and next-generation control features for enhanced setup and serviceability.
    [Show full text]
  • Different Types of Heat Pipes
    TFAWS Active Thermal Paper Session Different Types of Heat Pipes William G. Anderson Advanced Cooling Technologies, Inc. Presented By William G. Anderson [email protected] Thermal & Fluids Analysis Workshop TFAWS 2014 August 4 - 8, 2014 NASA Glenn Research Center Cleveland, OH Motivation Most heat pipe books discuss standard heat pipes, vapor chambers, and thermosyphons – Most of the heat pipes in use are constant conductance heat pipes and thermosyphons (> 99%) Specialty books discuss VCHPs for precise temperature control, and diode heat pipes Information on non-standard heat pipes is buried in the technical literature This presentation is a brief survey of the different types of heat pipes ADVANCED COOLING TECHNOLOGIES, INC. Motivation ISO9001-2008 & AS9100-C Certified 2 Presentation Outline Constant Conductance Heat Pipes – Heat Pipes – Vapor Chambers Gas-Loaded Heat Pipes – Variable Conductance Heat Pipes (VCHPs) – Pressure Controlled Heat Pipes (PCHPs) – Gas Trap Diode Heat Pipes Interrupted Wick – Liquid Trap Diode Heat Pipes Heat Pipe and VCHP Heat Exchangers Alternate Means of Liquid Return – Thermosyphons – Rotating Heat Pipes ADVANCED COOLING TECHNOLOGIES, INC. Agenda ISO9001-2008 & AS9100-C Certified 3 Heat Pipe Basics Vapor Space Liquid Film Passive two-phase heat transfer device operating in a closed system – Heat/Power causes working fluid to vaporize – Vapor flows to cooler end where it condenses – Condensed liquid returns to evaporator by gravity or capillary force Typically a 2-5 °C ΔT across the length of the pipe keff ranges from 10,000 to 200,000 W/m-K Heat Pipes can operate with heat flux up to 50-75W/cm2 – Custom wicks to 500W/cm2 ADVANCED COOLING TECHNOLOGIES, INC.
    [Show full text]
  • The-Intro-2017.Pdf
    INTRODUCTION Heat Pipe Technology, Inc. Heat Pipe Technology, Inc. (HPT) was founded in 1983. With funding from private investors, and a grant from the Department of Energy. HPT began research on a new use for heat pipes, a passive heat transfer device previously used in many various applications ranging from orbiting satellites to the Alaskan Pipeline ground spikes. By applying heat pipes to standard air conditioning coil systems, the dehumidification performance and efficiency was greatly enhanced, with no increase in energy use. Projects to follow proved the technology could be applied on any scale, while being commercially viable and practical to implement. While humidity control became a widely recognized requirement for indoor air quality in all modern buildings, heat pipes were proving to be one of the most cost effective and efficient methods of dehumidification in the world. With a staff of talented mechanical engineers and a specialized team of installation experts, HPT began installing patented HPT Dehumidifier Heat Pipes at thousands of locations around the world. The client list grew to include many high profile locations such as Walt Disney World, The Kennedy Space Center and the Salvador Dali Museum, as well as data centers, numerous restaurant chains, premier hotels, and many prestigious universities. Applications have ranged from 2 to 500 ton systems. Today, HPT manufactures heat pipes for dehumidification and energy recovery for many diverse HVAC applications in addition to the custom and retrofit designs. As of January 2017, HPT is represented worldwide by 56 independent representatives in over 100 locations, (many representatives have multiple offices). Call for the name of a representative in your area: (813) 470-4250, or log on to our website at www.heatpipe.com.
    [Show full text]
  • An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia
    Proceedings of the 4th IASME / WSEAS International Conference on ENERGY & ENVIRONMENT (EE'09) An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia LIM CHIN HAW 1*, KAMARUZZAMAN SOPIAN 2, YUSOF SULAIMAN 3 Solar Energy Research Institute, University Kebangsaan Malaysia, MALAYSIA. [email protected]*, [email protected] , [email protected] Abstract:- In many regions of the world especially tropical weather in Malaysia, the demand for cooling of indoor air is growing due to increasing comfort expectations and increasing cooling loads. Air-conditioning, the most common cooling mechanism for providing indoor cooling in buildings has become a necessity in most buildings. However, air-conditioning is the dominant energy consuming appliances in most of today office buildings. Today most of the small office buildings deployed conventional cooling technologies which typically uses an electrically driven compressor system that exhibits several clear disadvantages such as high energy consumption, high electricity peak loads demand and in general it employ refrigerants which have several negative impacts on the environment. Because of the high energy cost, the decrease of fossil fuel resources and the rise of environmental pollution, the utilization of low level renewable energy sources such as solar energy in refrigeration systems has become a way to address these problems. The solar assisted air-conditioning system uses the heat from the solar radiation to drive a thermally-driven chiller such as absorption chiller. Solar assisted air conditioning system produces cooling with considerably less electricity demand than conventional air-conditioning systems. With current solar collector technology like evacuated tube solar collector which able to produce high temperature approximately 88°C, it has made heat source from solar energy viable to drive the absorption chiller to produce chilled water for indoor cooling purposes.
    [Show full text]
  • High Temperature Heat Pipe Receiver for Parabolic Trough Collectors Project Dates: October 1, 2015 to Sept 30, 2018 Project Budget: $3M
    CSP Program Summit 2016 High Temperature Heat Pipe Receiver for Parabolic Trough Collectors Project Dates: October 1, 2015 to Sept 30, 2018 Project Budget: $3M Stephen Obrey, Joel SteOenheim, Troy McBride, Markus energy.gov/sunshot Hehlen, Robert Reid, and Todd Jankowski CSP Program Summit 2016 energy.gov/sunshot LA-UR-16-22615 LANL CSP Technology Development of technologies to maximize system exergy and enable the use of high efficiency power cycles. Thermochemical Storage Heat Transfer Fluids Low-cost solid state materials which undergo CX-500 thermochemically-active thermal storage reaction • Clear colorless low-viscosity fluid • -40°C gel point • Thermally Stable to + 570°C Conductivity, viscosity, specific heat comparable to DowTherm Thermochemical Heat Pipe Receiver Storage Technology Technology 2 CSP Program Summit 2016 energy.gov/sunshot LA-UR-16-22615 Coopera8ve Partnership for New Trough Receiver Technology Core Expertise in High Temperatures Heat Core Expertise in Parabolic Pipe Physics and Development Trough Receiver Design 3 CSP Program Summit 2016 energy.gov/sunshot LA-UR-16-22615 Project Goals This work will • Enable parabolic trough collector to operate at 750°C • Reduce system complexity • Mitigate unknowns associated with heat transfer fluid • Maximize system exergy • Enable the use of high efficiency power cycles • Reduce the LCOE through - Elimination of unit operations - Net increase in power output - Expanded power output on diurnal and annual basis 4 CSP Program Summit 2016 energy.gov/sunshot LA-UR-16-22615 Conceptual Technology Integraon Proposed Heat Pipe Receiver High L/D Heat Pipe System Norwich Technology Solar Selective Window Trough Receiver A solar selective window maximizes Sodium-stainless steel heat pipes the optical and thermal efficiency of with very high L/D used to produce Norwich Technologies’ SunTrap™ the receiver.
    [Show full text]
  • Evacuated Tube Solar Collectors Used for Thermal Solar Heating
    Evacuated Tube Solar Collectors used for Thermal solar heating Our Solar Water Heater is a device that absorbs thermal energy from the sun and converts it into usable heat. In the installation at Maple Hill Farm, 202 roof-mounted evacuated tube collectors form the core of the system where the heat is absorbed by an anti-freeze mix, and this heat is then transferred to water tanks in the basement. This hot water is used to supplement our hot water heating, including bathrooms, whirlpool tubs, laundry, and our commercial kitchen. The key features of the Apricus Solar Collector tubes that are used in our system include: 1. Reliable, efficient, twin-glass evacuated tubes 2. Copper heat pipes for rapid heat transfer 3. Easy plug-in installation 4. Maintenance Free 5. Suitable for water pressure up to 116 6. Corrosion resistant silver brazed copper header 7. All stainless steel frame (439 grade SS) 8. Stable solar conversion throughout the day (tubes passively track the sun) 9. The perfect solar collector for domestic solar water heater systems 10. Ideal for our high-demand commercial solar water heating application 11. Comprehensive 10 year limited warranty The operation of the solar collector is very simple. 1. Solar Absorption: Solar radiation is absorbed by the evacuated tubes and converted into heat. 2. Solar Heat Transfer: Heat pipes conduct the heat from within the solar tube up to the header. 3. Solar Energy Storage: Antifreeze is circulated through the header, via intermittent pump cycling. Each time the water circulates through the header the temperatures is raised by 9 to 18 ºF.
    [Show full text]
  • Premium Super Heat Pipe Solar Thermal Collector Product Overview
    Premium Super Heat Pipe Solar Thermal Collector Product Overview Product Range TRENDSETTER® specializes in high quality solar thermal products for hot water production. This document focuses on the premium vacuum tube solar thermal collectors Premium Collector Certification TRENDSETTER® is currently under SRCC certification testing for its premium vacuum tube collector which it shortly expects to attain by December 2007 SPECIFICATIONS OF THE TRENDSETTER® PREMIUM COLLECTOR Description The TRENDSETTER® premium collector is a thermal solar collector that uses twin glass evacuated tubes as the solar absorber. Copper heat pipes are used to transfer the heat from within the evacuated tube to a heat transfer manifold, with metal fins positioned within the evacuated tube to aid heat transfer and hold the heat pipes firmly in place. The heat transfer manifold consists of a copper header pipe through which heat transfer liquid (water or water-glycol mix) is circulated. The header is designed with dry contact ports into which the heat pipes plug, allowing efficient heat transfer. There is no water inside the evacuated tubes and no direct contact between the heat pipes and the heat transfer liquid, as such the system is suitable for mains pressure. The manifold and tubes are attached to a stainless steel mounting frame, which can be mounted directly on a roof of suitable pitch. Frame kits are also available which allow mounting on flat roofs, walls or low-pitched roofs. By using commercially available frame kits, pole mounting is also possible. The TRENDSETTER® solar collector has been designed to be suitable for a wide range of system configurations including open loop, closed loop, drain back and even thermosyphon when coupled with a suitable tank.
    [Show full text]
  • Modification of a Solar Thermal Collector to Promote Heat Transfer
    applied sciences Article Modification of a Solar Thermal Collector to Promote Heat Transfer inside an Evacuated Tube Solar Thermal Absorber Rasa Supankanok 1, Sukanpirom Sriwong 1, Phisan Ponpo 1, Wei Wu 2, Walairat Chandra-ambhorn 1,* and Amata Anantpinijwatna 1 1 Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; [email protected] (R.S.); [email protected] (S.S.); [email protected] (P.P.); [email protected] (A.A.) 2 Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +668-1658-9499 Abstract: Evacuated-tube solar collector (ETSC) is developed to achieve high heating medium temperature. Heat transfer fluid contained inside a copper heat pipe directly affects the heating medium temperature. A 10 mol% of ethylene-glycol in water is the heat transfer fluid in this system. The purpose of this study is to modify inner structure of the evacuated tube for promoting heat transfer through aluminum fin to the copper heat pipe by inserting stainless-steel scrubbers in the evacuated tube to increase heat conduction surface area. The experiment is set up to measure the temperature of heat transfer fluid at a heat pipe tip which is a heat exchange area between heat transfer fluid and heating medium. The vapor/ liquid equilibrium (VLE) theory is applied to investigate phase change behavior of the heat transfer fluid. Mathematical model validated with Citation: Supankanok, R.; 6 experimental results is set up to investigate the performance of ETSC system and evaluate the Sriwong, S.; Ponpo, P.; Wu, W.; feasibility of applying the modified ETSC in small-scale industries.
    [Show full text]
  • Adsorption-Based Antifreeze System for Loop Heat Pipes Céline Petit, Benjamin Siedel, Damien Gloriod, Valérie Sartre, Frédéric Lefèvre, Jocelyn Bonjour
    Adsorption-based antifreeze system for loop heat pipes Céline Petit, Benjamin Siedel, Damien Gloriod, Valérie Sartre, Frédéric Lefèvre, Jocelyn Bonjour To cite this version: Céline Petit, Benjamin Siedel, Damien Gloriod, Valérie Sartre, Frédéric Lefèvre, et al.. Adsorption- based antifreeze system for loop heat pipes. Applied Thermal Engineering, Elsevier, 2015, 78 (5), pp.704-711. 10.1016/j.applthermaleng.2014.11.028. hal-01287008 HAL Id: hal-01287008 https://hal.archives-ouvertes.fr/hal-01287008 Submitted on 11 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Elsevier Editorial System(tm) for Applied Thermal Engineering Manuscript Draft Manuscript Number: Title: ADSORPTION-BASED ANTIFREEZE SYSTEM FOR LOOP HEAT PIPES Article Type: Research Paper Keywords: loop heat pipe; water; anti-freeze device; adsorbent; storage tank; silica gel Corresponding Author: Prof. Jocelyn Bonjour, PhD Corresponding Author's Institution: INSA Lyon First Author: Céline Petit Order of Authors: Céline Petit; Benjamin Siedel; Damien Gloriod; Valérie Sartre; Frédéric Lefèvre; Jocelyn Bonjour, PhD Abstract: The use of water in loop heat pipes (LHP) is known to be desirable: water is almost freely available; it exhibits high thermal performance and is non-toxic.
    [Show full text]