Coupling Activators for the Oligonucleotide Synthesis Via Phosphoramidite Approach

Total Page:16

File Type:pdf, Size:1020Kb

Coupling Activators for the Oligonucleotide Synthesis Via Phosphoramidite Approach Tetrahedron 69 (2013) 3615e3637 Contents lists available at SciVerse ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Tetrahedron report number 1002 Coupling activators for the oligonucleotide synthesis via phosphoramidite approach Xia Wei a,b,* a AM Biotechnologies, LLC., 12521 Gulf Freeway, Houston, TX 77034, USA b University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA article info Article history: Received 4 August 2012 Available online 7 March 2013 Contents 1. Introduction . ................................................3616 1.1. Nucleoside phosphoramidites . ......................3616 1.2. Typical oligonucleotide synthesis via nucleoside phosphoramidite approach . ......................3617 2. Azole coupling activators . ................................................3619 2.1. 1H-Tetrazole and its activation mechanism . ......................3619 2.2. Modified tetrazole coupling activators . ......................3620 2.2.1. 5-Nitrophenyl-1H-tetrazole (NPT) . ......................3620 2.2.2. 5-(Bis-3,5-trifluoromethylphenyl)-1H-tetrazole (Activator 42) . .................................3622 2.2.3. 5-Ethylthio-1H-tetrazole (ETT) . ......................3622 2.2.4. 5-Benzylthio-1H-tetrazole (BTT) . ......................3623 2.2.5. 5-Methylthio-1H-tetrazole (MTT) . ......................3624 2.2.6. 5-Mercapto-tetrazole (MCT) . ......................3624 2.2.7. Chiral tetrazoles for stereocontrolled synthesis . ......................3624 2.3. Other azole coupling activators . ......................3625 2.3.1. Imidazole activators . ......................3625 2.3.2. 1-Hydroxy-benzotriazole activators . ......................3626 2.3.3. 3-Nitrotriazole activators . .. ......................3626 3. Salt complex coupling activators . .......................................... 3626 3.1. Pyridinium salt complexes . ......................3627 3.2. Azolium salt complexes . ......................3628 3.3. Saccharin salt complexes . ......................3630 3.4. Ammonium salt complexes . ......................3630 4. Other coupling activators for phosphoramidite approach . ...................................3631 4.1. Carboxylic acid coupling activators . ......................3631 4.2. Lewis acid coupling activators . ......................3632 4.3. Trimethylchlorosilane (TMCS) . ......................3632 4.4. 2,4-Dinitrophenol (DNP) . ......................3632 5. Summary ........................................................................ ............................................... 3633 Acknowledgements . ......................3634 6. Abbreviations . ............................................... 3634 References and notes . ......................3635 Biographical sketch . ......................3637 * Tel.: þ1 806 252 8398; e-mail address: [email protected]. 0040-4020/$ e see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.03.001 3616 X. Wei / Tetrahedron 69 (2013) 3615e3637 1. Introduction A: DMTrO Chemical synthesis of oligonucleotides has paved the way for N B e DMTrO O fi 1 4 B the advancement of many elds in life sciences. The comple- O Cl OR1 mentary base paring property of oligonucleotides enables them to + P NR2 O be a fundamental tool for biological research. They are used as 2 1 OH R O P primers for polymerase chain reaction to amplify a particular DNA 2 NR 2 sequence and serve as probes for detecting RNA or DNA by hy- bridizing to their counterparts in a sequence specific manner. 1 2 3 Oligonucleotides are also of great interest in biomedical research B: and drug development. For antisense therapy, a single strand DNA, RNA, or a chemical analog can be designed to bind to a gene and RN N DMTrO OR3 B inhibit the expression of the corresponding protein that is known N O OR3 P to be causative of a particular disease.5 Small interfering RNA, N N P N N + a class of double strand RNA molecules, interferes with the Cl Cl R = H, TMS N N OH expression of a specific gene via the RNA interference pathway.6 4 5 1 Aptamers, also referred as chemical antibodies, are nucleic acid binding species for biomarker discovery and as diagnostic and DMTrO R4 therapeutic isolated by in vitro selection. They are able to bind to B O DMTrO TMS N B a wide range of targets with high affinity and have shown great O R4 potential reagents.7,8 O The increased interests require the preparation of oligonucleo- R3O P O tide in ever larger amounts. Previously, the oligonucleotide could be N R3O P N 4 synthesized through H-phosphonate, phosphodiester, phosphor- NR 2 e N triester, or phosphite triester method.9 12 After being discovered e 67 and modified in early 1980s,13 21 phosphoramidite method has become dominant in the oligonucleotide synthesis due to its high C: fi H Cl coupling ef ciency and rapid turnaround time. N DMTrO B DMTrO O B N 1.1. Nucleoside phosphoramidites O OMe Cl + P N N O fi MeO P Nucleoside phosphoramidites, the key building blocks, rst in- OH troduced by Beaucage and Caruthers in 1981,13 act as phosphity- N lating agents in this synthetic strategy. They are relatively stable under mild basic and neutral conditions, while are very sensitive in 18 9 the presence of even mild acids. Several pathways can be used to Scheme 1. Preparation pathways to phosphoramidites. prepare phosphoramidites (Scheme 1). In the method A, the pro- tected nucleoside 1 reacts with phosphorochloridite 2 in the presence of base, most commonly diisopropylethylamine, pro- e ducing phosphoramidite 3.14 17,21 But the phosphorochloridite is suggested that both N-morpholino and N,N-diisopropylmethoxy hard to handle due to the poor stability, and the side formation of phosphoramidites can be reagents of choice for the oligonucleo- amine hydrochloride in the process causes isolation and purifica- tide synthesis (Fig. 1). tion problems, which precludes the pathway A as a reliable method The key feature of nucleotide phosphoramidites lies in the for automatic synthesis.19 To improve the synthesis, Fourrey and ability to rapidly react with nucleophilic groups in the mediation Varenne developed another approach outlined in method B. The in of mild acids, resulting in products with the replacement of an situ prepared bistriazolophosphine 5 reacts with protected nucle- amino moiety by an incoming nucleophile.10 In order to avoid side oside 1, yielding intermediate 6, which then transfers to phos- reactions, all other active functionalities in nucleosides, such as phoramidite 7 by treating with N,N-dialkyltrimethylsilylamine.17,19 the phosphite moiety, exocyclic amino groups on nucleobases, Almost at the same time, Beaucage discovered method C by means and hydroxyl groups at the 50-and20-positions, have to be of a phosphitylation between bispyrrolidinomethoxyphosphine 8 selectively protected by proper groups that can also be easily re- and nucleoside 1 under the activation of weak acid, such as 4,5- moved after the completion of the oligonucleotide synthesis. The dichloroimidazole.20 Compared with other two routes, method C most commonly used protecting groups are briefly introduced represents as a simpler and more economical approach to prepare herein. phosphoramidites. Methyl group and 2-cyanoethyl group are often employed to In an attempt to select proper phosphoramidite building blocks, protect the phosphite site of phosphoramidites. The deprotection various deoxynucleoside N,N-dialkylaminomethoxy phosphor- of methyl group by a treatment of either a mixture of thiophenol/ amidites were examined for their stabilities and reactivities in the triethylamine/dioxane or a mixture of tert-butylamine/methanol oligonucleotide synthesis.14 The 31P NMR analysis indicated that takes a long time to react. But 2-cyanoethyl group can be essentially pure N-morpholino and N,N-diisopropylmethoxy removed very easily using concentrated aqueous ammonia, phosphoramidites could be isolated, but N,N-dimethyl, N-pyroli- which is compatible with other deprotection conditions for dino, and 2,2,6,6-tetra-methyl-N-piperidino phosphoramidites oligomers and therefore can be performed in a single depro- were quite heterogeneous and subject to 5e20% hydrolysis tection step (Fig. 1).15,21,22 during the work-up procedure. Furthermore, both N-morpholino The most popular way to protect the 50-hydroxyl site of and N,N-diisopropylmethoxy phosphoramidites were very stable a phosphoramidite is tritylation, by which acid labile trityl ether 23 even after 40 days storage in a sealed tube of CD3CN. The derivatives can be formed. The stronger the electron-donating following reactivity examination by the activation of 1H-tetrazole property of a specific trityl ether linkage, the more sensitive the X. Wei / Tetrahedron 69 (2013) 3615e3637 3617 3 O O R O B O NH NH T: U: N O N O O OR2 P R1 NHR NHR' O Me i-Pr N N N CR: AR': N GR'': NH R1 = N , N N O N N Me i-Pr N N NHR'' N O , N , N Exocyclic amino protecting groups: O O O 2 Me , CH CH CN R = 2 2 Me Bz Ac IBu R' O O Tr: R' = R'' = R''' = H H MMTr: O R3 = C R'' R' = R'' = H; R''' = OMe O DMTr: Me R' = H; R'' = R''' = OMe N Me TMTr: R' = R'' = R''' = OMe Me PAC MAC dmf R''' Fig. 2. Typical protecting groups for nucleobases. Fig. 1. Representative phosphoramidites. tert-butyldithiomethyl (DTM),32 2-cyanoethoxymethyl (CEM),33 pivaloyloxymethyl (PivOM),34 and bis(2-acetoxyethyloxy)methyl 35 trityl group is to the acidic cleavage conditions.10,24 The in- (ACE), have also been developed. The recent effort reported by corporation of electron-donating p-methoxy substituents
Recommended publications
  • E-Catalog Version 18.0 Release Date: 05-10-2013
    E-Catalog Version 18.0 Release Date: 05-10-2013 ChemGenes Corporation is now ISO 9001:2008 Certified Company Bio Technology Products & Manufacturer of DNA-RNA Intermediates 33 Industrial Way Wilmington, MA 01887 USA Tel: 978-694-4500 Fax: 978-694-4502 Toll Free: 800-762-9323 Email: [email protected] www.chemgenes.com Product Highlight Extensive Product Lines: DNA amidites: Bulk Quantities for therapeutics grade oligo synthesis Natural and modified DNA amidites Natural & modified RNA amidites : Bulk Quantities 2’-O-Methyl amidites: Bulk Quantities RNA Synthesis in Reverse Direction TOM amidites for RNA synthesis : Bulk Quantities 2’-O-ALE amidites 2’-O-PivOM amidites 2’-Fluoro amidites Non-Cleavable Inert Supports ETT & BMT : Bulk Quantities DDTT Sulfurizing Reagent UnyLinker Universal Support Akta Oligonucleotide Synthesizer Reagents N-Alkylated nucleosides and amidites 5-Azacytidine and 5-Aza-2’-deoxycytidine Thio uridines & thymidines nucleosides and amidites 6 & 5-FAM NHS Esters 6 & 5-FAM-(C-6 linker) amidites Biotin (BB)-(urea nitrogen protected) Supports & amidites Polyethylene glycol (PEG) (MW. 2000 and 4500) amidites 5’-MMTr nucleoside amidites (Purines: A & G) 8-Methyl dG & rG amidites 8-Oxo dA & dG amidites 5’-O-Methyl DNA amidites Fmoc Protected Nucleoside amidites 5-Formyl dU amidites Ammonia Free Deprotection Reagents Thiol modifiers (acyclic and cyclic) DNA and RNA Purification kit Toll Free: (800) 762-9323 33 Industrial Way, Wilmington, MA 01887 • T: (978) 694-4500 • F: (978) 694-4502 www.chemgenes.com Email: [email protected] Experience Nucleic Acid Expertise Since 1981, the products and services provided by ChemGenes Corporation continue to accelerate the pace of DNA/RNA oligonucleotide synthesis, research, and develop- ment in the pharmaceutical and biotechnology industry.
    [Show full text]
  • Surrogates to Synthesize Phosphonates and Phosphinates
    UPDATES DOI: 10.1002/adsc.202000511 Disulfide Promoted CÀ P Bond Cleavage of Phosphoramide: “P” Surrogates to Synthesize Phosphonates and Phosphinates Fei Hou,+a Xing-Peng Du,+a Anwar I. Alduma,a Zhi-Feng Li,b,* Cong-De Huo,a Xi-Cun Wang,a Xiao-Feng Wu,a, c,* and Zheng-Jun Quana,* a International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China E-mail: [email protected]; [email protected] b College of Chemical Engineering and Technology, Key Laboratory for New Molecule Design and Function of Gansu Universities, Tianshui Normal University, Tianshui 741001, People’s Republic of China E-mail: [email protected] c Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK + These authors contributed equally to this work. Manuscript received: April 28, 2020; Revised manuscript received: July 29, 2020; Version of record online: ■■■, ■■■■ Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.202000511 Abstract: A metal-free CÀ P bond cleavage reaction The CÀ P bond cleavage is mostly realized through transition metal catalysis (Scheme 1A, a).[15] In addi- is described herein. Phosphoramides, a phosphine [16] source, can react with alcohols to produce phospho- tion, Davidson has demonstrated the photocatalytic nate and phosphinate derivatives in the presence of acyl CÀ P bond cleavage of acyl phosphine oxide under UV irradiation (Scheme 1A, b). Recently, Wang and a disulfide. PÀ H2, P-alkyl, and P,P-dialkyl phosphor- amides can be used as substrates to obtain the co-workers have reported the acyl phosphorus CÀ P corresponding pentavalent phosphine products.
    [Show full text]
  • The Synthesis and Study of Oligo(Deoxy)Ribonucleotides and Their Analogues
    The Synthesis and Study of Oligo(deoxy)ribonucleotides and their Analogues. by Susanne Ebel A Thesis Presented for the Degree of Doctor of Philosophy University of Edinburgh 1993 \ 4/ 11i1t I declare that this thesis is my own composition and that the work of which it is a record was carried out by myself unless otherwise acknowledged. No part of this thesis has been submitted in any previous application for a higher degree. Susanne Ebel. 1993 2 I wish to thank - my supervisor Prof.; Tom Brown for offering the opportunity to do this Ph.D. and giving advice and encouragement throughout, - Dr. Brian Sproat for the generous gift of his biotin-phosphoramidite, -the OSWEL DNA Service for the use of their facilities, - Dr. A. Lane of the NIMR who did all the excellent NMR work on G.A mismatches, - Dr. P. Hendry of the OSORO for his help with ribozyme-cleavage analysis, - David Will for being the most critical of all the colleagues in the group, - all the people in the Brown group for being fun to work with, - and Edinburgh University for use of their facilities. Proton, Carbon-13 spectra were recorded by John Millar and Heather Grant, FAB-Mass spectra were recorded by Alan Taylor. 3 AbbreviaUanz A260 absorbance unit at 260nm [ml-1 ] AMP adenosine mono-phosphate ATP adenosine tn-phosphate Bio single-addition biotin phosphoramidite as shown in chapter 2 Bz benzoyl Cbio biotin-phosphoramidite as shown in chapter 2 conc. concentrated CPG controlled pore glass Ctmp 1 -(2-chloro-4-tolyl)-4-methoxypipenidi n-4-yl dA 2Oxy adenosine dO 2'-deoxy cytidine dG 2'-deoxy guanosine dil.
    [Show full text]
  • Synthesis and Mechanisms of Phosphoramidates
    Review Openingmolecules Up the Toolbox: Synthesis and Mechanisms of Phosphoramidates Emeka J.Review Itumoh 1,2,3, Shailja Data 1,3 and Erin M. Leitao 1,3,* 1 SchoolOpening of Chemical Sciences, up the The Toolbox:University of Auckland, Synthesis 23 Symonds and Street, Mechanisms Auckland 1010, Newof Zealand; Phosphoramidates [email protected] (E.J.I.); [email protected] (S.D.) 2 Department of Industrial Chemistry, Ebonyi State University, Abakaliki 480001, Ebonyi State, Nigeria 3 The MacDiarmidEmeka J. Itumoh Institute1,2,3 for, Shailja Advanced Data 1,3 Materialsand Erin and M. LeitaoNanotechnology,1,3,* Wellington 6140, New Zealand * Correspondence:1 School of Chemicalerin.leitao@ Sciences,auckland.ac.nz; The University Tel.: of Auckland, +64-9923-5567 23 Symonds Street, Auckland 1010, New Zealand; [email protected] (E.J.I.); [email protected] (S.D.) Academic Editor: Frederik Wurm 2 Department of Industrial Chemistry, Ebonyi State University, Abakaliki 480001, Ebonyi State, Nigeria 3 Received: 3 TheJuly MacDiarmid 2020; Accepted: Institute 11 for Augu Advancedst 2020; Materials Published: and Nanotechnology, 12 August 2020 Wellington 6140, New Zealand * Correspondence: [email protected]; Tel.: +64-9923-5567 Abstract:Academic This review Editor: Frederik covers Wurm the main synthetic routes to and the corresponding mechanisms of phosphoramidateReceived: 3 July formation. 2020; Accepted: The 11 August synthetic 2020; Published: routes 13can August be 2020separated into six categories: salt elimination,Abstract: oxidativeThis review cross-coupling, covers the main azide, synthetic reduction, routes to andhydrophosphinylation, the corresponding and phosphoramidate-aldehyde-dienophilemechanisms of phosphoramidate formation. (PAD). The Examples synthetic routesof some can be separatedimportant into compounds six synthesizedcategories: through salt elimination,these routes oxidative are provided.
    [Show full text]
  • Synthesis and Characterization of New Phosphoramide Ligands for the Preparation of Luminescent Manganese and F-Block
    Master's Degree Programme in Sustainable Chemistry and Technologies Final Thesis Synthesis and characterization of new phosphoramide ligands for the preparation of luminescent manganese and f-block metal complexes Supervisor Ch. Prof. Marco Bortoluzzi Graduand Alberto Gobbo Matriculation Number 849283 Academic Year 2018 / 2019 INDEX 1. INTRODUCTION ...................................................................................................................... 1 1.1 d-block luminescence ...................................................................................................... 1 1.2 Manganese luminescence ................................................................................................. 4 1.2.1 Manganese(II) luminescent complexes ...................................................................... 7 1.3 Lanthanides ................................................................................................................... 10 1.3.1 General features ...................................................................................................... 10 1.3.2 Extraction and purification ...................................................................................... 11 1.3.3 Electronic configuration and coordination chemistry ............................................. 12 1.3.4 Spectroscopic and magnetic properties .................................................................. 13 1.3.5 Photoluminescence ................................................................................................
    [Show full text]
  • From C-O to C-C Through Nickel Coupling
    From C–O to C–C through Nickel Coupling MeO2C CO2Me >99% yield Ph O Homocoupling R = S O OMOM OMe 80% yield Suzuki- Kumada 95% yield O Miyaura O R = RO R = S NEt2 NEt2 R' O O O R = R = P (OEt) Suzuki- Kumada 2 Miyaura n-octyl Kumada R = Me 92% yield NOMe i86% yield Ph N H Nathan Bennett 95% yield Group Meeting May 7, 2011 Title Page Ni Chemistry Timeline Initial Studies 1966 Saito and Yamamoto Et2Ni(bpy) 1960 1970 1980 1990 2000 Saito, T. and Yamamoto, A. N N Et Et2AlOEt vacuum + Ni(acac)2 + Ni + Et O 110 °C N 2 N Et –20 ! –10 °C Et2Ni(bpy) J. Am. Chem. Soc. 1966, 88, 5198. Timeline1 Saito Ni Chemistry Timeline Initial Studies 1966 1971 Saito and Yamamoto Semmelhack Et2Ni(bpy) Ni(COD)2 1960 1970 1980 1990 2000 Semmelhack, M. F. Ni(COD)2 Br DMF 52 °C 82% yield Ullmann Coupling Comparison Cu Bronze Br cymene 180 °C 60% yield Ni: Semmelhack, M. F. J. Am. Chem. Soc. 1971, 93, 5908. Ullmann Coupling: Fanta, P. E. Chem. Res. 1964, 64, 613. Timeline1 Semmelhack Ni Chemistry Timeline Initial Studies 1966 1971 1975 Saito and Yamamoto Semmelhack Semmelhack Et2Ni(bpy) Ni(COD)2 Ni(PPh3)4 1960 1970 1980 1990 2000 Semmelhack, M. F. OMe n yield (%) MeO I 2 81 Ni(PPh3)4 3 83 n n DMF, 55 °C 4 76 MeO I 5 85 6 38 OMe J. Am. Chem. Soc. 1975, 97, 3873. J. Am. Chem. Soc. 1981, 103, 646.
    [Show full text]
  • E-Catalog Version 19.0
    E-Catalog Version 19.0 ChemGenes Corporation is now ISO 9001:2008 Certified Company Bio Technology Products & Manufacturer of DNA-RNA Intermediates 33 Industrial Way Wilmington, MA 01887 USA Tel: 978-694-4500 Fax: 978-694-4502 Toll Free: 800-762-9323 Email: [email protected] www.chemgenes.com Product Highlight Extensive Product Lines: DNA amidites: Bulk Quantities for therapeutics grade oligo synthesis Natural and modified DNA amidites Natural & modified RNA amidites : Bulk Quantities 2’-O-Methyl amidites: Bulk Quantities RNA Synthesis in Reverse Direction TOM amidites for RNA synthesis : Bulk Quantities 2’-O-ALE amidites 2’-O-PivOM amidites 2’-Fluoro amidites Non-Cleavable Inert Supports ETT & BMT : Bulk Quantities DDTT Sulfurizing Reagent UnyLinker Universal Support Akta Oligonucleotide Synthesizer Reagents N-Alkylated nucleosides and amidites 5-Azacytidine and 5-Aza-2’-deoxycytidine Thio uridines & thymidines nucleosides and amidites 6 & 5-FAM NHS Esters 6 & 5-FAM-(C-6 linker) amidites Biotin (BB)-(urea nitrogen protected) Supports & amidites Polyethylene glycol (PEG) (MW. 2000 and 4500) amidites 5’-MMTr nucleoside amidites (Purines: A & G) 8-Methyl dG & rG amidites 8-Oxo dA & dG amidites 5’-O-Methyl DNA amidites Fmoc Protected Nucleoside amidites 5-Formyl dU amidites Ammonia Free Deprotection Reagents Thiol modifiers (acyclic and cyclic) DNA and RNA Purification kit Toll Free: (800) 762-9323 Toll Free: 33 Industrial(800) Way, Wilmington, 762-9323 MA 01887 • T: (978) 694-4500 • F: (978) 694-4502 33 Industrial Way, Wilmington, MA 01887 • T: (978) 694-4500 • F: (978) 694-4502 www.chemgenes.com Email: [email protected] Experience Nucleic Acid Expertise Since 1981, the products and services provided by ChemGenes Corporation continue to accelerate the pace of DNA/RNA oligonucleotide synthesis, research, and develop- ment in the pharmaceutical and biotechnology industry.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0152079 A1 Cherpeck Et Al
    US 20100152079A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0152079 A1 Cherpeck et al. (43) Pub. Date: Jun. 17, 2010 (54) LUBRICATING OL COMPOSITIONS (22) Filed: Dec. 16, 2008 CONTAINING A TETRAALKYL-NAPTHALENE-18 DIAMINE Publication Classification ANTOXDANT (51) Int. Cl. CIOM 39/06 (2006.01) (75) Inventors: Richard E. Cherpeck, Cotati, CA CIOM. I.33/2 (2006.01) (US); Carrie Y. Chan, Daly City, CIOM 37/10 (2006.01) CA (US); Gaurav Bhalla, Hercules, CA (US) (52) U.S. Cl. .......................... 508/362; 508/556; 508/370 (57) ABSTRACT Correspondence Address: Disclosed is a lubricating oil composition containing an oil of CHEVRON CORPORATION lubricating viscosity and a N.N.N',N'-tetraalkyl-naphthalene P.O. BOX 6006 1,8-diamine and at least one additive selected from antioxi SAN RAMON, CA 94583-0806 (US) dants, dispersants, and detergents which together provide superior oxidation inhibition and are suitable lubricants for (73) Assignee: Chevron Oronite Company LLC automotive and truck crankcase lubricants; as well as trans mission lubricants, gear lubricants, hydraulic fluids, com (21) Appl. No.: 12/336,128 pressor oils, diesel and marine lubricants. US 2010/0152079 A1 Jun. 17, 2010 LUBRICATING OL COMPOSITIONS esters and Sulfurized ester-olefins and a secondary aliphatic CONTAINING A amine. U.S. Pat. No. 6,306,802 discloses of an antioxidant TETRAALKYL-NAPTHALENE-18 DIAMINE mixture containing a combination of an oil soluble molybde ANTIOXDANT num compound and an aromatic amine. 0005 Commonly, antioxidant compounds which were FIELD OF THE INVENTION intended to decompose hydroperoxides or peroxides (includ 0001. The present invention is directed in part to a lubri ing Sulfurized olefins, metal dithiocarbamates, dithio cating oil composition containing an oil of lubricating vis phospates, phosphites, thioesters, etc.) are increasingly diffi cosity, a N.N.N',N'-tetraalkyl-naphthalene-1,8-diamine and a cult to incorporate into the finished lubricant due to the lubricating oil additive.
    [Show full text]
  • Phosphotriesterase: an Enzyme in Search of Its Natural Substrate
    Advances in Enzymology and Related Areas of Molecular Biology, Volume 74 Edited by Daniel L. Punch Copyright © 2000 by John Wiley & Sons, Inc. PHOSPHOTRIESTERASE: AN ENZYME IN SEARCH OF ITS NATURAL SUBSTRATE By FRANK M. RAUSHEL, Department of Chemistry, Texas A&M Universiq, College Station, Texas 77843 and HAZEL M. HOLDEN, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53 706 CONTENTS 1. Introduction 11. Structure A. Protein Sequence B. Active Site Residues C. Reconstitution of Apo-Enzyme D. "'Cd-NMR Spectroscopy E. EPR Spectroscopy F. Mutagenesis ofActive Site Residues G. Structure of the Apo-Form of Phosphotriesterase H. Structure of the Cd2'/Cd2'-Substituted Enzyme 1. Structure of the Zn2'/Zn2'-Containing Enzyme J. Comparison with Other Enzymes K. Modifications to Carbamylated Lysine 111. Mechanism of Action A. Stereochemistry at Phosphorus Center B. Determination of Rate-Limiting Steps C. Effects of Solvent Viscosity D. pH-Rate Profiles E. The Role of Binuclear Metal Center F. Heavy Atom Isotope Effects G. Mechanism-Based Inhibitors H. Mechanism ofAction IV. Substrate Specificity A. Alterations to Substrate Specificity V. Summary Acknowledgments References Advances in Enzymology and Related Areas of Molecular Biology, Volume 74: Mechanism of Enzyme Action, Part B, Edited by Daniel L. Punch ISBN 0-471-34921-6 0 1998 John Wiley & Sons, Inc. 51 52 RAUSHEL AND HOLDEN I. Introduction Approximately 25 years ago two strains of unrelated soil bacteria (Pseudomonasdiminuta and Flavobacterium sp.) were isolated that had the ability to hydrolyze, and thus detoxify, a broad range of organophosphate in- secticides and military-type nerve agents (Munnecke, 1976). The specific chemical reaction catalyzed by these bacterial strains, as exemplified with the insecticide paraoxon, is shown in Scheme 1.
    [Show full text]
  • Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application
    S S symmetry Review Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application Oleg I. Kolodiazhnyi V.P. Kukhar’ Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanska st., 1, 02094 Kyiv, Ukraine; [email protected] Abstract: Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science. Citation: Kolodiazhnyi, O.I. Keywords: stereochemistry; prebiotic chemistry; origin of life; DNA; RNA; phosphagens; nucleotides; Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, natural phosphonic acids; antibiotics; phosphonopeptides; phosphoramidates Application.
    [Show full text]
  • The Effects of Neuropathy-Inducing Organophosphate Esters on Chick Dorsal Root Ganglia Cell Cultures
    THE EFFECTS OF NEUROPATHY-INDUCING ORGANOPHOSPHATE ESTERS ON CHICK DORSAL ROOT GANGLIA CELL CULTURES. By Christiane Massicotte Dissertation submitted to the Faculty of the Virginia Polytechnic institute & State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Veterinary Medical Sciences APPROVED ________________________ ______________________ Marion F. Ehrich (Chairman) Bernard S. Jortner ________________________ _____________________ Cornelis Van der Schyf Bradley Klein ________________________ _____________________ Jeffrey Bloomquist Karen D. Inzana September 2001 Blacksburg, Virginia Keywords: Organophosphate, Neuropathy, ATP, mitochondria i. ABSTRACT THE EFFECTS OF NEUROPATHY-INDUCING ORGANOPHOSPHATE ESTERS ON CHICK DORSAL ROOT GANGLIA CELL CULTURES. By: Christiane Massicotte Committee Chairman, Dr. Marion F. Ehrich Veterinary Medical Sciences Cultures of dorsal root ganglia (DRG) can achieve neuronal maturation with axons, making them useful for neurobiological studies. They have not, however, previously been used to investigate subcellular events that occur following exposure to neuropathy-inducing organophosphorus (OP) esters. Recent studies in other systems demonstrated alterations of ATP concentrations and changes in mitochondrial transmembrane potential (∆Ψm) following exposure to neuropathy-inducing OP compounds, suggesting that mitochondrial dysfunction occurs. The present dissertation proposed an investigation using chick embryo DRG cultures to explore early mechanisms associated with exposure to these toxicants. This approach uses an in vitro neuronal system from the species that provides the animal model for OP-induced delayed neuropathy (OPIDN). DRG were obtained from 9-10 day old chick embryos, and grown for 14 days in minimal essential media (MEM) supplemented with bovine and human placental sera and growth factors. Cultures were then treated with 1 µM OP compounds, or the DMSO vehicle control.
    [Show full text]
  • Salen Aluminum Compounds in the Dealkylation and Detection of Organophosphates
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2014 Salen Aluminum Compounds in the Dealkylation and Detection of Organophosphates Rahul R. Butala University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Butala, Rahul R., "Salen Aluminum Compounds in the Dealkylation and Detection of Organophosphates" (2014). Theses and Dissertations--Chemistry. 47. https://uknowledge.uky.edu/chemistry_etds/47 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]