<<

SYNTHESIS AND EVALUATION OF

MUSTARD PRODRUGS FOR SITE-SPECIFIC

ACTIVATION

By PRATHIMASURABHI Athesissubmittedtothe

GraduateSchoolNewBrunswick

Rutgers,TheStateUniversityofNewJersey

inpartialfulfillmentoftherequirements

forthedegreeof

MasterofScience

GraduatePrograminMedicinalChemistry

writtenunderthedirectionof

ProfessorLongqinHu

andapprovedby

______

______

______

NewBrunswick,NewJersey Oct,2007 ABSTRACT OF THE THESIS SYNTHESIS AND EVALUATION OF PHOSPHORAMIDE MUSTARD PRODRUGS FOR SITE-SPECIFIC ACTIVATION ByPRATHIMASURABHI ThesisDirector:ProfessorLongqinHu,Ph.D.

Advancedcancersaftermetastasisneedtobetreatedsystemicallyusingchemotherapyor radiation, which are often associated with debilitating side effects. To improve the selectivity of the chemotherapeutic agents and reducesystemictoxicity,prodrugswith tumortargetedactivationmechanismsarebeingdeveloped.Effortsinthisprojectwere focused on designing phosphoramide mustard analogues incorporating two types of tumorspecific activation mechanisms: one by the reductive activation mechanism by

Escherichia colinitroreductaseandtheotherbytheproteolyticactivationmechanismby prostatespecific antigen (PSA) in prostate cancer cells. 5Nitropyridyl2methyl phosphoramide mustard was designed and synthesized to be a substrate of E. coli nitroreductase.IncellcultureassaysitshowedanIC50valueof9nMinChinesehamster

V79 cells transfected to express E. coli nitroreductase as compared to 75 M in the controlV79cellsthatdonotexpressE. colinitroreductase.Theseresultssuggestthat5 nitropyridyl2methylphosphoramidemustardisagoodcandidateforuseincombination withnitroreductaseforenzymeprodrugtherapy.

For proteolytic activation by (PSA) in prostate cancer cells, we designed a peptide conjugatebylinkingasubstratepeptidesequencetophosphoramidemustardthrougha

ii flexible linker that can be modified to better accommodate the unique structural requirements for binding to and catalysis by the target enzyme and thus improve the tumorselectivityofphosphoramidemustard.Pyridinewasintroducedtomodulatethe electrondensity, to optimize the stability and rate of 1,6elimination upon proteolytic cleavage.Anewsetofconditionsweredevelopedforselenocarboxylate/azideamidation reaction in order to avoid the use of unstable basic nuclephilic intermediates during the synthesis of the peptide conjugated analogue. Under the new amidation conditions, the halflife of the selenocarboxylate was increased by 27fold at room temperatureascomparedtothepreviousamidationmethodusingDMSOasacosolvent.

Excellentyieldswereobtainedwithelectrondeficientazidesandmuchimprovedyields were obtained with electronrich azides upon mild heating. The peptide conjugate, glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramide mustard, was successfullysynthesizedusingournewamidationstrategyandwasfoundtobestable withahalflife>5daysatpH7.4and8.0.ItwasshowntobeagoodsubstrateforPSA withahalflifeof46.8minatanenzyme/substratemolarratioof1/100.However,the peptideconjugatedidnotshowanyselectivetoxicity towards PSAexpressing LNCaP cellswithIC50valuesof209Mand204MagainstPSAexpressingLNCaPandnon

PSAexpressing DU 145 cell lines, respectively. ThelowcytotoxicityagainstLNCaP cells may be due to the inability of the released species to penetrate the tumor membranes.Furtherstudiesareunderwaytoidentifytheactivatedspeciesreleasedand todesignapproachestoimproveitsmembranepermeability.

iii ACKNOWLEGDEMENTS

Iwouldliketothankandappreciatemysupervisor,ProfessorLongqinHu,Department of Pharmaceutical Chemistry, Rutgers University for his support, guidance and encouragementthroughoutmystudy.

IextendmygratitudetoProfessorJosephE.RiceandProfessorEdmondJ.LaVoiefor theirguidanceandhelpinfinishingmyMaster’sDegree.

IwouldliketothankMr.XinghuaWuforperformingantiproliferativeassaysonprostate cancercellsandhishelpintheamidationproject.Hewasagreatsupportandalways guidedmewithhishelpfulsuggestionsanddiscussions.

IamgratefultomyotherlabmatesMr.JiyeHan,Mr.YuChen,Dr.YiyuGe,Mr.Daigo

Inoyama,andMr.KumarPabbisettywhohavebeenofgreatsupportbothprofessionally andpersonally.

IwouldliketothankProfessorRichardJ.Knox(EnactPharmaPLC,Salisbury,UK)for performingantiproliferativeassaysonNTRexpressingcells.

IamverygratefultotheDept.ofLifeSciencesatRutgersUniversityforgivingmethe financialsupportrequiredtofinishmygraduatestudyandDr.DianaMartin,Directorof

GeneralBiology,RutgersUniversity,forhersupportandcooperation.

Iwouldliketoextendaveryspecialthankstoallmyfamilymembersandfriendswithout whommygraduatestudywouldnotbepossible.

iv

DEDICATION

I would like to dedicate this thesis to my parents.

v TABLE OF CONTENTS

ABSTRACTOFTHETHESIS………………………………………………………..…ii ACKNOWLEDGEMENT…………………………………………………………..……iv DEDICATION……………………………………………………………………….…....v TABLEOFCONTENTS…………………………………………………………………vi LISTOFTABLES…………………………………………………………………...…..vii . LISTOFFIGURES……………………………………………………………………..viii LISTOFSCHEMES………………………………………………………………..……ix ABBREVIATIONS……………………………………………………………………….x INTRODUCTION………………………………………………………………………...1 I. Prodrugsfortumortargetedchemotherapy……………………………………..1 II. ProdrugsactivatedbyEscherichia colinitroreductase………………………….7 III. Efficientamidationfromselenocarboxylateandaromaticazides……………..12 IV. Prodrugsactivatedbyprostatespecificantigen(PSA)………………………..19 RESULTSANDDISCUSSION…………………………………………………………31 I. Synthesis and evaluation of 5nitropyridyl2methyl phosphoramide mustard (18)……………………………………………………………………………31 A. Synthesis…………………………………………………………………31 B. Antiproliferativeassay…………………………………………………...34 II. Efficientamidationfromselenocarboxylateandaromaticazides……………36 III. Synthesis and evaluation of glutarylHypAlaSerChgGlnNHpyridyl2 methylphosphoramidemustard(19)…………………………………………45 A. Synthesis………………………………………………………………….45 B. Chemicalstability………………………………………………………...50 C. SubstrateactivityforPSA………………………………………………...51 D. In vitroantiproliferativeactivityinprostatecancercelllines...... 53

SUMMARY……………………………………………………………………………...55 EXPERIMENTAL……………………………………………………………………….57 REFERENCES…………………………………………………………………………..80

vi LIST OF TABLES Table 1. AntiproliferativeassayofCB1954,4nitrophenylphosphoramidemustard (17)and5nitropyridyl2methylphosphoramidemustard(18)………..35

Table 2. Effectofsolventsonreactiontimeandyield………..…………………..39 Table 3. Amidationreactionofselenocarboxylateswithazides…………………..43 Table 4. Antiproliferative assay of glutarylHypAlaSerChgGlnNHpyridyl2 methylphosphoramidemustard(19)…………………………………….54

vii

LIST OF FIGURES

Figure 1. ProdrugsforactivationbyE. colinitroreductase………………………..9 Figure 2. 4Nitroarylphosphoramidemustardanalogues…………………………11 Figure 3. PeptidesequencesspecificforPSAcleavage…………………………...22 Figure 4. DoxorubicinconjugateforPSAactivation.……………………………...24 Figure 5. Chemical structures of TG, 12ADT and MuHisSerSerLysLeuGln Leu12ADT……………………………………………………………....25 Figure 6. Chemical structure of glutarylHypSerSerGlnSerSerProdesacetyl vinblastine………………………………………………………………..26 Figure 7. StabilityofDIEAbenzeneselenocarboxylateat25°C(●)and55°C(▲) asmonitoredbyconversiontoN(ptoluenesulfonyl)benzamide(84)inan HPLCassay………………………………………………………………40 Figure 8. Side product formed during the synthesis of 5azido pyridyl2methyl phosphoramidemustard(23)…………………………………………….47

Figure 9. Stability of peptide conjugated pyridyl phosphoramide mustard 19 in hank’sbuffer(pH7.4)andPSAbuffer(pH8.0)at37°C……………….50

Figure 10. Thedisappearanceofpeptidedoxorubicinconjugateandpeptidepyridyl phosphoramidemustardconjugateduringcleavagebyPSA…………….52

viii LIST OF SCHEMES

Scheme 1. Mechanismofactionof…………………………..…..5 Scheme 2. Reductionofnitroaromaticstohydroxylaminesand…………..…7 Scheme 3. Mechanismofactivationof4nitroarylmethylphosphoramidemustard(17

&18)……………………………………………………………………..11

Scheme 4. Retrosynthesisofpeptideconjugatedphosphoramidemustard…………12

Scheme 5. Directamidationofazidesavoids1,6elimination andformsthedesired product………………………………………………………….....13 Scheme 6. MechanismofWilliams’thioacid/azideamidationforelectrondeficient azide……………………………………………………………………...15 Scheme 7. MechanismofWilliams’thioacid/azideamidationforelectronrich azide………………………...... 16 Scheme 8. Mechanismofactivationofpeptideconjugatedamino cyclophosphamides…………………………………………………..…..28 Scheme 9. Synthesisof5nitropyridyl2methylphosphoramidemustard(18)...... 32 Scheme 10. In situgenerationofbenzeneselenocarboxylateandsubsequentamidation withazides…………………………………………………………….…38 Scheme 11. Curtiusrearrangement……………………………………………………42 Scheme 12. SynthesisofglutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramidemustard(19)………………………………………….....46

ix ABBREVIATIONS Ac Acetyl ADEPT Antibodydirectedenzymeprodrugtherapy 12ADT 12Aminododecanoylthapsigargin Ala Alanine Asn Asparagine ALD Aldophosphoramide Chg Cyclohexylglycine CPA Cyclophosphamide CuCN Coppercyanide CYP450 CytochromeP450enzyme DCC N,N'Dicyclohexylcarbodiimide DIC N,N'Diisopropylcarbodiimide DIEA Diisopropylethylamine DEA Diethylamine DMAP 4Dimethylaminopyridine DMF N,N'Dimethylformamide Dox Doxorubicin DTD DTdiaphorase Fm 9Fluorenylmethyl FMN Flavinemononucleotide Fmoc 9Flourenylmethoxycarbonyl GDEPT Genedirectedenzymeprodrugtherapy Gln Glutamine HBTU 2(1HBenzotriazol1yl)1,1,3,3tetramethyluronium hexafluorophosphate HEX 2Hexenepyranoside His Histidine HOBt NHydroxybenzotriazole

x HOSu NHydroxysuccinimide(NHS) Hyp Hydroxyproline i.p. Intraperitoneal KCN Potassiumcyanide Leu Leucine LNCaP Lymphnodecarcinomaoftheprostate Lys Lysine MTD Maximumtolerateddose Mu Morpholinylcarbonyl NADH Nicotinamideadeninedinucleotide,reducedform NADPH Nicotinamideadeninedinucleotide,reducedform NMP NMethylpyrrolidone NTR Nitroreductase Phe Phenylalanine PSA Prostatespecificantigen Ser Serine SERCA Sarcoplasmic/endoplasmicreticulumCa2+ATPase Suc Succinyl TBAB Tetrabutylammoniumbromide TBACN Tetrabutylammoniumcyanide TFA Trifluoroaceticacid THF Tetrahydrofuran Tyr Tyrosine TG Thapsigargin VIN Vinblastine

xi 1 INTRODUCTION I. Prodrugs for tumor-targeted chemotherapy

Cancerisoneofthemostdreadfuldiseasesandisthesecondleadingcauseofdeathin the United States. 1 It is a disease characterized by uncontrolled cell division and the abilityofthesecellstoinvadeothertissues,eitherbydirectgrowthintoadjacenttissue

(invasion)orbymigrationofcellstodistantsites(metastasis).Aseriesofacquiredor inheritedmutationsdamagegeneticinformationthatdefinethecellfunctionsandremove normalcontrolofcelldivision.Cancercanbetreatedbysurgery,radiation,chemoand biological therapies. However, the choice of treatment depends on the disease state.

Localized tumors may be treated by surgery but advanced cancers need radiation or chemotherapy.Inspiteoftheavailabilityofawiderangeoftherapies,achievingtumor selectivityisstillachallenge.

Conventional chemotherapy

Mosttumorcellsdonothavebiologicaltargetswhicharecompletelyforeigntothehost andhenceanticanceragentsrelyprimarilyontheuncontrolledproliferationofcellsatthe tumorsitetoexerttheiraction.Basedontheirmechanismofaction,anticanceragents havebeenclassifiedasalkylatingagents,antimetabolites, mitosis inhibitors, hormones and DNA complexing agents. 2,3 However, most anticancer agents are associated with debilitating side effects. For example, anthracycline family of anticancer drugs are associatedwithseverecardiotoxicity 4andDNAcomplexingagentsaffectnormalcellsof 2 gastrointestinal tract and bone marrow. 5 The side effects limit the maximum dose of anticanceragentstobelowtheminimumamountrequiredtokillallviabletumorcells.

Thisresultsintumorrelapseandinduceddrugresistance.6

Targeted prodrug therapy

Inordertoimprovetheselectivityofthechemotherapeuticagents,newanticanceragents withnovelmechanismsofactionarebeingdeveloped.Anotherstrategyistoimprovethe selectivityofexistingdrugsviatheprodrugapproachandthelatterhasattractedmuch attention. 6Atargetedprodrugisformedbyconjugatingacytotoxicagentwithatumor specific trigger. Thus the resulting prodrug would not affect the normal cells in a systemicadministrationasthecytotoxicpropertyoftheparentdrugismasked.Whenthe prodrugreachesthetumorsite,itisactivatedthroughabiochemicalmechanismsuchas hypoxiaorenzymaticactioninsolidtumors,leading to the release of parent drug and anticanceractivity. 6,7

Solid tumors differ from normal tissues in a number of important aspects due to the differences between the two vasculatures. Blood vessels in tumors are often highly abnormalhavingdistendedcapillarieswith leakywallsandsluggishflowasopposedto theregular,orderedvasculatureofnormaltissues.Thesedifferences cancausepotential problems for cancer treatment. For example, hypoxia in solid tumors contributes to resistance to radiotherapy and to some chemotherapeutic agents. However, these differences can also be exploited for selective cancer treatment. 7 Hypoxia provides a reductivemicroenvironmentandthiscanbeeffectivelytargetedbyprodrugsactingvia 3 bioreductive activation mechanisms. 8 Several prodrugs containing quinones, nitroaromaticorNoxidestructuresareselectivetowardshypoxiccellsandareinvarious stagesofclinicaltrials.Tirapazamine,porfiromycinarefewexamples. 9,10

Many endogenous enzymes such as DTdiaphorase, 11 Eglucoronidase, 12,13 azoreductase, 14 acidphosphatase 15 arereportedtobeoverexpressedinsometumorcells.

Theseenzymescouldserveasmajortargetsforactivationofprodrugs.Somecytotoxic agents linked to enzymespecific substrates are much less toxic to normal cells and restore their cytotoxicity upon enzyme catalysis at tumor sites. 16 Recently, several proteases such as plasmin, plasminogen activator, matrix metalloproteinases, prostate specificantigen(PSA)havealsobeenusedasprodrugconvertingenzymesandtargets forpeptidebasedprodrugsinthetreatmentofcancer. 6

Exogenous enzymes have also been delivered to tumor cells as prodrug activating enzymesthroughantibodydirectedenzymeprodrugtherapy(ADEPT)andgenedirected enzyme prodrug therapy (GDEPT). In the above therapies, an exogenous enzyme is selectively delivered to the tumor site by genetic fusion or chemical conjugation to a tumorspecificantibodyorbyenzymegenedeliverysystems.Thedeliveredenzymeis responsiblefortheactivationoftheprodrugatthetumorsite.Severalenzyme/prodrug systemsareunderdevelopmentforADEPTandGDEPT.OnesuchexampleisnfsBgene product of Escherichia coli which is an oxygeninsensitive flavoprotein containing nitroreductase(NTR). 17

4 Advantages of targeted prodrug therapy

Tumortargetedprodrugtherapyhasseveraladvantagesoverconventionalchemotherapy.

Improvedselectivitytotumorcellsshoulddecreasesystemictoxicityoftheparentdrug toagreatextent.Prodrugscanbeadministeredinmuchhigherdosesthantheparent drugandcanbecontinuouslyandeffectivelyconvertedtotheparentdrugatthedesired siteofaction.Asaresult,theparentdrugconcentrationatthetumorsitecouldbemuch higher than that achieved via conventional chemotherapy and this effect is called as amplification effect. 18,19 In the targeted prodrug therapy, the cytotoxic agent could be released heterogeneously by cells having the activationmechanism.Uponactivationit notonlyaffectsthecellswithactivationmechanismbutalsoaffectscellssurrounding them which do not possess the activation mechanism. Such an effect is called as bystander effect. 20 Targetedprodrugtherapycouldleadtomuchimproved therapeutic indexofexistinganticanceragents. 21

Cyclophosphamide as a prodrug for cancer

Cyclophosphamide was first discovered about forty years ago and is one of the most successfulanticancerdrugsdevelopedoverthelastfewdecadesandiseffectiveagainsta varietyofhumancancers. Cyclophosphamideiseffectiveagainstbothcyclingandnon cycling cells and hence is one of the few drugs effective against slowgrowing solid tumorslikeprostatecancer. 22

5 Mechanism of action of cyclophosphamide

Cyclophosphamide is activated by cytochrome P450 (CYP450) enzyme in the liver followedbythereleaseofactivatedphosphoramidemustardandacrolein. 2326Asshown inscheme1,CYP450convertscyclophosphamide(1) to4hydroxycyclophosphamide(2) which undergoes ring opening to form aldophosphoramide (3) which undergoes base catalyzed βelimination to form phosphoramide mustard (5) and acrolein (4).

Phosphoramide mustard is the final alkylating agent responsible for crosslinking the interstrandedDNA. 27,28Acrolein( 4)ishighlycytotoxictoculturedtumorcellsbutisnot responsible for the cytotoxicity of cyclophosphamide. 29,30 It is in fact responsible for hemorrhagic cystitis which is a life threatening side effect associated with cyclophosphamide.

HO O BH3 NH NH H O O NH2 CYP450 O P P H P Liver N(CH2CH2Cl)2 N(CH2CH2Cl)2 O O O N(CH2CH2Cl)2 Cyclophosphamide (CPA) 4-Hydroxyl Cyclophosphamide 3 1 (4-OH-CP) 2

H2NO P O O N(CH2CH2Cl)2 H Acrolein Phosphoramide Mustard 4 5 Scheme 1.Mechanismofactionofcyclophosphamide

6 Analogues of cyclophosphamide

The interest in developing more selective cyclophosphamide type drugs led to the discoveryofmanycyclicandacyclicprodrugsincorporatingavariety of tumorspecific activation mechanisms that distinguish malignant cells from normal cells. Based on the finding, that pH at the tumor site is decreased due to aerobic glycolysis, Tietze’s group synthesized and tested an acidsensitive prodrug 2 hexenopyranoside of aldophosphoramide. This compound was found to release aldophosphoramideaftera24to48hexposuretopH6.2medium.Thisdevelopment was encouraging but the exposure time required for the activation of drug was excessive. 31 Borchandhisteamreportedthedesignandsynthesis of hypoxiaselective nitroheterocyclic.Theyalsoreportedthesynthesisofseveralseriesof phosphoramidateprodrugssuchasnapthoquinoneseries,benzimidazolequinoneseries, 32

2substituted and 3substituted indolequinone series. The above series of compounds targetDTdiaphorase(DTD),anenzymeoverexpressedinsometumors. 33,34

Our efforts were focused on the design of phosphoramide mustard analogues incorporating two types of tumorspecific activation mechanisms; one is the reductive activation mechanism by Escherichia coli nitroreductase and second is the proteolytic activationmechanismbyprostatespecificantigen(PSA)inprostatecancercells.

7 II. Prodrugs activated by Escherichia coli nitroreductase

E. coli Nitroreductase (NTR) has been proposed as a prodrug converting enzyme in

ADEPTandGDEPT.NTRisaflavinmononucleotidecontainingenzyme.Itiscapable ofreducingavarietyofaromaticnitrogroupstotheircorrespondinghydroxylaminesin the presence of cofactor NADH or NADPH. 35,36 Reduction of nitro group to hydroxylamineoramineinitiatesaverylargeelectronicchangeandprovidesanefficient

“switch”thatcanbeusedtotriggercytotoxicity.Asshowninscheme2,37nitrogroupis a strong electron withdrawing group (Hammett σ p = 0.78) and reduces the oxidation potentialofthephosphorinaneringsystemtowardhepaticCYP450oxidation.Thenitro group of nitroaromatics 6 undergoes a 4electron reduction to form the corresponding hydroxylamine 9 (Hammett σ p = 0.34) or a 6electron reduction to form the correspondingamine 10(Hammettσ p=0.66).Afterthismassiveelectronic“switch”in a single metabolic step (∆σp =1.12and1.44),thecytotoxicportionintheprodrug is turnedonandexertsitscytotoxiceffect. 38Inscheme2,thefirstreductionstepproducing the nitroradical anion 7 may be easily back scavenged by oxygen to form the parent compound in normal cells whereas the same step is responsible for the selective cytotoxicityofnitroaromaticprodrugsagainsthypoxictumorcells. 39

NO NO2 NO2 NHOH NH2 - - 1 e 1 e- 2 e 2 e-

R R R R R 6 7 8 9 10

Scheme 2. Reduction of nitroaromatics to hydroxylamines and amines 8 Dinitroaziridinylbenzamides,dinitrobenzamidemustards,4nitrobenzylcarbamates, and nitroindolines(Figure1)arethefourclassesofprodrugs that have been described for activationbyNTR.Of theabovefour classes,thefirsttwoareconsideredtobemost promisingwhenusedinconjunctionwithNTR. 37,40,41

Dinitroaziridinylbenzamide CB1954 ( 11 ) is currently in phase II clinical trials in conjunctionwithvirallydeliveredNTRenzyme.Ithasbeenreportedtohave>1000× selectivityincelllinestransfectedwithNTR, 35,42 andpotent,longlastingtumorgrowth inhibition. CB1954 demonstrated bystander effect in a mouse xenograft model with

NTRtransfectedtumors. 43

DinitrobenzamideSN23862(12 ),amustardanalogofCB1954( 11 )israpidlyreducedby

NTRandisnotreducedbymammalianDTDandhencehasenhancedtumorselectivity.

Ithasbeenreportedtohave63foldselectivity,anditsbromomustardanalogue2500 foldselectivitytowardsNTRtransfectedcelllines. 44,45

Nitrobenzylcarbamate 13isausefulprodrugformtoincorporateanumberofcytotoxic aminessuchasanilinemustards,enediynes,andanticancerantibioticslikedoxorubicin, mitomycinCandactinomycinD.Theseprodrugsreleasetheirparentcytotoxicamine followingexposuretoNTRinthepresenceofNADHorNADPHcofactor. 41

9

OMe OMe NO2 NO2 NO2 Cl CONH2 CONH2 OMe NH N O2N O2N N N O O Drug Cl Cl O N NO2 H 11 12 13 14

Figure 1. Prodrugs for activation by E. coli nitroreductase (NTR)

Duocarmycinanalogscontainnitroindolinemoiety 14intheirstructure,whichactsasa substrate for NTR. These compounds bind in the minor groove of DNA and form adductsbyalkylation. 46

Our group has designed and synthesized a novel and superior class of nitroaryl phosphoramides (Figure 2) as potential prodrugs for nitroreductasemediated enzyme prodrugtherapy.AllanalogueswerefoundtobestableinphosphatebufferatpH7.4and

37°Candwereallgoodsubstratesof E. coli nitroreductasewithhalflivesbetween2.9 and11.9min.ItwasinferredfromSARstudiesthat,onlytheanalogueswithabenzylic oxygen para to the nitro group showed significant selective cytotoxicity in NTR expressingcells.Theseresultssuggestthatnotonlygoodsubstrateactivitybutalsothe benzylicoxygenisessentialforthereductiveactivationof4nitrobenzylphosphoramide mustard analogues by E. coli nitroreductase. The low IC 50 andthehighselectivityof someoftheanalogues in E. coli nitroreductaseexpressingcellsindicatedtheirpotential to become a drug candidate in enzymeprodrug therapy. These 10 nitrobenzylphosphoramide mustards were found to have low cytotoxicity before reductionandwereconvertedtophosphoramidemustard or like reactive species upon bioreduction.Thespeciesreleaseduponbioreductionwereresponsibleforcrosslinking

DNAstrandsandthusleadingtocytotoxicity.Itwasalsoconfirmedthattheseanalogues exhibitexcellentbystandereffectswhichwillbecriticaltothesuccessofanyGDEPT.4

Nitrobenzylphosphoramidemustard( 17 )showedthebestbystandereffectwithaTE 50 value of 3.3% compared to 4.5% for 5aziridinyl2,4dinitrobenzamide. This result suggestedthathydroxylamineintermediatecouldpenetratethroughcellularmembranes and deliver the cytotoxic phosphoramide mustard to neighboring tumor cells. The excellentbiologicalactivityoftheseanaloguescorrelatedwellwiththesubstrateactivity for E. coli nitroreductase and the expected high cytotoxicity of the reactive species releaseduponreduction. 6,47Ofalltheanaloguestheacyclic4nitrobenzylphosphoramide mustard( 17 ) wasfoundtobethebestcytotoxicagenttowardsnitroreductaseexpressing

SKOV3andV79cellsexhibiting5,600to170,000foldselectivityandanIC 50 aslowas

0.4nM.Oneofourobjectivesinthisprojectistomakefurtherstructuralmodifications toacyclicnitroarylphosphoramidemustardprodrugsandtofurtherimprovetheirwater solubility while maintaining high stability and selectivity. For this we designed and synthesized a new analogue 18 with pyridine moiety in the structure which would modulatetheelectrondensityduetoitselectronwithdrawingnature.Thecompound18 is proposed to have the same mechanism of action as 4nitrobenzyl phosphoramide mustard( 17, Scheme3).Thenitrogeninthepyridineisalsoexpectedtoincreasethe polarity and hence the water solubility of the compound and help in increasing the bioavailability. We are trying to achieve a good balance between the stability of the 11 compound prior to activation and its membrane permeability/ drug release/ activation kineticsafterenzymecatalysis.

NO2

NH P O NH O O N(CH2CH2Cl)2 P O N(CH2CH2Cl)2 O2N 15 16

H N 2 O H N P 2 O O N P N(CH2CH2Cl)2 O N(CH2CH2Cl)2 O2N O2N 17 18

Figure 2. 4Nitroarylphosphoramidemustardanalogues

H N H N 2 O 2 O X P X P NTR O O N(CH2CH2Cl)2 N(CH2CH2Cl)2 HO N O2N H

17 X = CH 18 X = N X H2N O + P HO O N N(CH2CH2Cl)2 H 5

Scheme 3.Mechanismofactivationof4nitroarylmethylphosphoramidemustard(17 &

18 )

12 III. Efficient amidation from selenocarboxylate and aromatic azides

We wanted to replace the nitro group in 4nitroarylmethyl phosphoramide mustard analogueswithpeptideamidogrouptoobtainprodrugsthatcanbeactivatedbyspecific endogenousproteasesreleasingphosphoramidemustardintothetumorsite.Wedesigned and synthesized 19 to be a substrate for PSA and selectively release phosphoramide mustard in prostate cancer cells. Upon cleavage by PSA at the glutamine site, the aromatic amino group in the released species is free and undergoes spontaneous 1,6 elimination,releasingthecytotoxicphosphoramidemustard.

AccordingtotheretrosyntheticpathwayshowninScheme 4, 22 was obtained via an amidationreaction.Amidebondsareusuallyformedthroughthereactionofanactivated carboxylicacidwithafreeamine. 48,49 However,notallfunctionalgroupsarecompatible withthepresenceofafreeamine.Itisbelieved 50 thatreductionofnitroandazidogroups

(compounds 24 and 25 ,Scheme5)failedtogivethedesiredamideproduct 28 .Instead the amine intermediate 26 underwent1,6eliminationtoformquinoniminemethide 27 followedbypolymerization.Whereas,directamidationofazide 25 withoutreductionto theamineintermediate 26 ,resultedintheformationofthedesiredamideproduct 28 .In order to overcome the problem of 1,6elimination during the synthesis of peptide conjugated phosphoramide mustard analogue, we had to develop a new amidation reactionwithouttheuseofunstablebasicnucleophilicamineintermediates.

13

O H2N O HO N P O CH3 O O O N(CH CH Cl) H H 2 2 2 O N N N N N N H H H O O OH HO 19 CONH2

H N O N 2 P O N(CH2CH2Cl)2 Fmglutar yl-Hyp-Ala-Ser-Chg-OH + H-Gln N 20 H 21

H N O N 2 P O N(CH2CH2Cl)2 TFAGln N H 22 H N O N 2 P O N(CH2CH2Cl)2 TFA-Gln-OH + N3 23 Scheme 4. Retrosynthesisofpeptideconjugatedphosphoramidemustard

H2N O H2N O P P O N(CH2CH2Cl)2 O N(CH2CH2Cl)2 polymerized [H] 1,6- elimination product H N O2N R 2 R HN R 24 26 27 [H] X Conventional amidation O O H2N H2N P P Direct amidation O O N(CH CH Cl) O N(CH2CH2Cl)2 2 2 2 R' N N3 R H R 25 28

Scheme 5.Directamidationofazidesavoids1,6eliminationandformsthedesiredamide product. 14 Ithasbeenreportedthatazideswhichareneitherbasicnornucleophilicandcanbeeasily transformedintovariousnitrogencontainingfunctionalgroupshavebeenusedtodirectly formamidebonds.Theamidationofacarboxylicacidwithanazideinthepresenceofa trialkyl, 5153thethioacid/azideamidation, 5456andtheselenocarboxylate/azide amidation 49,57 andStaudingertypeligation arefewexamples. 5863

ThemodifiedStaudingerligation, 62,63involvestheformationofanamidebondstarting fromanazideandaphosphinelinkedester/thioesterintheformofR'COOCn=1,2 PR 2or

R'COSCn=1,2 PR 2. The reaction involves a 5 or 6membered intramolecular transacylationofaniminophosphorane, 64followedbyhydrolysisoftheintermediateto form an amide. Staudinger method has been successfully used in Nglycosylation, 6570 peptideligation 7174andlactamization. 75

However,theStaudingerligationfavorsonlyaliphaticazides.Foraromaticazideswith electronwithdrawing substituents, the reactions are reported to be very slow and may alsofail. 76ThemajordrawbackofStaudingertypeligationisthatwhenthereactionfails or is incomplete, hydrolysis of the iminophosphorane intermediate occurs in aqueous mediumorduringaqueousworkupleadingtotheformationofthecorrespondingamine thuseliminatingthepossibilityofrecoveringtheazidestartingmaterial. 50

Justandcoworkerswerethefirstonestoreportthereactionofathioacidwithanorganic azidetogivethecorrespondingamide. 54Itwasproposedasaconventionalnucleophilic acylation reaction between thio acid and the amine formed through a rapid in situ 15 reductionoftheazide.Hydrogensulfideregeneratedduringtheacylationreactionwas responsibleforthereductionoftheazide. 55

Recently, Williams’ group presented an explanation that excluded the formation of an amine as the reactive intermediate and revised the mechanism to proceed via the formationofathiatriazolineintermediatefollowedbyaretro[3+2]cycloadditiontoform the desired amide product. 56 Presence of bases such as 2,6lutidine accelerated the reaction. Depending upon the electronic properties of the azide used, two different mechanismshavebeenproposedfortheformationofthethiatriazolineintermediate.For electrondeficient azides, a linear adduct is formed via the bimolecular union of the terminalnitrogenoftheazide 30withsulfurofthethiocarboxylate 29 andcyclizationof thisadduct 31givesathiatriazoline 32(Scheme6).Forrelativelyelectronrichazides, the thiatriazoline 38 is formed via an anionaccelerated [3+2] cycloaddition reaction betweenthethioacid 35andtheazide 36(Scheme7). 56Thereactionisfastandselective andhenceisconsideredtobeagoodsyntheticmethod.

The thio acid/azide reaction works well if the azide is electron deficient. However, stericallyhinderedandelectronrichazidesrequirehighconcentrationofreactants,reflux temperaturesandseveralhoursinordertoacheivegoodconversionyields. 56

16

H O O H HO S N + NN N EWG R S R S N N N R N 29 30 31 N 32 EWG EWG

OH O EWG EWG + N2 + S R N R N H 33 34 EWG= Electron withdrawing group

Scheme 6. Mechanism of Williams' thio acid/azide amidation for electrondeficient azide.56

S S N O S N H HO + NN N EDG R O N R N R N N 35 36 37 EDG 38 EDG

OH O EDG EDG + N2 + S R N R N 39 H 40 EDG= Electron donating group

Scheme 7. Mechanism of Williams' thio acid/azide amidation for electronrich azide.56

Itwasofinteresttoexploretheselenocarboxylate/azideamidationreactioninwhichthe selenocarboxylate generated in situ has been reported to be a good reagent for the introductionofseleniumintoorganiccompoundsandforefficientamidation. 57 Selenium andsulfursharesimilarchemicalpropertiesbutastheseleniumatomislargerandmore polarizable,itismorenucleophilicthansulfur.Ithasbeenreportedthatselenophenolate 17 reacts ~7 times faster than thiophenolate in an S N2 displacement reaction with methyl iodide.

Selenocarboxylates have greater reactivity as compared to thio acids. The enhanced reactivityofselenocarboxylateswouldacceleratethereaction,shortenthereactiontime, and potentially lower the reaction temperature. For example, a sterically hindered 2 azidopiperidine derivative was entirely unreactive towards thioacetic acid in refluxing chloroformafter12hinthepresenceof2,6lutidine,whileitreactedwithselenoacetic acid to form the corresponding acetamide in 75% yield under the same reaction conditions. 57

Selenocarboxylicacidsarereadilyoxidizedtodiacyldiselenidesuponexposuretoairand areunstabletoheat.However,thecorrespondingalkalimetalandpiperidiniumsaltsof aromatic selenocarboxylates are relatively stable. 77,78 For example, potassium 4 methylbenzeneselenocarboxylateremainedunchangedwhenitwasexposedtoairfor5h.

Mostaromaticselenocarboxylatesaltscanbestoredat–17°Cforatleastonemonth underoxygenfreeconditions. 79

Selenocarboxylates can be synthesized by the treatment of trimethylsilyl selenocarboxylateswithalkalimetalfluorides, 77,78 thereactionofcarboxylicacidswith

Woollin’sreagentinrefluxingtoluene, 79thereactionofacylchlorideswithalkalimetal selenides, 80 andthereactionofdiacylselenideswithalkalimetalhydroxide. 81 However, the above methods have disadvantages. For example, trimethylsilyl selenocarboxylic 18 esters are highly moisture sensitive, and high reaction temperatures used in case of woolin’s reagent would cause racemization of chiral centers in amino acids and peptides. 50

For our initial efforts, 49 we used potassium selenocarboxylates to react with azides because alkali metal salts of selenocarboxylates were known to be relatively stable. 82

However, to better solubilize potassium selenocarboxylates and potassium methoxide used to prepare selenocarboxylates, 83 we used DMSO as a cosolvent for the reaction.

The mild oxidizing property of DMSO accelerated the decomposition of selenocarboxylates,whichadverselyaffectedtheyieldofproductformation.Usingan

HPLCassay,wefoundthatthehalflifeofselenocarboxylatewasonly25minunderthe mixed solvent conditions of DMSO and ethyl acetate at room temperature. 49 With electrondeficientazidesandexcess(2eq)potassiumselenocarboxylate,thereactionwas fast and the short halflife of selenocarboxylate did not present a problem. When electronrichazideswereused,thereactionsunderthesameconditionsrequiredlonger timetocomplete.Thepoorstabilityofselenocarboxylateunderthesereactionconditions ledtomuchlowerconversionyields.Ouraimwastoovercometheaboveproblemsand develop a new set of conditions to increase the solubility and stability of selenocarboxylatesandachievegoodconversionyields.Thenewamidationmethodwas criticalforthesuccessfulsynthesisofthepeptideconjugatedanalogue.

19 IV. Prodrugs activated by prostate-specific antigen (PSA)

ProstatecanceristhemostcommontypeofcancerinmenintheUnitedStates,andis responsibleformoremaledeathsthananyothercancer, except lung cancer. Prostate cancer can be treated effectively when the cancer is confined to prostate gland. 84

However, there is no effective treatment when it has reached the stage of metastasis.

Surgery, radiation therapy, hormonal therapy, occasionally chemotherapy, or combinationsoftheseareemployedtotreatprostatecancer.

Hormonaltherapycanbeemployedforinitialstabilizationorregressionofthedisease.

However, within a couple of years most patients develop androgenrefractory prostate cancerwithalifeexpectancyofaboutthreeyears.85,86 Recentlydevelopedchemotherapy regimentsofferimprovedsurvivaltomenwithadvancedprostatecancer. 87,88Microtubule inhibitors like estramustine phosphate, taxane/taxoids showed significant decrease in serum PSA levels in patients with advanced androgenindependent prostate cancer.

Novelmethodsarebeingdevelopedtotargetcytotoxicagentsspecificallytotheprostate cancercellsthroughmechanismsspecifictoprostatecancercells,andtheuseofPSAasa prodrugconvertingenzymeisoneofthem. 89

Properties of prostate-specific antigen (PSA)

Prostatespecific antigen (PSA) is a 237aminoacid glycoprotein and a member of the kallikreinfamilyofserineproteaseswithbothantigenicandenzymaticactivity.PSAis selectively expressed in prostate tissues. It is a serological marker used in the early 20 detectionofprostatecancerandisusedtomonitorthetherapeuticresponseintreatingthe disease.ProstatecancerpatientshaveincreasedserumPSAlevelsduetocellularPSA

“leak” caused by the absence of a basement membrane that normally separates the prostateglandfromsurroundingstroma.Theabsenceofbasementmembraneleadsto invasivegrowthofthecancer. 90,91

OnlyPSApresentinprostatetissueisenzymaticallyactive.PSAleakedintotheblood stream forms stable inactive complexes with serum protease inhibitors such as α 1

5 antichymotrypsinandα 2macroglobulin.Theconcentrationoftheseinhibitorsis10 to

10 6foldshigherthanserumPSAlevelsleadingtothecompleteentrapmentofanyactive

PSAreleasedfromprostatetissue. 92ThePSAlevelsinbloodwerefoundtocorrelatewith thediseasestateofprostate.HigherbloodPSAlevelscouldrepresentmetastaticprostate cancer. 93PSAhasno kallikrein’strypsinlike activitybut it shows chymotrypticlike activity and prefers a glutamine residue at the P1 site, which is unique for an endopeptidase. 94

Duetotheprostatetissuespecificproduction,localizedactivity,inactivationbyserum proteaseinhibitorsinbloodandincreasedproductioninmalignantprostatecancercells,

PSAcouldbeusedasaneffectiveprodrugconvertingenzymefortumortargetedtherapy againstadvancedprostatecancer.

21 Peptide sequences specific for PSA cleavage

IssacsandcoworkersfromJohnHopkinsuniversityreportedtwopeptidesequences,H

SerLysLeuGln and H–HisSerSerLysLeuGln with good specificity for PSA.94

Theconjugatescontainingthesepeptidesequenceswerestableinhumanserumover24h and showed moderate PSA activity. However, they were not affected by extracellular proteases like chymotrypsin, trypsin, urokinase, plasmin, thrombin, hK1 and tissue plasminogen activator. The histidine containing hexapeptide has increased water solubilityandhasbeenusedtoconjugateseveralcytotoxicagentsaspotentialprodrugs forPSAactivation.

Garsky and coworkers from Merck designed and screened several short peptide sequences in order to couple doxorubicin conjugates for PSA activation. 95 These conjugates were selectively cleaved by PSA and showed selective cytotoxicity against

PSAexpressingLNCaPcells.Itwasfoundthattheheptapeptidedoxorubicinconjugate

41 (Figure 3) was the best substate for PSA with a half life of 10 min at an enzyme/substratemolarratioof1/100.However,ithadanunexpectedhypotensiveeffect associatedwithit.Newanaloguesweredevelopedtoovercomethissideeffect.Itwas observedthatthecappinggroupsintheseconjugatesplayedakeyroleintheproteolytic process. When the acetyl group of 42a was replaced by succinyl group the resulting conjugate 42bhadalongerhalflifeof55min.Whenreplacedby glutaryl group the resulting conjugate 42c had a halflife of 30 min with improved water solubility and hencewasusedforbiologicalassays.

22

OH O CH O O O H 3 H H H N N N N N N N Doxorubicin H H H O O O O OH

NH2 O NH2 41

OH O CH O O O R 3 H H H N N N N N N N Doxorubicin H H H O O O OH HO O NH2

42a R = CH3CO 42b R = HOOC(CH2)2CO 42c R = HOOC(CH2)3CO

Figure 3.PeptidesequencesspecificforPSAcleavage(indicatesthecleavagesite)

Prodrugs developed for activation by PSA

Severalcytotoxicagentshavebeendirectlycoupledtopeptidesanddemonstratedgood selectivityandcytotoxicityagainstprostatecancercells.Thesecompoundswereeasyto synthesizeandservedasgoodproofofconceptstudies.Preclinicalassaydataindicate thatsomeoftheseagentsshowedpromisingresultsin reducing circulating PSA levels andtumorweight.Thecytotoxicagentsusedwerenatural products like doxorubicin, vinblastineandthapsigargin.

23 Doxorubicin,atopoisomeraseIIinhibitorandaDNAintercalatingcytotoxicagenthas been used in the treatment of various cancers. 96 However, its cardiotoxicity and myelotoxicity limited its application. Consequently, doxorubicin prodrugs for tumor specificactivationandimprovedtherapeuticindexhavebeensought.

For example, the heptapeptide conjugate 43 (Figure 4) showed enhanced activity in prostate cancer cell lines containing active PSA andover90%hydrolysisupona72h exposure to PSAexpressing LNCaP cells. There was no significant systemic toxicity whenadministeredatfourtimesthe100%lethaldoxorubicinequivalentdose. 97

Anotherheptapeptidedoxorubicinconjugate 42c(Figure3)wasreportedtohaveover20 foldselectivecytotoxicityagainstPSAexpressingLNCaPcellsrelativetothenonPSA expressing DuPRO cells. It was metabolized to HLeuDox and doxorubicin in cell cultureassays. 98Uponintraperitonealadministration,thepeptideconjugatewasfoundto havelessercardiotoxiceffect,bodyweightlossanddeathrateofmicewhencomparedto thedirectinjectionofdoxorubicin.TheconjugatereducedtheserumPSAlevelsby95% and tumor weight by 87% at a dose below the maximum tolerated dose (MTD) of doxorubicinwhiledoxorubicinalonewasineffectiveatitsMTD.

24

O OH O OH

OH

O OH O H C 3 O HN N OH OH O O O O H H H N N N NH N N N N N H H H H O O O O O OH

O NH2 NH2 43

Figure 4.DoxorubicinconjugateforPSAactivation.

Thapsigargin (TG, 44 , Figure 5) is a natural product that inhibits the sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase (SERCA) pump and can induce apoptosis in both quiescent and proliferating cells existing in metastatic prostate cancer. 99101Uponsystemicadministration,TGcausessignificanthosttoxicityduetothe presenceofSERCApumpinalmostallcells.Thisledtothedevelopmentofprodrug12 aminododecanoylTG (12ADT, 45, Figure 5) conjugated to a heptapeptide. The conjugate 46showedover100foldhighercytotoxicityagainstPSAexpressingLNCaP cellsthanagainstnonPSAexpressingcells.Continuoussubcutaneousadministrationof theconjugateover40daysresultedinnearlycompletecessationoftumorgrowthwithout anysystemictoxicity.

25

OO

O O H O O R HO O HO O

O

44 (TG): R = CO(CH2)2CH3 45 (12ADT): R = H2N(CH2)10COO

OO HN N O O OH H O O O O H H H O O N N N N N N N NH O H H H N 11 HO O O O O O H OH O HO O

O NH2 O NH2

46

Figure 5.ChemicalstructuresofTG,12ADTandMuHisSerSerLysLeuGlnLeu

12ADT.

26

OH

N CH2CH3

H N H CO2CH3 N

CH2CH3 N H3CO O CH3 OH O OCH3 O O OH O CH3 O O HOOC H H O N N N N N N NH H H N O O H OH O HO OH O NH2 47

Figure 6.ChemicalstructureofglutarylHypSerSerGlnSerSerProdesacetyl

vinblastine.

Vinblastine,avincaalkaloidisanantimicrotubulecytotoxicagentindependentofp53 protein.Thismakesitadrugofchoicetotreatmetastaticprostatecancerwhichisalways characterizedbyp53mutations. 102Anoctapeptideconjugate 47(Figure6)ofdesacetyl vinblastinewasreportedtobeentirelystableinhumanplasmaover6handshowed10to

30foldselectivecytotoxicitytowardsPSAexpressingLNCaPcells.Itwaseffectivein reducingtheserumPSAlevelby99%andtumorweightby85%whenadministeredata dosejustbelowitsMTD.

The above mentioned prodrugs developed for activation by PSA have good activities againstprostatecancerbutalsohavethefollowingdisadvantages. Duetotheirbulky 27 structures,aspacerof13aminoacidsneedstobeinsertedbetweenthecytotoxicagent and the peptide. Else, the conjugates would not be efficiently cleaved by PSA. 102104

Thus, release of the parent drug from these conjugates requires post PSAcleavage processes mediated by nonspecific esterase or aminopeptidase to remove the linker.

These post PSAcleavage processes are not always efficient and can lead to the slow releaseofcytotoxicagentsincertainconjugates. 102AccordingtoLipinski“rulesof5”, ideallycompoundswithdruglikepropertiesshouldnothavemolecularweightsover500 daltons. However, the peptide conjugates mentioned above have very high molecular weights,overthousanddaltonswhichisundesirable. 105

Ourgroupusedcyclophosphamideasaprodrugleadbasedonitsadvantagesoverother cytotoxicagentslikedoxorubicin.Itssmallmolecularsize,lowmolecularweight,and well established structure activity relationship make it a lead molecule for the developmentofpeptideconjugatedprodrugsforactivationbyPSA.Ourgroupwasthe first to report 4aminocyclophosphamide (4NH 2CPA, 48) as a prodrug moiety of phosphoramide mustard. As shown in Scheme 8, our design takes advantage of the structuralsimilarityof4NH 2CPA( 48)to4hydroxycyclophosphamide( 2),whichisthe enzymaticC4oxidationproductofcyclophosphamideinliverandisresponsibleforthe release of cytotoxic phosphoramide mustard (49) from cyclophosphamide and the chemicalinstabilityofagemdiamine.

28

H H N N O Peptide P N(CH CH Cl) O 2 2 2

PSA

H O H N N O H2N H2N 2 P P NH2 N(CH2CH2Cl)2 N(CH2CH2Cl)2 O O H 4-NH2-CP H O H N O 48 2 2 P H HO N(CH2CH2Cl)2 HO N O 49 O O P O H2N N(CH2CH2Cl)2 P O N(CH CH Cl) H O 2 2 2 4-OH-CP 2

Scheme 8.Mechanismofactivationofpeptideconjugatedaminocyclophosphamides.

Chemically,4NH 2CPA( 48) isagemdiamine,whichisknownasamaskedaldehyde.

Monoacyl or monocarbamyl gemdiamines are labile to acid or basecatalyzed eliminationreactionswhileN,N’Diacylatedordicarbamylatedgemdiaminesarestable compounds widely used in “retroinverso” peptide mimetics. These characteristics of gemdiamines suggest the release of phosphoramide mustard (49) under physiological conditionsanditsstabilizationthroughpeptideconjugation. 6

Peptide-conjugated phosphoramide mustard prodrugs

Ournexteffortisfocusedtowardsthesynthesisof peptideconjugated phosphoramide mustardprodrugsforactivationbyPSA.PSAenzymeissensitivetostructuralfeatures

Cterminaltothecleavagesiteandhencewearedevelopingnewtracelesslinkersystems withstructuralflexibilitythatcouldaccommodateforthevariousstructuralrequirements of PSA enzyme. The linkers are designed to facilitate membrane permeation and 29 intracellularreleaseofthedruguponcleavagebythetargetenzyme.CleavageoftheN terminal substrate peptide will afford a free electrondonating/nucleophilic aromatic amine that canbe used as a trigger for subsequentdrug release. The amine is neutral under physiological pH and thus the linkerdrug conjugate is neutral and capable of permeating through the cellular membrane. Whereas,insidethetumorcellsthepHis likely to be acidic, this would promote the intracellular release of the cytotoxic phosphoramidemustardspecies.PhosphoramidemustardisacidicwithpK aaround0.5 andhencewillbecompletelyinonizedandtrappedinsidethetargettumorcells,leading tothedesiredantiproliferativeactivity.Thesmallsizeofphosphoramidemustardwill alsoprovidemoreroomfortheattachmentofpeptide and linker and further structural modifications to obtain prodrugs with “druglike” properties. It has already been establishedthatacyclic4nitrobenzylphosphoramidemustard( 17 )analogueisthebest cytotoxicagenttowardsnitroreductaseexpressingSKOV3andV79cellswith5,600to

170,000foldselectivity andan IC 50 aslowas0.4nMwithimprovedbystandereffect.

Hence,wethoughtreplacementofthenitrogroupinnitroarylphosphoramidemustard analogues,withpeptideamidogroupwouldyieldprodrugsthatcanbeactivatedbyPSA and release the cytotoxic phosphoramide mustard selectively to prostate cancer cells.

Alsowecantakeadvantageoftheelectrondeficientnatureofpyridinetostabilizethe conjugateandincreasetheselectivityoftheprodrugtoPSAproducingprostatecancer cells.Preliminarystudiesconductedinourlabsuggestedthatthepeptide glutarylHyp

AlaSerChgGlnsequencewasa goodsubstrateforPSAandhencewe usedthesame sequence for the new conjugate ( 19 ). For the preparation of the peptideconjugated analogue 19 ,wedevelopedanewamidationreactionusingselenocarboxylateandazides, 30 thusavoidingtheuseofunstablebasicnuclephilicamineintermediates.Theaimofour currentresearchistosynthesizeapeptideconjugatedphosphoramidemustardanalogue andobtainarightbalancebetweenthestabilityoftheconjugatepriortoactivationand the membrane permeability/drug release/activation kinetics after proteolytic cleavage.

Thecombinationofsitespecificactivationandtumortargetingofcancercellswouldlead to the development of a new generation of targeted activation and intracellular drug deliverysystemforthetreatmentofadvancedcancer.

Objectives

Thisthesishasthefollowingthreespecificobjectives,

Objective1.Tosynthesizeandevaluate5nitropyridyl2phosphoramidemustardasa substratefor E.coli nitroreductase.

Objective 2. To develop an efficient selenocarboxylate/azide amidation method that would avoid the use of unstable amine intermediates for the synthesis of peptide conjugatedphosphoramidemustardprodrugs.

Objective 3. To synthesize glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramidemustardandevaluateitschemicalstability,substrateactivityforPSAand antiproliferativeactivityagainstPSAexpressingprostatecancercelllines.

31 RESULTS AND DISCUSSION

I. Synthesis and evaluation of 5-nitropyridyl-2-methyl phosphoramide mustard (18)

A. Synthesis

Thesynthesisof5nitropyridyl2methylphosphoramidemustard( 18 )wasaccomplished in 7 steps starting from 2hydroxy5nitropyridine ( 50 ) as shown in Scheme 9. 2

(Trifluoromethanesulfonyl)oxy3nitropyridine ( 51 ) was prepared as trifluoromethanesulfonyl is a good leaving group. The synthesis was done in the presenceof1.1eqtriflicanhydrideand2.2eqtriethylamineinanhy.methylenechloride at–20 oC.106 Thereactionwascompletedin1handgavetheproductasapaleyellow solidin82%yield.

Treatment of 2(trifluoromethanesulfonyl)oxy3nitropyridine with 1.1 eq TBACN in refluxingtoluenewasattemptedtointroducethecyanogrouptodirectlyform 53 butthe reactionfailedtoyieldthedesiredproduct.Thefailureofthisreactioncanbeattributed to the hygroscopic nature of TBACN and the absorbed water reacted with the active triflate leading to its hydrolysis. As this reaction failed, we prepared 2bromo5 nitropyridine ( 46 ) by nucleophilic substitution reaction. 2

(Trifluoromethanesulfonyl)oxy3nitropyridine ( 51 ) was treated with 1.1 eq TBAB in refluxing toluene to introduce the bromo group. High temperature was employed to shortenthereactiontimeandaidinthesolubilityofTBAB.TBABwaschosenasthe sourceofbromideionasitiseasytohandleandlesshazardousthanotherreagents. 106

Thereactionwasverycleanandgavetheproductasawhitesolidin90%yield. 32

Triflic Anhydride (1.1 eq) N OH N SO3CF3 TBAB (1.1 eq) N Br Et3N (2.2 eq) anhy. Toluene anhy. CH2Cl2 O2N O N reflux, 12 h, (90%) O N -20 oC, 1 h, (82%) 2 2 50 51 52

CuCN (1.5 eq), KCN (1.0 eq) N CN N COOH anhy. DMF, 160oC, 2 h 6M HCl, reflux 3 h, (85%) O2N O2N 53 54

N COOMe DIBAL (3 eq) N Cat.H2SO4, MeOH OH anhy. THF reflux, 3 h, (92%) o O2N -78 C, 4 h, (40%) O2N 55 56

H2N O n-BuLi (1.1 eq) N P O N(CH2CH2Cl)2 Cl2OPN(CH2CH2Cl)2 (1.1 eq)

O2N NH3, -20 oC to -40 oC, 3 h 18 (31%)

Scheme 9.Synthesisof5nitropyridyl2methylphosphoramidemustard( 18 )

The next step was the nucleophilic displacement reaction in which the bromide was displacedby cyanide. 107 This was achievedby heating 2bromo5nitropyridine (52) in anhy.DMFinthepresenceof1.5eqCuCNand1.0eqKCNat160 oCfor2h.Theuse ofhightemperaturewasakeyparameterforthesuccessofthisreaction.Theworkupof thisreactionisveryimportant.Acidworkup wasavoided as it would generate toxic hydrogencyanide.Hence,weusedpotassiumphosphatebufferwhichwouldpreventthe formation of any hydrogen cyanide. 107 The precipitate formed during workup was extracted several times with ethyl acetate in order to recover the entire product. The product 53 was sufficiently pure and used for the next step without any further purification. 33 Thecyanogroupwasconvertedtoacidgroupbyacidhydrolysisusing6MHClsolution.

Thereactionwasconductedatrefluxtemperatureandcompletehydrolysiswasachieved inabout3handtheproduct 54precipitatedoutuponcooling. 107Theyieldafter2steps was85%.

Theacid 54wasconvertedintomethylester 55viaacidcatalyzedesterificationprocess.

Theesterificationwasrapidandcompleteinmethanolinthepresenceofcatalyticamount ofsulfuricacidunderrefluxconditionsgivingtheproductasayellowsolidin92%yield.

Themethylester 55wasreducedtothecorrespondingalcohol 56using3eq.ofDIBAL as a reducing agent. The reaction wasperformed inanhydrousTHFandat–78 oC to preventthereductionofnitrogroup.Theyieldaftercolumnpurificationwas40%.

Forthesynthesisof 18,nBuLiwasusedtodeprotonatethealcohol 56andtothisbis(2 chloroethyl)phosphoramidicdichloridewasadded.Thereactionwascarriedoutat–40 oCfor3handthengaswasbubbledfor15mintoformthedesiredproductin

31%yieldafterpurification. 47Theoverallyieldofthesynthesisafter7stepswas7%.

34 B. Antiproliferative assay

The5nitropyridyl2methylphosphoramidemustard(18 )synthesizedwasevaluatedfor itsantiproliferativeactionagainstcelllinesexpressing E. coli nitroreductase(T116)or humanquinoneoxidoreductaseenzymeNQO1(hDT7).ThecellswereChinesehamster

V79 cells that were transfected with a bicistronic vector encoding for the E. coli nitroreductase or the human quinone oxidoreductase protein and puromycin resistance proteinastheselectivemarker.V79cellstransfectedwithonlythevector(F179)were used as the controls for the assay. CB1954 (11 ), and 4nitrobenzyl phosphoramide mustard( 17 )wereusedasacontrolfortheexperiment.Thecellswereexposedfor72h tothetestcompound,CB1954and,4nitrobenzylphosphoramidemustard( 17 ).Fromthe resultsobtained(Table1),itwasfoundthatthenewanaloguehadanIC 50 of74.7 M towardsthecontrolF179cellsandhadanIC 50 valueof9nMand8300foldselectivity towards nitroreductase expressing T116 cells. When compared to 4nitrobenzyl phosphoramide mustard ( 17 ),47 the test compound had lower cytotoxicity and lower selectivity. However, when compared to the CB1954, the test compound had higher cytotoxicitytowardsNTRexpressingcells.Theseresultssuggestthat5nitropyridyl2 methyl phosphoramide mustard (18 ) is activated by E. coli nitroreductase to release phosphoramide mustard and exhibited highly selective cytotoxicity to E. coli nitroreductaseexpressingcells.

35 Table 1.AntiproliferativeassayofCB1954,4nitrophenylphosphoramidemustard( 17 ) and5nitropyridyl2methylphosphoramidemustard( 18 )

a b IC 50 Ratio Compound F179(NTR) T116(NTR+) (F179/T116) H N O N 2 P O N(CH CH Cl) 2 2 2 75 0.009 8,300 O2N 18 NO2 CONH2 254 0.033 7,700 O2N N CB1954 H N O 2 P O N(CH CH Cl) 2 2 2 67 0.0004 170,000 O2N 17 a IC 50 values are the concentration required to reduce the cell number to 50% of the control. b RatioofIC 50 valuesasanindicationofactivationby E.coli nitroreductase. 36 II. Efficient amidation from selenocarboxylate and aromatic azides

Forthesynthesisofpeptideconjugatedphosphoramidemustardanalogue,wedeveloped anewamidationmethodthatwouldavoidthebasic,nucleophilicamineintermediates.

Selenocarboxylates have greater reactivity as compared to thio acids. The enhanced reactivityofselenocarboxylateswouldacceleratethereaction,shortenthereactiontime, andpotentiallylowerthereactiontemperature.Hencewewereinterestedindeveloping theselenocarboxylate/azideamidationmethodwhichwouldpreventthe in situ reduction oftheazidogroupandformthedesiredamidebond.

For our initial efforts, 49 we used potassium selenocarboxylates to react with azides because alkali metal salts of selenocarboxylates were known to be relatively stable. 82

However, to better solubilize potassium selenocarboxylates and potassium methoxide usedtopreparetheselenocarboxylates, 83 weusedDMSOasacosolventforthereaction.

ThemildoxidizingpropertyofDMSOaccelerateddecompositionofselenocarboxylates, which adversely affected the yield of product formation. Using an HPLC assay, we found that the halflife of selenocarboxylate was only25minunderthemixedsolvent conditions of DMSO and ethyl acetate at room temperature. 49 With electrondeficient azidesandexcess(2eq)potassiumselenocarboxylate,thereactionwasfastandtheshort halflifeofselenocarboxylatedidnotpresentaproblem.Whenelectronrichazideswere used,thereactionsunderthesameconditionsrequiredlongertimetocomplete.Thepoor stability of selenocarboxylate under these reaction conditions led to much lower conversion yields. Our efforts then focused on the use of organic amine salts of selenocarboxylatesand onfindingconditionstoimprovethesolubility andstabilityof 37 selenocarboxylatesandtoincreasethereactionyieldswithelectronrichazides.Weused diisopropylethylammonium benzeneselenocarboxylate (60 ) as a model substrate and monitoreditssubsequentdirectamidationwithazidesinamuchimprovedsetofreaction conditions.

Inourpreviousmethod, 49 diacylselenideswereusedtoprepareselenocarboxylates.Here, we used a diacyl diselenide instead, as diacyl diselenides are more stable than diacyl selenides.AsshowninScheme10,dibenzoyldiselenide( 58)waspreparedfrombenzoyl chloride ( 57) upon treatment with LiAlHSeH in THF and subsequent oxidation with iodineandpotassiumiodide. 108,109 Thedibenzoyldiselenidewaseasilypurifiedbysilica gelflashcolumnchromatographyandcanbestoredforseveralmonthsat20°Cwithout significant decomposition. To prepare selenocarboxylate, dibenzoyl diselenide was dissolvedinacetonitrileandthentreatedunderargonwith1eqofdiisopropylethylamine

(DIEA)and1eqofpiperidinetoformtheseleniummetal,thestable Nbenzoylpiperidine

(59) and diisopropylethylammonium benzeneselenocarboxylate (60 ). The DIEA benzeneselenocarboxylate (60 ) was used directly without purification to react with variousazidestoformamideproducts 61 inaonepotprocess.Sinceazidesdonotreact withdiacyldiselenide,theycanbedissolvedtogetherpriortotheadditionofDIEAand piperidinetosimplifyoperationandtoimprovetheproductyields.Becauseofincreased stability of DIEA benzeneselenocarboxylate as discussed later, we were also able to decreasetheamountofselenocarboxylatefromtheearlier2eqexcesstoonly1.2eqfor electrondeficientazides.

38

O O O 1. LiAlHSeH Cl 2. I2/KI Se2 THF 57 58 HN + DIEA CH3CN O

N Se + 59 O O H R N -R N 3 Se N H

61 60

Scheme10. In situ generation of benzeneselenocarboxylate and subsequent amidation withazides Weselected4nitrophenylazide(62 ),oneofthemostelectrondeficientaromaticazides thatreactedquicklywithselenocarboxylate,toexploredifferentsolventsystemsforthe amidationreaction.AsshowninTable2,aqueousorganicsolventcontaining50%water

(entries13)gavegoodyieldsoftheamideproductsuggestingthattheamidationreaction doesnotrequireanhydrousconditions.However,thepresenceoftoomuchwaterwould adverselyaffectthesolubilityoftheorganicazidesinthereactionmedium,resultingin heterogeneity of the reaction mixture. Even for electrondeficient 4nitrophenyl azide

(58),ittook3hforthereactiontocompletein50%aqueousmethanolandisopropanol

(entries 1 and 2, Table 2). When acetonitrile was used, the solubility of the azide improvedandthereactionwascompletewithin1hin50%acetonitrile(entry3,Table2).

Thesamereaction,ifruninneatacetonitrile,tooklessthan30mintocomplete(entry4,

39 Table 2. Effectofsolventsonreactiontimeandyield a O NO2 Ph NO2 O DIEA Se + 2 piperidine Ph Ph N N3 25°C H O 58 62 63 Entry Solventsystem Reactiontime(h) Yield(%) b

1 CH 3OH/H 2O(1:1,v/v) 3 75

2 (CH 3)2CH 2OH/H 2O(1:1,v/v) 3 73

3 CH 3CN/H 2O(1:1,v/v) 1 83

4 CH 3CN(neat) 0.5 95

5 CHCl 3/CH 3OH(1:1,v/v) 2 78 aGeneralconditions:4Nitrophenylazide 62 (0.2mmol),dibenzoyldiselenide 58 (0.24 mmol),DIEA(0.24mmol),andpiperidine(0.24mmol)inthegivensolventsystemat roomtemperature b Isolatedyield(%) Table 2). Mixed solvents of chloroform and methanol slowed down the amidation reactionandloweredtheyield(entry5,Table2).Hence,neatacetonitrilewasselected as the solvent of choice for the amidation reaction.

ThestabilityofDIEAbenzeneselenocarboxylateinacetonitrilewasmeasuredusingan

HPLCassayviathereactionofselenocarboxylatewith ptoluenesulfonylazide(69),the fastestamidationreactioninTable3.WhenDIEAbenzeneselenocarboxylate( 60)was incubatedwith2eqof ptoluenesulfonylazide( 69)inacetonitrileatroomtemperatureor

55°C,completeandquantitativeamidationwasachievedinlessthan5minasmonitored byHPLC.TomonitorthestabilityofDIEAbenzeneselenocarboxylate ( 60 ), dibenzoyl diselenide ( 58) was mixed with 1.2 eq of DIEA and 1.2 eq of piperidine at room temperatureunderargon.TheDIEAbenzeneselenocarboxylateformedwasthenallowed 40 to stand at room temperature or at 55 °C and aliquots were combined with 2 eq of ptoluenesulfonylazide( 69).Theamideproduct, N(ptoluenesulfonyl)benzamide( 84), wasanalyzedtodeterminetheamountofDIEAbenzeneselenocarboxylateremainedin solution.Figure8showsthestabilityofDIEAbenzeneselenocarboxylateat25°Cand55

°C.ThehalflifeofDIEAbenzeneselenocarboxylatewasfoundtobe11.3hat25°C.

Thisisanimprovementof27timesinstabilityifcomparedtothehalflifeof25min underthepreviousconditionswhenDMSOwasusedasacosolvent. 49 Evenwhenthe temperaturewasraisedto55°C,thehalflifeoftheselenocarboxylatewas1.4hunder ourpresentconditions.

1.0

0.8

0.6

0.4 % product %formed product

0.2

0.0 0 10 20 30 40 50

Time (h) Figure 7. StabilityofDIEAbenzeneselenocarboxylateat25°C(●)and55°C(▲)as monitoredbyconversiontoN(ptoluenesulfonyl)benzamide( 84 )inanHPLC assay. 41 AfterweconfirmedtheincreasedstabilityofDIEAbenzeneselenocarboxylateunderour newreactionconditions,avarietyofazides( 62 , 6478)wereusedtoexploretheeffectof thisimprovedstabilityontheamidationreaction.Forelectrondeficientazides,wefound as shown in Table 3 that using 1.2 eq of selenocarboxylate were sufficient to give excellent conversion rates to the corresponding amides with isolated yields between

87%96%.Forelectronrichazidesthatarelessreactive,2eqofselenocarboxylateand mild heating were used to obtain good yields based on azides. The position of substitutiononthephenylazidealsoaffectstherateofamidation.Whenthenitrogroup was in the para position(entry1,Table3),thereactionwascompletewithin30min.

When the nitro group was moved to the ortho position, the reaction was slower and required1htocomplete(entry2,Table3),suggestingthepresenceofstericeffectsin addition to the electronic effects on the amidation reaction. Since DIEA selenocarboxylateismorestableinacetonitrilethanthecorrespondingpotassiumsaltin the previous DMSOcontaining solvent system, we were able to raise the reaction temperatureto55°Ctofurtherspeeduptheamidationreactionsforlessreactiveazides.

Thephenylazideand pmethoxyphenylazidegaveamidationyieldsofonly25%and7%, respectivelyintheDMSOcontainingsolventsystem.49 Underournewconditions,the sameazidesgaveamuchimprovedyieldof81%and65%,respectively(entries10and

11,Table3).

The effect of fluoro substitution on aromatic azide is also interesting. Electron withdrawinggroupsareexpectedtostabilizethetransitionstatethroughdelocalizationof thenegativechargeonthenitrogen,andthusfacilitateamidation. 49 Fluorinesubstitution 42 atthe meta positionasincompound 76improvedtheamidationyieldfrom56%to78%

(entries13 vs 14,Table3).However,whenfluorosubstitutionwasmovedtothe ortho position,theyieldofthecorrespondingamidewasreducedtoonly37%(entry15,Table

3). This was surprising, but could be explained by the different electronic effects of fluoro substitution at the meta and ortho/para positions. Fluorine has electron withdrawing inductive effects (σ I = 0.50) at the meta position and has both electron withdrawing inductive and electrondonating resonance effects at the ortho/para

110 positions (σ R° = 0.31). Apparently due to the electrondonating resonance effect of fluoro substituent in the ortho position, delocalization of the negative charge on the nitrogen in the transition state was probably hindered, thereby lowering the reaction yield. 49

Directlyintroducingelectronwithdrawinggroupsadjacenttoazidosuchassulfonyland phosphorylgaveexcellentyieldsof Nacylsulfonamide 85and Nacylphosphoramide 86 withonly1.2eqofselenocarboxylate(entries7and8,Table3).Reactionofsulfonyl azidewithselenocarboxylatewasthefastestreactionwithnearquantitativeyield(entry

7,Table3).Acylazidesuchasbenzoylazide(71 )gavepoorer yield.With2eqof selenocarboxylate, the isolated yield was only 51% at 55°C. This was due to the instabilityoftheacylazideitselfthatledtoasidereaction,Curtiusrearrangement,during the amidation process. The Curtius rearrangement is the thermal decomposition of carboxylicazidestoproduceanisocyanate.

O heat RN O R N3 -N2

Scheme 11.Curtiusrearrangement 43 Consistentwiththemechanismproposed, 49 thereactioniscompatiblewiththepresence of free amines and alcohols (entries 1215, Table 3). The formation of

4benzoylaminobenzylacetate(93 )from4azidobenzylacetate( 78,entry 16,Table3) indicatedtheformationofamidewithoutthepriorreductionofazidetoitscorresponding amineaswereportedpreviously. 49

At the same time other selenocarboxylate/azide amidation conditions were also being developedinourlab.Afacileonepotprocedureforthecouplingofcarboxylicacidand azide via selenocarboxylate and selenatriazoline had been developed and successfully applied to the coupling of amino acids and peptides with azides. The halflife of benzeneselenocarboxylatewasfoundtobe16hand10hinTHFat25°Cand55°C, respectively. This new onepot procedure avoided the waste of the carboxylate equivalent when a diacyl diselenide or diacyl selenide. Significantly improved yields were also achieved for the less reactive azides because of the dramatically increased stabilityofselenocarboxylatesandtheprocedurewaseasytohandle. 50 Hence weused thisonepotprocedureforthesynthesisofourtargetpeptideconjugate 19 .

Table 3. Amidationreactionofselenocarboxylateswithazides a

Selenocarboxyl Temperature Time Yield Entry Azidestartingmaterial Amideproduct ate(eq) b (°C) (h) (%) c O O NN 1 2 3 O N NH 1.2 25 0.5 95 62 2 63 O N 2 3 NH 1.2 25 1.0 93 NO2 64 NO2 79 44

O Cl N 3 3 Cl NH 1.2 25 2.0 95 65 80 O NC N 4 3 NC NH 1.2 25 1.0 96 66 81 O O O N 5 3 NH 1.2 25 2.0 87 MeO 67 MeO 82 O O O N 6 3 NH 1.2 25 1.0 89 HO 68 HO 83 O

7 SO2N3 1.2 25 0.08 96 69 SO2 NH 84 O O O PhO PN 8 3 PhO P NH 1.2 25 3.0 88 OPh 70 OPh 85

O 9 2.0 55 12 d 51 N3 NH O 71 O 86 O N 10 3 NH 2.0 55 6.0 81 72 87 O MeO N 11 3 MeO NH 2.0 55 6.0 65 73 88 O

12 H2N N3 2.0 55 6.0 54 74 H2N NH 89 O d 13 N3 2.0 55 12 56 HO 75 NH HO 90 O

N3 14 HO NH 2.0 55 6.0 78 F 76 HO F 91 O

N3 d 15 HO NH 2.0 55 12 37 F 77 HO F 92 O 16 N3 2.0 55 6.0 68 AcO 78 NH AcO 93 a Generalconditions:Azide(0.2mmol),diacyldiselenide(0.24or0.4mmol),DIEA(0.24 or 0.4 mmol), piperidine (0.24 or 0.4 mmol), acetonitrile (8 mL). b equivalents of selenocarboxylateformed in situ . c isolatedyield(%)oftheamideproduct. d Reactions wereleftovernight(~12h)forconvenience. 45

III. Synthesis and evaluation of glutaryl-Hyp-Ala-Ser-Chg-Gln-NH-pyridyl-2- methyl phosphoramide mustard (19)

A. Synthesis

The synthesis of the target compound started from 2hydroxy5nitropyridine ( 50 ) as shown in Scheme 12. The reduction of nitro group in 55 to amino group was accomplishedbycatalyticreductioninthepresenceof0.2eqPd/Cand3eqofformic acidinmethanol.Usingthismethod,thereactionwascompleteinabout2handformed thedesiredproduct 94 in90%yield.

Inthenextstep,themethylester 94wasreducedtothecorrespondingalcohol 95using4 eqlithiumaluminiumhydrideinanhy.THFtoobtainthedesiredproductin80%yield.

The amino group was converted to azido group by diazotization in 10% w/w HCl solutionfollowedbytreatmentwithsodiumazide.Thereactionwascompletein1hand gave 96 asabrownoilin85%yield. 111

Forthesynthesisof 23 weused1.2eqKHMDSasthebasefordeprotonation,and1.2eq bis(2chloroethyl)phosphoramidicdichloridewasaddedandthereactionwascarriedout at78 oCfor2hundernitrogen.Thedesiredproductwasformedbutwasveryminorand the starting material left unreacted was recovered. In order to push the reaction, the temperaturewasincreasedto50 oCandafter2hitwasobservedthatthemajorproduct formedwasthesideproduct(Figure8)andtheminorproductwasthedesiredproduct.

In our next attempt the deprotonation was performed at 50 oC for 45 min and the 46 reaction mixture was then cooled to 78 oC before the addition of bis (2chloroethyl) phosphoramidicdichlorideandthereactionwasallowedtocontinueat78 oCfor2h

N OH N COOMe 5 steps 10% Pd/C (0.2 eq) N COOMe HCOOH (3 eq), Methanol Scheme 8 O2N O2N rt, 2 h, (90%) H2N 50 55 94

N N OH 1.NaNO2 (1.2 eq), 10% HCl, 30 min OH LiAlH4 (4 eq), anhy. THF 2.NaN3 (1.05 eq), 1 h o H N 0 C-rt, 2 h, (80%) 2 0 oC-rt, (85%) N3 95 96

1.ClCOOCH(CH3)2 (2 eq) N-Methylpiperidine (2eq) TFA-Gln-OH (2eq) 2.LiAlHSeH (2 eq) 3.Acetone (1eq) THF, 0 oC

KHMDS (1.2 eq), -50 oC, 45 min H N O TFAGln-Se H N O 2 N 2 P Cl OPN(CH CH Cl) (1.2 eq) N P 2 2 2 2 O N(CH2CH2Cl)2 rt, 12 h, (22%) O N(CH2CH2Cl)2 TFAGln -78 oC, 2 h, NH3, anhy. THF N3 N (25%) 23 H 22

K2CO3 (6eq) MeOH:ACN:H O, 2:13:5 H2N O (20) 2 N P Fmglutaryl-Hyp-Ala-Ser-Chg-OH (1.1 eq) HBTU (1.2 eq), DIEA (2.4 eq) rt, 12 h, (70%) O N(CH2CH2Cl)2 anhy. DMF, rt, 1 h H-Gln N H 21

O H2N O O N P O CH3 O O O N(CH CH Cl) H H 2 2 2 O N N N N N N H H H O O OH 97 HO CONH2 O H N O HO N 2 P CH3 O O O O N(CH2CH2Cl)2 ACN H H O N N N 10% v/v DEA N N N rt, 2 h H H H O O (10%) OH HO 19 CONH2 Scheme 12. Synthesis of glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramidemustard( 19 )

47

O N P O N(CH CH Cl) O 2 2 2

N3 N

N3

Figure 8. Side product formed during the synthesis of 5azido pyridyl2methyl phosphoramidemustard( 23)

undernitrogen.Undertheseconditionsthesideproductformationwasreducedandthe desiredproductformationincreased.Thetemperaturewasthenincreasedupto60 oC inordertopushthereactionforwardbutitwasobservedthatthesideproductwasthe majorproductagain.Thus,temperatureplayedaveryimportantroleinthisreactionand thestartingmaterialcouldberecovered.Theisolatedyieldoftheproductwas25%and theyieldbasedontherecoveredstartingmaterialwas65%.

Forthesynthesisof22, theselenocarboxylategenerationandamidationwerecarriedout

50 successfullyinonepot. Afterthegenerationofselenocarboxylate,theunreactedLiAlH 4 wasdestroyedbyaddingacetoneinordertopreventthereductionoftheazidogroupin

23 toaminogroup.Thentheazide23wasaddedtotheselenocarboxylateandstirredat roomtemperaturefor12htogetthedesiredproductin22%yield.

The deprotection of TFA was accomplished in the presence of excess potassium carbonate using a mixed solvent system of MeOH/ACN/H 2O. The reaction was 48 completedsuccessfullyatroomtemperatureinabout12handgavethedesiredproduct

21 in70%yield.

Thepeptide20 requiredforthenextstepwassynthesizedusingFmocchemistry.The resin used for the peptide assembly was 4hydroxymethylphenoxy wang resin. C

Terminal amino acid was loaded onto the resin using DMAP/DIC protocol. The subsequent Fmoc amino acids were activated and coupled using HOBt/HBTU/DIEA.

ThesidechainhydroxylgroupofSerwasprotectedbytbutylgroupandthesecondary hydroxylgroupinhydroxyproline(Hyp)wasnotprotected.Followingcompletionofthe assemblyontheresinsupport,theNterminalFmocgroupwasremovedviathestandard

20%piperidine/NMPprotocol.Aftereachcouplinganddeprotectionstep,Kaisertest wasperformedtodeterminethecompletenessoftheaboveprocesses.Deprotectionand removalofthepeptidefromtheresinsupportwaseffectedby95%TFAinCH 2Cl 2.The fluorenyl methyl ester (OFm) protecting group remained intact under these conditions whilethetbutylgroupwasremoved.Aftercleavage,thepeptidewaspurifiedbyreverse phaseHPLCandpuritywasconfirmedbyLCMS.

The peptide 20 was activatedby 1.2eqHBTU andDIEAto givethe activated ester whichwasreactedwiththeHGlnNHpyridyl2phosphoramidemustard( 21 )inNMPto form the desired peptide conjugated product 97 . The product was precipitated and directlyusedforthenextstep.ThedeprotectionofFmgroupwasachievedusing10% v/vDEAinACNatroomtemperaturein2handformedthetargetcompound 19 which was purified by reverse phase HPLC. The final target compound was purified using

HP1090 system on a Phenomenex C 18 column(10m,10x250mm).Initially10% 49

50% ACN/H 2O containing 0.1% TFA was used as the mobile phase for HPLC purification.Tooursurpriseitwasfoundthatthedesiredproductwasnotpresentinany of the fractions collected from HPLC. However, the crude sample before HPLC purificationhadthedesiredproductasthemajorpeakuponLCMSanalysis.Hence,we thoughtthecompoundmightbesensitivetoTFAinthe mobile phase used for HPLC purification.Thenweusedamobilephasecontaining0.1%formicacid,similartothe oneusedforLCMSanalysisandeventhenwewereunabletofindthedesiredproductin thefractionscollectedafterHPLCpurification.Thisindicatedthatthetargetcompound was unstable under acidic conditions. The target compound was incubated in mobile phasecontaining0.1%TFAand0.1%formicacidseparately,andtheincubatedmixtures wereanalysedusingLCMS.Itwasobservedthatthetargetcompounddisappearedin30 minand1.5h,inmobilephasescontaining0.1%TFAand0.1%formicacidrespectively.

Hence,wedecidedtouseaneutralbufferlikeammoniumacetateinthemobilephase.

When the target compound was incubated in a mobile phase containing 10 mM ammoniumacetate,uponLCMSanalysisitwasobservedthattherewasnosignificant changeinthedesiredproductevenafter24h.Hence,themobilephaseusedforthefinal purification was, Solvent A, H 2O/10 mM ammonium acetate; solvent B, 80%

ACN/H 2O/10mMammoniumacetate.Thegradientusedwas27%30%Bin15min.

ThemajorpeaknowcollectedfromHPLCcorrespondedtothedesiredtargetcompound anditwasreconfirmedusingLCMS.

50 A. Chemical stability

Figure 9. Stabilityofpeptideconjugatedpyridylphosphoramidemustard 19 inHank’s buffer;pH7.4(●)andPSAassaybuffer;pH8.0(ο)at37°C.

The stability of glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramide mustard( 19 )wasdeterminedunderconditionsemployedforbothcellcultureassayand

PSA enzyme assay. Cell culture assay is done in Hank’s buffer at pH 7.4 and PSA enzymeassayisdoneinbuffercontaining50mMTrisHCl,pH8.0,10mMCaCl 2,0.1%

Tween ®20atpH8.0.Thesubstratewasincubatedinhank’sbufferandthePSAassay buffer separately at 37 °C. Aliquots were withdrawn at different time intervals and stabilitywasdeterminedbyreversephaseHPLCanalysis.Halflifewascalculatedbased 51 onthedisappearanceofthesubstrate.Itwasobservedthatthetargetcompound 19 was stableinbothhank’sbuffer(pH7.4)andPSAassaybuffer(pH8.0)withahalflife>5 days(Figure9).

B. Substrate activity for PSA

The peptide conjugate, glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramidemustard( 19 )wasevaluatedasasubstrateforPSAatanenzyme/substrate molarratioof1/100.SubstratestocksolutionwasaddedtoPSAbuffersolutionandthe reactionwasinitiatedbyaddingtheabovesolutiontoPSA.Aliquotswerewithdrawnat varioustimeintervalsandquenchedwithacetonitrile (20%) and stored frozen prior to

HPLCanalysis.Thehalflifewascalculatedbasedonthedisappearanceofthesubstrate.

Thepeptidedoxorubicinconjugate,glutarylHypAlaSerChgGlnSerLeuDox( 42c) of knownsubstrateactivityforPSA wasusedasacontrol. 95

AsshowninFigure10,thehalflifeofthetargetcompound 19 wasfoundtobe47min andthatofdoxorubicinconjugate 42cwas20min.Fromthedataobtaineditwasevident thatthetargetcompoundwascleavedbyPSA.However,thesubstrateconcentrationdid notreachzerouponhydrolysisofthetargetcompound.Thismaybeduetoinactivation ofPSAenzymeuponreleaseoftheactivatedalkylatingagent.

52

Figure 10. Thedisappearanceofpeptidedoxorubicinconjugate(●)andpeptidepyridyl phosphoramidemustardconjugate(ο)duringcleavagebyPSA.Thesubstrates wereincubatedwithPSAbyanenzyme/substratemolarratioof1/100in50 mMTris/HClbuffer,10mMCaCl 2,0.1%Tween20,pH8.0,37°C. 53 C. In vitro antiproliferative activity in prostate cancer cell lines

The antiproliferative activity of glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramide mustard (19 ) was investigated by a standard MTT assay using an androgensensitive PSA–producing human prostate cancer cell line (LNCaP) and an androgeninsensitive human prostate cancer cell line (DU 145) that does not produce

PSA.Cellsweresplitat80%confluencefollowingtrypsinizationandsubculturedat1:6 andmediumchangedevery72h.Theharvestedcells were washed twice with HBSS

(Hank’sbufferedsaline solution)andresuspendedin fresh serumfree culture medium containing2%v/vTCMandplatedinto96wellmicrotiterplates.Aserialdilutionof targetcompoundwaspreparedandwasaddedtothecellsafterovernightincubation.

Mediumalonewasusedaasnegativecontrol.Thecompoundwasevaluatedthriceand

MTTassaywasperformed3daysaftertheadditionoftargetcompound.Theabsorbance at 570 nm (reference 650 nm) was read using a Dynatech MR5000 microtiter plate reader. Wells containing medium alone were used as blanks. The IC 50 inhibition concentrationwascalculatedforbothcelllines.TheMTTassaywasperformedatleast twice.Thepeptidedoxorubicinconjugate,glutarylHypAlaSerChgGlnSerLeuDox

(42c ) ofknownantiproliferativeactivityforPSA wasusedasacontrol.Asrecordedin

Table4,theaverageIC 50 againstLNCaPcellswas209MandagainstDU145was204

MandtherewasnoselectivitytowardsPSAexpressingLNCaPcells.FromthePSA assayresultitisknownthatthepeptideconjugate19 isagoodsubstrateofPSA.Inspite ofbeingagoodsubstrateforPSA,thecytotoxicityagainstLNCaPcellswaslow.This maybeduetotheinabilityofthereleasedspeciestopenetratethetumorcells.AfterPSA 54 cleavagethenitrogenofthepyridineringmightbepositivelychargedwhichmighthave preventedthealkylatingagentfrompenetrating thecellmembraneofthetumorcells.

Further investigations are underway to identify the species released and to design approachestoimproveitsmembranepermeability.

Table 4. AntiproliferativeassayofglutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramidemustard (19)

IC50(M) a Ratio b Compound LNCaP DU145 (DU145/LNCaP) 42c 10±2 961±82 96 19 Assay1 177±3 218±4 1 19 Assay2 240±5 190±1 0.8 19 Average 209±45 204±20 1 a IC 50 valuesaretheconcentrationrequiredtoreducethecellnumberto50%ofthe control. b RatioofIC 50 valuesasanindicationofactivationbyPSA.

55 SUMMARY

We were successful in our efforts to synthesize and evaluate phosphoramide mustard analoguesincorporatingtwotypesoftumorspecificactivationmechanisms;oneisthe reductive activation mechanism by Escherichia coli nitroreductase and second is the proteolytic activation mechanism by prostatespecific antigen (PSA) in prostate cancer cells.Weweretryingtoachieveagoodbalancebetweenthestabilityofthecompound priortoactivationanditsmembranepermeability/drug release/activation kinetics after enzymecatalysisorbioreduction.The5nitropyridyl2methylphosphoramidemustard

(18 ) synthesized showed an IC 50 value of 9 nM and the compound had 8300fold selectivity towards nitroreductaseexpressing cells. These results suggest that 5 nitropyridyl2methyl phosphoramide mustard (18 ) is a good candidate for use in combination with nitroreductase for enzyme prodrug therapy. In our research we investigated the effect of linking a substrate peptide sequence to an anticancer drug throughaflexiblelinkerthatcanbemodifiedtobetteraccommodatetheuniquestructural requirementsforbindingtoandcatalysisbythetargetPSAenzymeandthusimprovethe tumorselectivityofphosphoramidemustard.Pyridinewasintroducedtomodulatethe electrondensity, to optimize the stability and rate of 1,6elimination upon proteolytic cleavage. A series of steps were involved in the synthesis of the peptide conjugated phosphoramide mustard analogue. We developed a new set of conditions for the selenocarboxylate/azide amidation reaction required for the synthesis of the peptide conjugatedphosphoramidemustard.Thenewconditionspresentanattractive,alternative method to the conventional nucleophilic acylation when an amide bond needs to be 56 formed without going through an amine intermediate. The halflife of the selenocarboxylatewasincreasedby27foldatroomtemperature.Excellentyieldswere obtained with electrondeficient azides and much improved yields were obtained with electronrich azides upon mild heating. Thus, these new conditions represent a significant improvement over the earlier conditions used to couple selenocarboxylates with azides. The glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramide mustard (19 ) was synthesized and evaluated for chemical stability, substrate activity towardsPSAandantiproliferativeactivity.Theresultsshowedthatthepeptideconjugate wasstableatpH7.4and8.0withhalflife>5days.ItisagoodsubstrateforPSAwitha halflifeof47minatanenzyme/substratemolarratioof1/100.Inspiteofhavinggood substrateactivitytowardsPSAthepeptideconjugateexhibitedlowcytotoxicitywithan

IC 50 valueof209MandwasnotselectivetowardsPSAexpressingLNCaPcelllines.

ThelowcytotoxicityandlackofselectivitytowardsLNCaPcellsmightbeduetothe inability of the activated drug to penetrate the cell membranes. Further studies are underwaytoimprovethecytotoxicityandselectivityoftheanalogue.

57 EXPERIMENTAL

General methods

Moisture sensitive reactions were performed in ovendried glassware under a positive pressureofargonornitrogen.Airandmoisturesensitivematerialsweretransferredby meansofacannulaorsyringeunderanargonornitrogenatmosphere. Solventsused were either ACS reagent grade or HPLC grade. Tetrahydrofuran was dried over sodium/benzophenone.N,Ndimethylformamidewasdriedover4Å molecularsieves foratleastoneweekpriortouseorusednew(Aldrich). Dichloromethane was dried using Solvtec system. Unless otherwise stated, all reactions were stirred using a magnetic stirrer and monitored by thinlayer chromatography (TLC) using 0.25 mm

WhatmannprecoatedsilicagelplatesandLCMS.Flashcolumnchromatographywas performed using silica gel (Merck 230400 mesh) manually or using Teledyne ISCO

CombiFlash Companion Automated Flash Chromatographic System with prepacked silica gel columns. Unless otherwise noted, yield refers to chromatographically and spectroscopically( 1HNMR)homogenousmaterial.Allreagentspurchasedwereeither

ACSgradeorbetter andusedwithoutanyfurtherpurification.nBuLi wasused after standardization using diphenylacetic acid. MeltingpointsweredeterminedonaMel

Temp capillary apparatus and are uncorrected. Infrared spectra were recorded with

ThermoNicolet Avatar 360 FTIR spectrometer and the absorbance is reported in reciprocal centimeters (cm 1). 1H and 13 C NMR spectra were recorded on a Varian

Gemini 2000 spectrometer at ambient temperature and calibrated using residual undeuteratedsolventsasaninternalreference.Chemicalshifts(200MHzfor 1Hand50

MHzfor 13 C)arereportedinpartspermillion.Couplingconstants( Jvalues)aregivenin 58 hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet;d=doublet;t=triplet;q=quartet;m=multiplet;br=broad.

Analytical LCMS data and kinetic study data were obtained using Shimadzu LCMS

2010systemequippedwithaChromolithspeedRODC 18 reversedphasecolumn(5m,

4.6 x 50 mm). Solvent A was 0.1% HCOOH/H 2O, Solvent B was 0.1%

HCOOH/CH 3CN,andthegradientwas1090%Bin10minataflowrateof1mL/min.

HPLCanalysiswasperformedonHP1090HPLCsystemorGilsonHPLCsystemusing thefollowingcolumns:(1)SystemI:HP1090systemequipped with Waters symmetry

C18 column (3.5 m, 4.6 x 150 mm); (2) System II: HP1090 system equipped with

PhenomenexC 18 column(10m,10x250mm);(3)SystemIII:GilsonHPLCsystem equippedwithPhenomenexC 18 column(10m,10x250mm).

2-(Trifluoromethanesulfonyl)oxy-3-nitropyridine (51 )

Triflic Anhydride (1.1 eq) N OH N SO3CF3 Et3N (2.2 eq) o O2N anhy. CH2Cl2, -20 C, 1 h O2N 50 (82%) 51

2Hydroxy5nitropyridine(10g,71.4mmol)andtriethylamine(21.8mL,157mmol) weredissolvedinanhy.CH 2Cl 2(100mL)andcooledto–20°C.Thentriflicanhydride

(13.2mL,78.5mmol)wasaddedslowlyandthereactionmixturewasstirredfor1hat–

o 20 Cuntilthestartingmaterialdisappeared.TheproductwasextractedCH 2Cl 2(75mL x 3). Organic fractions were washed with water,brine,driedoversodiumsulfateand concentratedundervacuum.Productwaspurifiedbyflashcolumnchromatography(0

100%gradientofETOAc/hexane).Theproductwasapaleyellowsolid(15g,82%);mp 59 o o 106 1 1 7982 C(lit.mp8283 C) ;IR(KBr,cm ):1535,1355; HNMR(CDCl 3,200MHz):

δ9.23(d,1H, J=2.8Hz),8.68 (dd,1H, J=2.6,9Hz),7.37(d,1H, J = 8.8Hz); 13 C

NMR(CDCl 3,50MHz): δ 158.3,145.0,144.1,136.5,128.1,121.7,115.5,115.4,109.0.

2-Bromo-5-nitropyridine (52 )

N SO3CF3 TBAB (1.1 eq) N Br anhy.Toluene

O2N reflux, 12 h O2N 51 (90%) 52

TBAB(16.4g,51mmol)and2(trifluoromethanesulfonyl)oxy3nitropyridine (12.5 g,

46.1 mmol) were dissolved in anhy. toluene (10 mL) and the mixture was refluxed overnight(12h)undernitrogen.Thentoluenewasremovedunderreducedpressureand theresiduewasdissolvedinethylacetate(50mL).Organicfractionswerewashedwith water, brine, dried over sodium sulfate and concentrated under vacuum. Product was purified by flash column chromatography (0100% gradient of ETOAc/hexane). The productwasawhitesolid(8.2g,90%);mp137139 oC(lit.mp139141 oC)106 ;IR(KBr,

1 1 cm ):1511,1354; HNMR(CDCl 3,200MHz): δ9.19(d,1H, J=2.4Hz),8.31 (dd,1H,

13 J=2.6,8.5Hz),7.70(d,1H, J = 8.8Hz); CNMR(CDCl 3,50MHz): δ 148.3,145.6,

143.8,133.0,128.7.

60 5-Nitropicolinic acid ( 54)

N Br CuCN (1.5 eq), KCN (1.0 eq) N CN N COOH anhy. DMF 6M HCl o reflux, 3 h O N 160 C, 2 h O2N 2 O2N (85% for 2 steps) 52 53 54

AsuspensionofCuCN(5.3g,60mmol)andKCN(2.6g,40mmol)inanhydrousDMF

(50mL)washeatedto160oC.Asolutionof2bromo5nitropyridine(8g,40mmol)in anhydrousDMF(40mL)wasaddedtotheabovesuspensionandthereactionmixture wasstirredundernitrogenfor2hat160 oCuntilthestartingmaterialdisappeared.The reaction mixture was cooled to room temperature and diluted with ethyl acetate (100 mL).ItwasthenaddedtoNaHPO 4buffer(165mL)andstirredfor20min.Thebrown solid was filtered off and the filtrate was extracted with ethyl acetate (50 mL x 3).

Organic fractions were washed with water, brine, dried over sodium sulfate and concentratedundervacuum.Thelightyellowsolidproduct53 wassufficientlypureand wasdirectlyusedforthenextstep.mp4849 oC(lit.mp5152 oC)107;IR(KBr,cm 1):

1 1524,1354; HNMR(CDCl 3,200MHz): δ9.48(dd,1H, J=0.8,2.6Hz),8.65 (dd,1H,

13 J=2.6,8.8Hz),7.96(dd,1H, J = 0.8, 8.4Hz); CNMR(CDCl 3,50MHz): δ 146.1,

145.0,138.2,132.4,128.8,115.5.

2Cyano5nitropyridine was suspended in 6 M HCl (50 mL) and stirred at reflux temperaturefor3huntilthestartingmaterialdisappeared. The reaction mixture was cooled to room temperature and stirred in an ice bath for 15 min when the product precipitatedasalightbrownsolid.Theprecipitatewaswashedwithcoldwateranddried undervacuumtogive 54(5.6g,85%);mp204206 oC(lit.mp208210 oC)112 ;IR(KBr,

1 1 cm ):1524,1356; HNMR(DMSOd6,200MHz): δ9.42(d,1H, J=2.2Hz),8.72 (dd, 61

13 1H, J=2.6,8.6Hz),8.25(d,1H, J = 8.8Hz); CNMR(DMSOd6,50MHz): δ 164.7,

152.7,145.6,144.6,133.0,125.3;LCMS(ESI ):166.9[MH] .

Methyl 5-nitropicolinate (55)

N COOH N COOMe Cat.H2SO4 MeOH O2N reflux, 3 h O2N 54 (92%) 55

Thestartingmaterial,5nitropicolinicacid(5g,30mmol) wasdissolvedinmethanol(50 mL) and catalytic amount of H 2SO 4 was added and the mixture was refluxed for 3 h.

Then the reaction mixture was cooled and methanol was removed under reduced pressure. Residue was extracted with ethyl acetate (50 mL x 3), washed with water, brine,driedoversodiumsulfateandconcentratedundervacuumtoyield55asayellow solid(5g,92%);mp152154 oC(lit.mp150153 oC)112 ; IR(KBr,cm 1):1740,1522,

1 1354; HNMR(DMSOd6,200MHz): δ9.44(d,1H, J=2.6Hz),8.75 (dd,1H, J=2.6,

13 8.4Hz),8.28(d,1H, J = 8.8Hz)3.93(s,3H); CNMR(DMSOd6,50MHz): δ 163.7,

151.4,145.7,144.7,133.1,125.4;LCMS(ESI +):183.1[M+H] +.

(5-Nitropyridin-2yl)methanol (56)

N COOMe N DIBAL (3 eq) OH anhy.THF o O2N -78 C, 4 h O2N 55 (40%) 56

DIBAL(583L,3.27mmol)wasaddedtomethyl5nitropicolinate(200mg,1.09mmol) drop wise at –78 oCandthemixturewasstirredfor4hat–78 oC. The reaction was quenchedwith1NHCl(20mL) anddilutedwithmethylene chloride (50 mL). The 62 organic phase was washed with water and brine and dried over sodium sulfate and concentratedundervacuum.Theproductwaspurifiedbyflashcolumnchromatography

(hexane/ETOAc,3:1).Theproductobtainedwasawhitesolid(65mg,40%);mp9899

1 1 °C; IR(KBr,cm ):3380,1524,1353; HNMR(CDCl 3,200MHz): δ9.38(brs,1H),

8.48(dd,1H, J=2.6,8.4Hz),7.53(d,1H, J=8.4Hz),4.90(s,2H),3.28(bs,1H); 13 C

+ NMR (CDCl 3, 50 MHz): δ 165.0, 143.5, 130.9, 119.6, 63.6; LCMS (ESI ): 155.0

[M+H] +.

5-Nitropyridyl-2-methyl phosphoramide mustard ( 18 )

H N O N n-BuLi (1.1 eq) N 2 P OH Cl2OPN(CH2CH2Cl)2 (1.1 eq) O N(CH2CH2Cl)2 O N 2 NH3, -20 oC to -40 oC, 3 h O2N 56 18 (31%) nBuLi(175L,0.35mmol)wasaddedto(5nitropyridin2yl)methanol(50mg,0.32 mmol) dissolved in anhydrous THF (10 mL) at –40 oC and stirred for 30 min under nitrogen. To the reaction mixture was added Bis(2chloroethyl)phosphoramidic dichloride (91 mg, 0.35 mmol) and the mixture was stirred at –40 oC for 3 h. Then ammoniagaswasbubbledintothereactionmixturefor15min.Solventwasremovedvia arotovapandproductwasextractedwithCH 2Cl 2(50mLx3).Organicfractionswere washed with water, brine, dried over sodium sulfate and concentrated under vacuum.

Residuewassubjectedtoflashcolumnchromatography(CH 2Cl 2/CH 3OH,9:1)togive 18

1 abrownsemisolid(35mg,32%); HNMR(CDCl 3,200MHz): δ9.35(d,1H, J=2.2),

8.48(dd,1H, J=2.2,8.4Hz),7.64(d,1H, J=8.8Hz),5.085.33(m,2H),3.543.67(m,

13 4H),3.433.51(m,4H),3.20(bs,2H); CNMR(CDCl 3,50MHz): δ 162.9(d, J=8.0), 63 144.7,143.5,132.0,121.2,66.7(d, J=4.2),49.0(d, J=4.6),42.4;LCMS(ESI +):357.1

+ + + [M+H] , 379.1 [M+H+ Na] . HRMS (FAB) m/z calc’d for C 10 H15Cl 2N4O4P [M+H]

357.0286,found357.0281.

General procedure for the preparation of amides:

Diacyldiselenide (0.24 mmol) and azide (0.2 mmol) were dissolved in deaerated acetonitrile(5mL)andstirredatroomtemperatureunderanargonatmosphere.Tothis wasaddedDIEA(0.24mmol),followedbypiperidine(0.24mmol).Themixturewas stirredatroomtemperatureorheatedat55°Cdependingontheazide.Thereactionwas monitoredusingTLCandLCMS.Uponcompletion,themixturewasconcentratedand dissolvedinethylacetateandfilteredthroughacelitepadtoremoveseleniumpowder.

The ethyl acetate phase was washed with aqueous saturated NaHCO 3, water and concentratedtodryness.Thecrudeproductwasthenpurifiedbysilicagelflashcolumn chromatography.

N-(4-Nitrophenyl)benzamide ( 63 )

Theproduct(46mg)wasobtainedafterflashcolumnchromatography(CH 2Cl 2/MeOH,

0.05:10)in95%isolatedyield.mp196198°C;IR(KBr,cm 1):3337,1656,1507,1345;

1 HNMR(DMSOd6,200MHz): δ10.81(s,NH),8.28(d,2H, J = 7.4Hz),8.08(d,2H,

13 J = 8.4Hz),7.99(d,2H, J = 8.4Hz),7.557.64(m,3H); CNMR(DMSOd6,50MHz):

δ166.1,145.4,142.4,134.1,132.1,128.4,127.8,124.7, 119.8; LCMS (ESI +): 243.1

+ + [M+H] ,284.1[M+H+CH 3CN] .

64 N-(2-Nitrophenyl)benzamide (79)

Theproduct(45mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

5:1)in93%isolatedyield.mp9697°C;IR(KBr,cm 1):3363,1685,1502,1342;1H

NMR(CDCl 3,200MHz): δ11.34(bs,NH),9.00(dd,1H, J = 1.4 Hz, J = 8.6 Hz),8.27

(dd,1H, J = 1.4, 8.5 Hz),(m,2H), 7.487.75(m,4H),7.177.25(m,1H); 13 CNMR

(CDCl 3,50MHz): δ 164.9,135.3,134.5,133.3,131.8,128.2,126.5,125.0,122.4,121.3;

+ + + LCMS(ESI ):243.1[M+H] ,284.1[M+H+CH 3CN] .

N-(4-Chlorophenyl)benzamide (80 )

Theproduct(44mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

2:1) in 95% isolated yield. mp 190191 °C; IR (KBr, cm 1): 3337, 1638; 1H NMR

(acetoned6,200MHz): δ7.98(dd,2H, J = 1.4 , 8.0 Hz),7.867.90(m,2H),7.507.54

13 (m,3H)7.37(dd,2H, J = 1.8,6.8 Hz); CNMR(acetoned6,50MHz): δ166.3,139.3,

139.2,136.0,132.5,129.4,129.3,128.9,122.5,122.4;LCMS(ESI +):232.0[M+H] +.

N-(4-Cyanophenyl)benzamide (81 )

Theproduct(43mg)wasobtainedafterflashcolumnchromatography(CH 2Cl 2/MeOH,

0.05:10)in96%isolatedyield.mp167168°C;IR(KBr,cm 1):3352,2228,1661; 1H

13 NMR(CDCl 3,200MHz): δ8.14(s,1H,NH),7.767.87(m,4H),7.487.76(m,5H); C

NMR(CDCl 3,50MHz): δ 165.0,141.1,133.3,132.5,131.6,128.1,126.3,119.1,117.8,

+ + + 106.4;LCMS(ESI ):223.1[M+H] ,257.1[M+H+CH 3CN] .

65 Methyl-4-benzamidobenzoate (82)

Theproduct(45mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1:1)in87%isolatedyield.mp162163°C;IR(KBr,cm 1):3378,1716,1670; 1HNMR

(CDCl 3,200MHz): δ 8.03(dd,2H, J = 1.8,7.0 Hz),7.87(dd,2H, J = 1.4,4.9Hz),7.72

13 (dd,2H, J = 2,7.0 Hz), 7.477.70(m,3H),3.89(s,3H); CNMR(CDCl 3,50MHz): δ

166.6,165.8,142.1,134.6,132.1,130.9,128.9,127.1,125.9,119.2,52.0;LCMS(ESI +):

+ + 256.0[M+H] ,297.0[M+H+CH 3CN] .

4-Benzamidobenzoic acid ( 83 )

Theproduct(43mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1:1) in 89% isolated yield. mp 285286 °C; IR (KBr, cm 1): 3317, 1678; 1H NMR

13 (DMSOd6, 200 MHz): δ 10.52 (s, COOH), 7.92 (brs, 6H), 7.537.57 (brm, 3H); C

NMR (DMSOd6, 50 MHz): δ 167.0, 165.9, 143.1, 134.6, 131.7, 130.1, 128.3, 127.7,

125.6,119.4;LCMS(ESI ):240.1[MH] ,258.1[MH+H 2O] .

N-(4-Toluenesulfonyl)benzamide ( 84)

Theproduct(53mg)wasobtainedafterflashcolumnchromatography(Hexane/Acetone,

1:3) in 96% isolated yield. mp 115116 °C; IR (KBr, cm 1): 3309, 1709; 1H NMR

(CDCl 3,200MHz): δ 9.52(brs,NH), 8.05(d,2H, J = 8.4Hz),7.83(d,2H, J = 7.4Hz),

13 7.327.58 (m, 5H), 2.43 (s, 3H); C NMR (CDCl 3, 50 MHz): δ 164.4, 145.2, 135.4,

133.4,131.1,129.68,128.8,128.7,127.9,21.7;LCMS(ESI ):274.1[MH] .

66 Diphenyl N-benzoylphosphoramidate (85)

Theproduct(62mg)wasobtainedafterflashcolumnchromatography(Hexane/Acetone,

4:1) in 88% isolated yield. mp 125126 °C; IR (KBr, cm 1): 3139, 1693; 1H NMR

(CDCl 3,200MHz): δ 9.57(brs,NH),7.98(d,2H, J = 8.6Hz),7.56(t,1H, J = 7.8Hz),

13 7.39(dd,2H, J = 7.6,8.0Hz),7.17.43(m,10H); CNMR(CDCl 3,50MHz): δ 167.5

(d, J = 3.4Hz),150.0(d, J = 6.8Hz),133.0,132.1(d, J = 11Hz),129.7,128.5,128.4,

+ + + 125.6,125.5,120.5,120.4;LCMS(ESI ):354.1[M+H] ,417.2[M+H+Na+ CH 3CN] .

N-benzoyl benzamide (86)

Theproduct(12mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1 2:1)in51%isolatedyield.mp144145°C; HNMR(CDCl 3,200MHz): δ 9.26(brs,

13 NH), 7.84(dd,4H, J = 1.4,8.0Hz), δ 7.407.60(m,6H); CNMR(CDCl 3,50MHz): δ

166.7, 133.3, 133.0, 128.7, 127.9; LC MS (ESI +): 226.1 [M+H] +, 289.1 [M+H+Na+

+ CH 3CN] .

N-phenylbenzamide (87)

Theproduct(32mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

10:3) in 81% isolated yield. mp 161162 °C; IR (KBr, cm 1): 3343, 1655; 1H NMR

(CD 3OD,200MHz): δ7.84(dd,2H, J = 1.8,4.0Hz),7.62(dd,2H, J = 1.6,5Hz),7.38

13 7.61(m,4H),7.227.33(m,2H),7.037.11(m,1H); C NMR (CD 3OD, 50 MHz): δ

168.9, 139.9, 136.3, 132.8, 129.8, 129.6, 128.6, 125.6, 122.4; LCMS (ESI +): 198.0

+ + [M+H] ,239.0[M+H+ CH 3CN] .

67 N-(4-Methoxyphenyl)benzamide ( 88)

Theproduct(30mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

2:1) in 65% isolated yield. mp 152154 °C; IR (KBr, cm 1): 3330, 1647; 1H NMR

(acetoned6,200MHz): δ 9.40(brs,NH),7.97(dd,2H, J = 1.4,7.8Hz),7.72(d,2H, J =

13 8.6Hz),7.427.59(m,3H),6.91(dd,2H, J = 2.4, 6.8 Hz), 3.78 (s, 3H, OCH 3); C

NMR (acetoned6, 50 MHz): δ 165.7,156.9,136.3,133.3,131.9,129.0,125.0,122.4,

+ + + 114.4,55.5;LCMS(ESI ):228.1[M+H] ,269.1[M+H+ CH 3CN] .

N-(4-Aminophenyl)benzamide ( 89)

Theproduct(23mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1 2:1)in54%isolatedyield. HNMR(CD 3OD,200MHz): δ 7.89(dd,2H, J = 8.0Hz, J

= 1.8Hz),7.427.52(m,3H),7.37(dd,2H, J = 2.0,7.0Hz),6.73(dd,2H, J = 1.8, 8.0

13 Hz); C NMR (CD 3OD, 50 MHz): δ 168.6, 145.9,136.3, 132.6, 130.4, 129.5, 128.4,

+ + + 124.2,116.6;LCMS(ESI ):213.1[M+H] ,254.1[M+H+ CH 3CN] .

N-(4-Hydroxymethylphenyl)benzamide (90 )

Theproduct(26mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1 2:1)in56%isolatedyield.mp149150°C; HNMR(CD 3OD,200MHz): δ 7.94(dd,

2H, J = 2.0, 8.4Hz),7.67(dd,2H, J = 1.8,7.8Hz),7.477.60(m,3H),7.37(d,2H, J =

13 8.4Hz),4.61(s,2H,CH2OH). C NMR (CD 3OD, 50 MHz): δ 168.9, 139.0, 136.3,

132.9, 129.6, 128.6, 128.5, 122.2, 64.9; LCMS (ESI+): 228.1 [M+H] +, 269.1 [M+H+

+ CH 3CN] .

68 N-(3-Fluoro-4-Hydroxymethylphenyl)benzamide (91 )

Theproduct(38mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1:1) in 78% isolated yield. mp 120121 °C; IR (KBr, cm 1): 3298, 1654; 1H NMR

13 (CD 3OD, 200 MHz): δ 7.86 (dd, 2H, J = 1.6, 8 Hz), 7.367.63 (m, 6H); C NMR

(CD 3OD,50MHz): δ167.5,162.8,158.0,134.8,131.6,129.3,128.5,128.3,127.3,116.0

(d, J=3.1Hz),107.5(d, J=27Hz),67.8;LCMS(ESI +):246.0[M+H] +,287.0[M+H+

+ CH 3CN] .

N-(2-Fluoro-4-Hydroxymethylphenyl)benzamide (92 )

Theproduct(18mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1:1) in 37% isolated yield. mp 108110 °C; IR (KBr, cm 1): 3327, 1647; 1H NMR

(CDCl 3,200MHz): δ 8.42(t,1H),8.04(bs,NH),7.447.52(m,3H),7.137.20(m,3H),

13 4.67 (s, 2H); C NMR (CDCl 3, 50MHz): δ165.4,155.2,150.4,137.8,134.5,132.2,

128.9,127.1,122.9(d, J=3.05Hz),121.8,113.4(d, J=19.7),64.4;LCMS(ESI +):

+ + 246.0[M+H] ,287.0[M+H+ CH 3CN] .

4-Benzamidobenzyl acetate (93 )

Theproduct(37mg)wasobtainedafterflashcolumnchromatography(Hexane/EtOAc,

1:1)in68%isolatedyield.mp126127°C;IR(KBr,cm 1):3332,1732,1655; 1HNMR

(CDCl 3,200MHz): δ7.93(brs,1H,NH),7.67(d,2H, J = 8.4Hz),7.407.54(m,3H),

13 7.34 (d, 2H, J = 8.4 Hz), 5.06 (s, 2H), 2.07 (s, 3H); C NMR (CDCl3, 50 MHz): δ

171.0,165.7,138.0,134.9,132.1,131.9,129.3,128.8,127.0,120.2,65.9,21.0;LCMS

+ + + (ESI ):270.1[M+H] ,311.1[M+H+ CH 3CN] . 69 Methyl 5-aminopicolinate (94)

N COOMe N COOMe 10% Pd/C (0.2 eq) HCOOH (3 eq), Methanol O2N rt, 2 h, (90%) H2N 55 94

Methyl5nitropicolinate(5g,27.4mmol) and10%Pd/C(583mg,5.5mmol)andformic acid(3mL,82.2mmol)weresuspendedinmethanol(500mL)andthereactionmixture wasflushedwith3cyclesofnitrogenfollowedby3cyclesofhydrogenandstirredfor2 hatroomtemperatureunderhydrogenballoon.Themixturewasfilteredthroughcelite andmethanolwasremovedbyarotovap.Theresidue was subjected to flash column chromatography (10% CH 3OH/CH 2Cl 2)togivetheproduct94asawhitesolid(3.7g,

o 1 1 90%);mp8587 C;IR(KBr,cm ):3347,1715; HNMR(CDCl 3,200MHz): δ8.14

(brs,1H),7.94(d,1H, J=8.0Hz),6.92(dd,1H, J=3.0,8.4Hz),5.26(brs,2H),3.90(s,

13 3H); CNMR(CDCl 3,50MHz): δ 165.7,145.7,137.3,136.6,126.5,120.0,52.3;LC

MS(ESI +):153.1[M+H] +.

(5-Aminopyridin-2yl)methanol (95)

N COOMe LiAlH4 (4 eq) N anhy.THF OH 0 oC-rt, 2 h H2N H2N 94 (80%) 95

The starting material, methyl 5aminopicolinate (3.4 g, 22.3 mmol) was dissolved in

o anhy.THF(100mL)andcooledto0 C.ThenLiAlH 4(3.4g,89.2mmol)wasaddedand mixturestirredatroomtemperaturefor2huntilthereactionwascomplete.Then3.4mL ofwaterwasaddedtothereactionmixturedropwisewithstirringinanicebathfollowed bytheadditionof3.4mL,15%sodiumhydroxidesolutionand10.2mLwater.This 70 formeda granularprecipitateofalltheunreactedLiAlH 4whichwasfilteredthrougha celitepadusingacetonitrileasthesolvent.Thenthesolventwasrotovapedandproduct was purified by flash column chromatography using 10% MeOH/CH 2Cl 2 containing

0.1%NH 4OHaseluent.Productobtainedwasabrownsolid(2.2g,80%);mp170172 o 1 1 C;IR(KBr,cm ):3319; HNMR(DMSOd6,200MHz): δ7.86(d,1H, J=2.2Hz),

7.05 (d,1H, J=8.4Hz),6.93(dd,1H, J = 2.6, 8.4Hz),5.16(brs,3H),4.39(s,2H); 13 C

+ NMR(DMSOd6,50MHz): δ 148.8,143.3,135.0,120.9,120.7,64.2;LCMS(ESI ):

124.9[M+H] +.

(5-Azidopyridin-2yl)methanol (96)

N N OH 1.NaNO2 (1.2 eq), 10% HCl, 30 min OH 2.NaN3 (1.05 eq), 1 h H N 2 0 oC-rt, (85%) N3 95 96

(5Aminopyridin2yl)methanol(1g,8mmol)wasdissolvedin10%HCl(76mL)and cooled to 0 oC.Thensodiumnitritesolution(663mg,9.6mmol, 15 mL water) was addeddropwiseandstirredfor30minat0 oC.Thensodiumazidesolution(550mg,8.4 mmol, 18 mL water) was added drop wise at 0 oC and mixture stirred at room temperature for 1 h. The reaction mixture was basified with 5% sodium carbonate solutionandextractedwithethylacetate(50mLx3).Organicfractionswerewashed withwater,brine,driedoversodiumsulfateandconcentratedundervacuum.Product waspurifiedbyflashcolumnchromatography(10%MeOH/CH 2Cl 2).Productobtained

1 1 wasabrownoil(1g,85%);IR(KBr,cm ):3240,2115; HNMR(CDCl 3,200MHz): δ

8.25 (d, 1H, J = 1.4 Hz), 7.287.36 (m, 2H), 4.70 (s, 2H), 3.43 (brs, 1H); 13 C NMR 71

+ (CDCl 3, 50 MHz): δ 155.9, 139.9, 136.0, 126.8, 121.3, 64.0; LCMS (ESI ): 151.0

[M+H] +.

5-Azidopyridyl-2-methyl phosphoramide mustard (23 )

KHMDS (1.2 eq) -50 oC, 45 min H2N O N Cl OPN(CH CH Cl) (1.2 eq) N P 2 2 2 2 O N(CH CH Cl) OH -78 oC, 2 h 2 2 2 NH3, anhy.THF N3 N3 96 (25%) 23

(5Azidopyridin2yl)methanol(1g,6.6mmol) wasdissolvedinanhy.THF(30mL)and cooledto–50 oC.ThenKHMDS(1.67g,7.9mmol)wasaddedandstirredfor30minat

50 o C. Then the mixture was cooled to 78 o C and bis(2chloroethyl)phosphoramidic dichloride(2g,7.9mmol)in70mLanhy.THFat78 o Cwasaddedandmixturestirred for2hat78 o C.Ammoniagaswasbubbledintothereactionmixturefor15min.THF was rotovaped and product was dissolved in CH 2Cl 2 (50 mL) and washed with water, brine,driedoversodiumsulfateandconcentratedundervacuum.Productwaspurifiedby flash column chromatography (0100% ETOAc/hexane gradient) to yield a brown oil

1 (580mg,25%); HNMR(CDCl 3,200MHz): δ8.30(t,1H),7.37(d,2H, J=2.2),4.92

13 5.21 (m,2H),3.5843.65(m,4H),3.383.50(m,4H)3.19(bs,2H); CNMR(CDCl 3,50

MHz): δ 152.6(d, J=6.9),140.8,136.7,126.7,122.7,67.1(d, J=5.0),49.3(d, J=4.6),

42.5(d, J=0.8);LCMS(ESI +):353.1[M+H] +,375.1[M+H+ Na]+.HRMS(FAB) m/z

+ calc’dforC 10 H15 Cl 2N6O2P[M+H] 353.0449,found353.0444.

72 TFA-Gln-NH-pyridyl-2-phosphoramide mustard (22 )

1.ClCOOCH(CH3)2 (2 eq) N-Methylpiperidine (2eq) TFA-Gln-OH (2eq) 2.LiAlHSeH (2 eq) 3.Acetone (1eq) THF, 0 oC

H N O TFAGln-Se H2N O N 2 P N P O N(CH2CH2Cl)2 rt, 12 h, (22%) O N(CH2CH2Cl)2 TFAGln N3 N 23 H 22

TFAGlnOH(275mg,1.1mmol)wasactivatedwithisopropylchloroformate(1.1mL,

1.1mmol)andNmethylpiperidine(139L,1.1mmol)at0 oCinanhy.THF(10mL).

TheselenatingreagentwaspreparedbysuspendingLiAlH 4(45mg,1.1mmol) inanhy.

THF(10mL)towhichselenium(91mg,1.1mmol)wasaddedandstirredfor20minat0 oC.TheactivatedTFAGlnOHwascannulatedintotheselenatingreagenttoproduce selenocarboxylateandstirredat0 oCfor30min.Thenacetone(42L)wasaddedand mixture stirred at room temperature for 20 min. Then 5azidopyridyl2methyl phosphoramide mustard (200 mg, 0.57 mmol) was injected into the above reaction mixtureandstirredovernightatroomtemperature.THFwasrotovapedandproductwas purifiedbyflashcolumnchromatography(10%MeOH/CH 2Cl 2)togivealightyellow

1 solid(70mg,22%); HNMR(CD 3OD,200MHz): δ 8.68(d,1H, J=2.2Hz),8.05(dd,

1H, J=2.6,8.4Hz),7.46(d,1H, J=8.4Hz),4.94(d,2H, J=7.8Hz),4.47(q,1H),

3.543.61(m,4H),3.323.41(m,4H),2.292.40(m,2H),2.042.18(m,2H); 13 CNMR

(CD 3OD, 50 MHz): δ 177.4, 171.2, 159.5, 158.8, 153.1, 141.8, 136.2, 129.7, 123.3,

120.2,114.5,68.7,68.0(d, J=4.6),43.1,32.7,32.2,28.1;LCMS(ESI ):549.0[MH] .

73 H-Gln-NH-pyridyl-2-phosphoramide mustard (21 )

H2N O N P H2N O O N(CH2CH2Cl)2 N P K CO (6eq) O N(CH CH Cl) TFAGln 2 3 2 2 2 N MeOH:ACN:H2O, 2:13:5 H-Gln H 22 N rt, 12 h, (70%) H 21

TFAGlnNHpyridyl2phosphoramidemustard(70mg,0.125mmol)wasdissolvedina

2:13:5mixtureofMeOH:ACN:H 2O(12mL).Then0.5Mpotassiumcarbonatesolution

(3mL)wasaddedandthemixturewasstirredatroomtemperatureforovernight(12h).

Thesolventwasrotovapedandproductpurifiedbyflashcolumnchromatography(30%

1 MeOH/DCMwith1%NH 4OH)togetawhitesolid(40mg,70%); HNMR(CD 3OD,

200MHz): δ 8.72(brs,1H),8.07(dd,1H, J=2.6,8.6Hz),7.48(d,1H, J=8.4Hz),4.94

(d, J=7.6),4.04(t,1H),3.533.61(m,4H),3.323.41(m,4H),2.42(t,2H),2.072.19

13 (m,2H); CNMR(CD 3OD,50MHz): δ175.6,152.3,140.4,134.4,128.3,122.0,66.7,

53.5,41.7,30.4,26.9;LCMS(ESI +):455.2[M+H] +,477.2[M+H+ Na]+.HRMS(FAB)

+ m/z calc’dforC 15 H25 Cl 2N6O4P[M+H] 455.1130,found455.1137.

Fm-glutaryl-Hyp-Ala-Ser-Chg-OH (20 )

O O O CH3 O H O N N OH N N H H O O OH HO 20

Thetargetpeptidewassynthesizedusingstandardsolidphasepeptidesynthesisprotocols using Advanced ChemTech90 model peptide synthesizer. The resin used for the 74 peptide assembly was 4hydroxymethylphenoxy wang resin (971 mg, 0.78 mmol), purchased from Advanced ChemTech. NαFmocprotected amino acids of the L configuration and reagents were purchased from Advanced ChemTech. CTerminal amino acid was loaded onto wang resin using HOBt/DMAP/DIC protocol. The subsequent Fmoc amino acids were activated and coupled using HOBt/HBTU/DIEA, using3foldexcessofactivatedprotectedaminoacidsandNMPassolvent.Theside chainhydroxylgroupofSerwasprotectedbytbutylgroupandthesecondaryhydroxyl groupinhydroxyproline(Hyp)wasnotprotected.Followingcompletionoftheassembly on the resin support, the Nterminal Fmoc group was removed via the standard 20% piperidine/NMP protocol, followed by washing (using dichloromethane/isopropanol/NMPwashprotocol).Aftereachcouplinganddeprotection step, Kaiser test wasperformed to determine the completeness of the aboveprocesses.

Deprotection and removal of the peptide from the resin support was effected by 95%

TFA in CH 2Cl 2. The fluorenyl methyl ester (OFm) protecting group remained intact undertheseconditions.Afterremovalofsolventsunder reducedpressure, thepeptide waspurifiedbypreparativeHPLC.GilsonHPLCsystemequippedwithPhenomenexC 18 column (10 m, 10 x 250 mm). Solvent A, 0.1% TFA/H 2O, solvent B, 0.075%

TFA/MeOH.Alineargradientof3090%Bin20minandaflowrateof12mL/min wereusedtoelutethepeptideandtheUVabsorbancewasmonitoredatboth220nmand

280nm.Thefractionat15minwascollectedandlyophilizedtodrynesstogiveawhite fluffysolid(130mg,46%);LCMS(ESI )719.3[MH] .

75 Glutaryl(OFm)-Hyp-Ala-Ser-Chg-Gln-NH-pyridyl-2-phosphoramide mustard (97 )

H N O N 2 P O N(CH2CH2Cl)2 H-Gln N H 21

Fmglutaryl-Hyp-Ala-Ser-Chg-OH (20) (1.1 eq) HBTU (1.2 eq) DIEA (2.4 eq) anhy.DMF, rt, 1 h

O H2N O O N P O CH3 O O O N(CH CH Cl) H H 2 2 2 O N N N N N N H H H O O OH HO 97 CONH2

The peptide FmglutarylHypAlaSerChgOH (47.5 mg,0.07mmol),HBTU(20mg,

0.05mmol)weredissolvedin400LNMPtowhichDIEA(18.46L,0.1mmol)was added and stirred at room temperature for 30 min. Then HGlnNHpyridyl2 phosphoramidemustard(20mg,0.04mmol)in400L NMPwasaddedtotheabove mixtureandstirredatroomtemperaturefor1h.Thencold5%NaHCO 3solution(5mL) wasaddeddropwisetothereactionmixturetoinduceprecipitationoftheproductasa whitesolid.Theprecipitatewasseparatedbycentrifugationandwashedwithcoldwater

(5mLx2)anddirectlyusedforthenextstep.LCMS(ESI +):1157.0[M+H] +.

76 Glutaryl-Hyp-Ala-Ser-Chg-Gln-NH-pyridyl-2-methyl phosphoramide mustard (19 )

O H2N O O N P O CH3 O O O N(CH CH Cl) H H 2 2 2 O N N N N N N H H H O O OH 97 HO CONH2

ACN 10% v/v DEA rt, 2 h (10%)

HO O H2N O CH N P O 3 O O O N(CH CH Cl) H H 2 2 2 O N N N N N N H H H O O OH HO CONH2 19

Glutary l(OFm)HypAlaSerChgGlnNHpyridyl2phosphoramidemustardobtainedin thepreviousstepwasdissolvedin500Lacetonitriletowhich10%v/vDEA(50L) wasaddedandmixturestirredatroomtemperaturefor2h.Thesolventwasrotovaped andresiduewaswashedwithether(500Lx3).Theproductprecipitatewascollected by centrifugation andpurifiedby reversephase HPLCusingHP1090systemequipped with Phenomenex C 18 column (10 m, 10 x 250 mm). Solvent A, H 2O/10 mM ammoniumacetate;solventB,80%ACN/H 2O/10mMammoniumacetate.Thegradient usedwas27%30%Bin15min.Aflowrateof3mL/minwasusedandUVabsorbance was monitored at 245 nm and 280 nm. The fraction at 13.2 min was collected and lyophilizedtodrynesstoobtainawhitefluffysolid(4mg,10%);LCMS(ESI )977.0

+ [MH] . HRMS (FAB) m/z calc’d for C 39 H61 Cl 2N10 O13 P [M+H] 979.3612, found

979.3519. 77 Stability assay of DIEA benzeneselenocarboxylate

To monitor the stability of DIEA benzeneselenocarboxylate, dibenzoyl diselenide was mixedwith1.2eqofDIEAand1.2eqofpiperidineatroomtemperatureunderanargon atmosphere.TheDIEAbenzeneselenocarboxylateformedwasthenallowedtostandat roomtemperatureorat55°Candaliquotswerecombinedwith2eqofptoluenesulfonyl azide.Theamideproduct,N(ptoluenesulfonyl)benzamide,wasanalyzedtodetermine theamountofDIEAbenzeneselenocarboxylatethatremainedinsolution.Theanalysis wasdoneusingShimadzuLCMS2010systemequippedwithaChromolithspeedROD

C18 reversedphasecolumn(5m,4.6x50mm).SolventAwas0.1%HCOOH/H 2O,

SolventBwas0.1%HCOOH/CH 3CN,andthegradientwas1090%Bin10min,ata flowrateof1mL/min.

Stability test in PSA assay buffer and hank’s buffer

Thepeptideconjugate 19 wasdissolvedin10LDMSOtowhich490LPSAbuffer

® (50mMTrisHCl,10mMCaCl 2,0.1%Tween 20)atpH8.0orhank’sbufferatpH7.4 wasadded.Themixturewasvortexedandincubatedat37°C.Aliquots(20L)were withdrawnatdifferenttimeintervalsandstoredfrozenpriortoHPLCanalysis.HP1090 systemequippedwithWaterssymmetryC 18 column(3.5m,4.6x150mm)wasused.

Gradientof10%50%acetonitrilecontaining10mMammoniumacetatebufferataflow rateof1mL/minandadetectionwavelengthof245nmwereusedforanalysis.Thehalf lifewasdeterminedbasedonthedisappearanceofthepeptideconjugate.

78 Prostate-specific antigen (PSA) assay

PSA was purchased from CALIBIOCHEM. The substrate was mixed with PSA at a molarratioof100to1inPSAbuffer.Substratestocksolution(5L,10mMinDMSO) wasaddedto295LPSAbuffersolution(50mMTrisHCl,pH8.0,10mMCaCl 2,0.1%

Tween ®20)prewarmedto37°C.Thereactionwasinitiatedbyadding245Lofthe abovesolutionto5LPSA(100g,2.45mg/mL).Aliquots(20L)werewithdrawnat various time intervals and quenched with 5 L acetonitrile and stored frozen prior to

HPLCanalysis.Thehalflifewascalculatedbasedonthedisappearanceofthepeptide conjugate.

In vitro antiproliferative assay of 5-nitropyridyl-2-methyl phosphoramide mustard

V79 Chinese hamster lung fibroblasts used for the assay were grown in a monolayer cultureinDMEMcontaining10%FCSand4mMglutamine.Cellsweremaintainedina humidified atmosphere with 5% CO 2 at 37 °C and subcultured twice weekly by trypsinization. The cells were transfected with a bicistronic vector encoding for the

E.coli nitroreductase and puromycin resistance protein as the selective marker. The positivecloneswerecollectedingrowthmediumcontaining10g/mLpuromycinand maintainedunderselectivepressure.Cellsexpressingeither E.coli nitroreductase(T116) or human quinone oxidoreductase (hDT7) in exponential phase of growth were trypsinized, seeded in 96well plates at a density of 1000 cells/well, and permitted to recover for 24 h. F179 cells were tranfected with only the vector and were used as controls.Thenthemediumwasreplacedwithfreshmediumcontainingthecosubstrate

(100M).Serialdilutionsofthetestcompoundwerepreparedandthenthecellswere 79 incubatedwiththetestcompoundat37°Cfor72h.Theplateswerefixedandstained withSRBbeforereadingwithopticalabsorptionat590nm.Resultswereexpressedasa percentageofcontrolgrowthandIC 50 valuesaretheconcentrationrequiredtoreducethe cellnumberto50%ofthecontrolandwereobtainedbyinterpolation.

In vitro antiproliferative activity assay in prostate cancer cell lines

The antiproliferative activity of glutarylHypAlaSerChgGlnNHpyridyl2methyl phosphoramidemustardwasinvestigatedusingastandard MTT assay in an androgen sensitive PSA–producing human prostate cancer cell line (LNCaP) and an androgen insensitivehumanprostatecancercellline(DU145)thatdoesnotproducePSA.Allcell lines were obtained from ATCC (American Type Culture Collection) and were maintainedinRPMI1640(w/LGluandphenolred)supplementedwith10%FBS(Fetal

BovineSerum),with100units/mLpenicillinGand100units/mLstreptomycinsulfate.

Cellsweresplitat80%confluencefollowingtrypsinizationandsubculturedat1:6and mediumchangedevery72h.TheharvestedcellswerewashedtwicewithHBSS(Hank’s bufferedsalinesolution)andresuspendedinfreshserumfreeculturemediumcontaining

2% v/v TCM and plated into 96well microtiter plates (5,000 cells in 0.1 mL medium/well).Aserialdilution(500M10nM)oftargetcompoundwaspreparedand added to the cells after over night incubation. Medium alone was used as negative control.ThecompoundwasevaluatedintriplicateandMTTassaywasperformed3days aftertheadditionoftargetcompound.Theabsorbanceat570nm(reference650nm)was readusingaDynatechMR5000microtiterplatereader.Wellscontainingmediumalone wereusedasblanks.TheIC 50 inhibitionconcentrationwascalculatedforbothcelllines. 80 REFERENCES

1. Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Smigal, C.; Thun, M. J. Cancerstatistics,2006. CA Cancer J. Clin. 2006, 56 ,106130. 2. Foye, W. O. Cancer Chemotherapeutic Agents. American Chemical Society: Washington,D.C., 1995,pp4952. 3. Hellmann, K.; Carter, S. K. Fundamentals of Cancer Chemotherapy. McGraw Hill:NewYork, 1987,pp1927. 4. Shan, K.; Lincoff, A. M.; Young, J. B. Anthracyclineinduced cardiotoxicity. Ann. Intern. Med. 1996, 125 ,4758. 5. Lowenthal, R. M.; Eaton, K. Toxicity of chemotherapy. Hematol. Oncol. Clin. North. Am. 1996, 10 ,967990. 6. Jiang,Y.;Hu,L.Phenylalanylaminocyclophosphamidesasmodelprodrugsfor proteolytic activation: synthesis, stability, and stereochemical requirements for enzymaticcleavage. Bioorg. Med. Chem. Lett. 2007, 17 (2),517521. 7. Brown,J.M.;Giaccia,A.J.Theuniquephysiologyofsolidtumors:opportunities (andproblems)forcancertherapy. Cancer Res. 1998, 58 ,14081416. 8. Denny, W. A. Hypoxiaselective cytotoxins Cancer Chemotherapeutic Agents. AmericanChemicalSociety:Washington,D.C., 1995,pp482500. 9. Denny,W.A.;Wilson,W.R.Tirapazamine:abioreductiveanticancerdrugthat exploitstumorhypoxia. Expert Opin. Invest. Drugs 2000, 9,28892901. 10. Haffty,B.G.;Son,Y.H.;Wilson,L.D.;Papac,R.; Fischer, D.; Rockwell, S.; Sartorelli, A. L.; Ross, d.; Sasaki, C. T.; Fischer, J. J. Bioreductive alkylating agentporfiromycinincombinationwithradiationtherapyforthemanagementof squamous cell carcinoma of the head and neck. Radial. Oncol. Invest. 1997, 5, 235245. 11. Workman, P. Enzymedirected bioreductive drug development revisited: a commentary on recent progress and future prospects with emphasis on quinine anticanceragentsandquininemetabolizingenzymes,particularlyDTdiaphorase. Oncol. Res. 1994, 6,461475. 12. Double,J.A.W.,P.Anewhighglucoronidasemousetumorcurablebyaniline mustardtherapy. Cancer Treat. Rep. 1977, 61 ,909911. 81 13. Connors, T. A.; Whisson, M. E. Cure of mice bearing advanced plasma cell tumorswithanilinemustard:Therelationshipbetweenglucoronidaseactivityand tumorsensitivity. Nature 1996,210 ,866867. 14. Ross, W. C.; Warwick, G. P. Reduction of cytotoxicity azo compounds by hydrazineandbythexanthineoxidasexanthinesystem. Nature 1955, 176 ,298 299. 15. Mittelman, A.; Shukla, S. K.; Welvaart, K.; Murphy, G. P. Oral estramustine phosphate(NSC89199)inthetreatmentofadvanced(stageD)carcinomaofthe prostate. Cancer Chemother. Rep. 1975, 59 ,219223. 16. Dubowchik, G. M.; Walker, M. A. Receptormediated and enzymedependent targetingofcytotoxicanticancerdrugs. Pharmacol. Ther. 1999, 83 ,67123. 17. Jiang,Y.;Han,J.;Yu,C.;Vass,O.S.;Searle,F.P.;Browne,P.;Knox,J.R.;Hu, L. Design, synthesis, and biological evaluation of cyclic and acyclic nitrobenzylphosphoramidemustardsfor E. coli nitroreductaseactivation. J. Med. Chem. 2006, 49 ,43334343. 18. Bagshawe,K.D.Antibodydirectedenzymesreviveanticancerprodrugsconcept. Br. J. Cancer 1987, 56 ,531532. 19. Bagshawe,K.D.;Springer,C.J.;Searle,F.;Antoniw,P.;Sharma,S.K.;Melton, R.G.,Sherwood,R.F.Acytotoxicagentcanbegeneratedselectivelyatcancer sites. Br. J. Cancer 1988, 58 ,700703. 20. Retta, B. M.; Burke, P. J.; Photiou, a.; Melton, R. G.; Enoamooquaye, E. Antibodydirected enzyme prodrug therapy (ADEPT)evidence for a bystander effectinvitro. Int. J. Oncol. 1996, 9,567570. 21. NiculescuDuvaz, I.;Springer,C.J.Antibodydirected enzyme prodrug therapy (ADEPT):areview. Adv. Drug Deliv. Rev. 1997, 26 ,151172. 22. Colvin, O. M. An overview of cyclophosphamide development and clinical applications. Curr. Pharm. Des. 1999, 5,555560. 23. Zon,G.Cyclophosphamideanalogues. Prog. Med. Chem. 1982, 19 ,205246. 24. Borch, R. F.; Millard, J. A. The mechanism of activation of 4 hydroxycyclophosphamide. J. Med. Chem. 1987, 30 ,427431. 25. Stec,W.J.Cyclophosphamideanditscongeners. J. Organophosphorous Chem. 1982, 13 ,145174. 82 26. Kwon,C.H.Metabolismbasedanticancerdrugdesign. Arch. Pharm. Res. 1999, 22 ,533541. 27. Borch,R.F.;Hoye,T.R.;Swanson,T.A.Insitupreparationandfateofcis4 hydroxycyclophosphamideandaldophosphamide:1Hand31PNMRevidencefor equilibration of cis and trans4hydroxycyclophosphamide with aldophosphamideanditshydrateinaqueoussolution. J. Med. Chem. 1984, 27 , 490494. 28. Low,J.E.;Borch,R.F.;Sladek,N.E.Furtherstudiesontheconversionof4 hydroxyoxazaphosphorinestoreactivemustardsandacroleinininorganicbuffers. Cancer Res. 1983, 43 ,58155820. 29. Sladek,N.E.;Landkamer,G.J.Restorationofsensitivitytooxazaphosphorines byinhibitorsofaldehydedehydrogenaseactivityinculturedoxazaphosphorine resistant L1210 and crosslinking agentresistant P388 cell lines. Cancer Res. 1985, 45 ,15491555. 30. Wrabetz,E.;Peter,G.;Hohorst,H.J.Doesacroleincontributetothecytotoxicity ofcyclophosphamide? Clin. Oncol. 1980, 98 ,119126. 31. Tietze, L. F.; Neumann, M.; Mollers, T.; Fischer, R.; Glusenkamp, K. H.; Rajewsky,M.F.;Jahde,E.Protonmediatedliberationofaldophosphamidefrom anontoxicprodrug:astrategyfortumorselectiveactivationofcytocidaldrugs. Cancer Res. 1989, 49 ,41794184. 32. Flader,C.;Liu,J.;Borch,R.F.Developmentofnovelquininephosphoramidate prodrugstargetedtoDTdiaphorase. J. Med. Chem. 2000, 43 ,31573167. 33. Hernick,M.;Flader,C.;Borch,R.F.Design,synthesis,andbiologicalevaluation ofindolequinonephosphoramidateprodrugs. J. Med. Chem. 2002, 45 ,35403548. 34. Hernick, M.; Borch, R. F. Studies on the mechanisms of activation of indolequinonephosphoramidateprodrugs. J. Med. Chem. 2003, 46 ,148154. 35. Bridgewater, J. A.;Springer, C.J.; Knox, R.J.; Minton,N.P.;Michael,N.P.; Collins,M.K.Expressionofthebacterialnitroreductaseenzymeinmammalian cellsrendersthemselectivelysensitivetokillingbytheprodrugCB1954. Eur. J. Cancer 1995, 31A ,23622370. 36. Knox,R.J.;Friedlos,F.;Sherwood,R.F.;Melton,R.G.;Anlezark,G.M.The bioactivation of 5(aziridin1yl)2,4dinitrobenzamide (CB1954). II. A comparison of an Escherichia coli nitroreductase and Walker DT diaphorase. Biochem. Pharmacol. 1992, 44 ,22972301. 83 37. Denny,W.A.NitroreductasebasedGDEPT. Curr. Pharm. Des. 2002, 8,1349 1361. 38. Hansch, C.; Leo, A. J. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology. AmericanChemicalSociety:Washington,D.C.,1995, pp7. 39. Jaffar, M.; Williams, K. J.; Stratford, I. J. Bioreductive and gene therapy approachestohypoxicdiseases. Adv. Drug. Deliv. Rev. 2001, 53 ,217228. 40. Hay,M.P.;Atwell,G.J.;Wilson,W.R.;Pullen,S.M.;Denny,W.A.Structure activity relationships for 4nitrobenzyl carbamates of 5aminobenzene indoline minor groove alkylating agents as prodrugs for GDEPT in conjunctionwith E. coli nitroreductase. J. Med. Chem. 2003, 46 ,24562466. 41. Mauger, A. B.; Burke, P. J.; Somani, H. H.; Friedlos, F.; Knox, R. J. Self immolativeprodrugs:candidatesforantibodydirectedenzymeprodrugtherapyin conjunctionwithanitroreductaseenzyme. J. Med. Chem. 1994, 37 ,34523458. 42. McNeish,I.A.;Green,N.K.;Gilligan,M.G.;Ford,M.J.;Mautner,V.;Young, L.S.;Kerr,D.J.;Searle,P.F.Virusdirectedenzymeprodrugtherapyforovarian and pancreatic cancer using retro virally delivered E. coli nitroreductase and CB1954. Gene Ther. 1998, 5,10611069. 43. Westphal, E. M.; Ge, J.; catchpole, J. R.; Ford, M.; Kenney, S. C. The nitroreductase/CB1954 combination in EpsteinBarr viruspositive Bcell lines: inductionofbystanderkillinginvitroandinvivo. Cancer Gene Ther. 2000, 7, 97106. 44. Anlezark,G.M.;Melton,R.G.;Sherwood,R.F.;Wilson,W.R.;Denny,W.A.; Palmer B. D., Knox R. J., Friedlos F., Williams A. Bioactivation of dinitrobenzamide mustards by an E.coli B nitroreductase. Biochem. Pharmacol. 1995, 50 ,609618. 45. Friedlos,F.;Denny,W.A.;Palmer,B.D.;Springer,C.J.Mustardprodrugsfor activation by Escherichia coli nitroreductase in genedirected enzyme prodrug therapy. J. Med. Chem. 1997, 40 ,12701275. 46. Boger,D.L.;Johnson,D.S.CC1065andtheduocarmycins:understandingtheir biological function through mechanistic studies. Angew. Chem. Int. Ed. Engl. 1996, 35 ,14381474. 47. Hu,L.Q.;Yu,C.Z.;Jiang,Y.Y.;Han,J.Y.;Li,Z.R.;Browne,P.;Race,P.R.; Knox,R.J.;Searle,P.F.;Hyde,E.I.Nitroarylphosphoramidesasnovelprodrugs for E. coli nitroreductase activation in enzyme prodrug therapy. J. Med. Chem. 2003, 46 ,48184821. 84 48. GuibeJampel,E.;Wakselman,M.Selectivecleavageofpnitrobenzylesterswith sodiumdithionite. Synth. Commun. 1982, 12 ,219223. 49. Wu, X.; Hu, L. Amide bond formation from selenocarboxylates and aromatic azides. Tetrahedron Lett. 2005, 46 ,84018405. 50. Wu, X.; Hu, L. Efficient amidation from carboxylic acids and azides via selenatriazoline: application to the coupling of amino acids and peptides with azides. J. Org. Chem. 2007, 72 (3),765774. 51. Inazu,T.;Kobayashi,K.AnewsimplemethodforthesynthesisofNaFmocNB glycosylatedLasparaginederivatives. Synlett 1993, 869870. 52. Mizuno,M.;Haneda,K.;Iguchi,R.;Muramoto,I.;Kawakami,T.;Aimoto,S.; Yamamoto,K.;Inazu,T.Synthesisofaglycopeptidecontainingoligosaccharides: chemoenzymatic synthesis of eel calcitonin analogues having natural Nlinked oligosaccharides. J. Am. Chem. Soc. 1999, 121 ,284290. 53. Mizuno, M.; Muramoto, I.; Kobayashi, K.; Yaginuma, H.; Inazu, T. A simple method for the synthesis of Nglycosylatedasparagine and glutamine derivatives. Synthesis 1999 ,162165. 54. Hakimelahi, G. H.; Just, G. A simple synthesis of 2,2disubstituted tetrahydrothiophenes. Tetrahedron Lett. 1980, 21 ,21192122. 55. Rosen,T.;Lico,I.M.;Chu,D.T.W.Aconvenientandhighlychemoselective method for the reductive acetylation of azides. J. Org. Chem. 1988, 53 , 1580 1582. 56. Shangguan,N.;Katukojvala,S.;Greenberg,R.;Williams, L. J. The reaction of thioacidswithazides:anewmechanismandnewsyntheticapplications. J. Am. Chem. Soc. 2003, 125 ,77547755. 57. Knapp, S.; Darout, E. New reactions of selenocarboxylates. Org. Lett. 2005, 7, 203206. 58. Garcia, J.; Urpf, F.; Vilarrasa, J. New synthetic "tricks". Triphenylphosphine mediated amide formation from carboxylic acids and azides. Tetrahedron Lett. 1984, 25 ,48414844. 59. Bosch, I.; Urpi, F.; Vilarrasa, J. Epimerisationfree peptide formation from carboxylicacidanhydridesandazidoderivatives. J. Chem. Soc., Chem. Commun. 1995 ,9192. 85 60. Boullanger,P.;Maunier,V.;Lafont,D.Synthesisofamphiphilicglycosylamides fromglycosylazideswithouttransientreductionto glycosylamines. Carbohydr. Res. 2000, 324 ,97106. 61. Damkaci, F.; DeShong, P. Steroselective synthesis of α and βglycosylamide derivatives from glycopyranosyl azides via isoxazoline intermediates. J. Am. Chem. Soc. 2003, 125 ,44084409. 62. Saxon,E.;Armstrong,J.I.;Bertozzi,C.R.A"traceless"staudingerligationfor thechemoselectivesynthesisofamidebonds. Org. Lett. 2000, 2,21412143. 63. Nilsson,B.L.;Kiessling,L.L.;Raines,R.T.Staudingerligation:apeptidefrom athioesterandazide. Org. Lett. 2000, 2,19391941. 64. Staudinger, H.; Meyer, J. Uber neue organische phosphorverbindunge III. phosphinmethylenederivativeundphosphinime. Helv. Chim. Acta. 1919, 2 ,635 646. 65. Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified staudinger reaction. Science 2000, 287 ,20072010. 66. Saxon, E.; Luchansky, S.J.; Hang, H. C.; Yu, C.; Lee, S. C.; Bertozzi, C. R. Investigating cellular metabolism of synthetic azido sugars with the staudinger ligation. J. Am. Chem. Soc. 2002, 124 ,1489314902. 67. Vocadlo, D. J.; Hang, H. C.; Kim, E.J.; Hanover, J. A.; Bertozzi, C. R. A chemical approach for identifying OGlcNAc modified proteins in cells. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 ,91169121. 68. Prescher,J.A.;Dube,D.H.;Bertozzi,C.R.Chemicalremodelingofcellsurfaces inlivinganimals. Nature 2004, 430. 69. He,Y.;Hinklin,R.J.;Chang,J.;Kiessling,L.L.StereoselectiveNglycosylation bystaudingerligation. Org. Lett. 2004, 6,44794482. 70. Dube,D.H.;Prescher,J.A.;Quang,N.C.;Bertozzi,C.R.ProbingmuchtypeO linkedglycosylationinlivinganimals. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 , 48194824. 71. Soellner,M.B.;Nilsson,B.L.;Raines,R.T.Staudingerligationofαazidoacids retainsstereochemistry. J. Org. Chem. 2002, 67 ,49934996. 72. Nilsson,B.L.;Hondal,R.J.;Soellner,M.B.;Raines,R.T.Proteinassemblyby orthogonalchemicalligationmethods. J. Am. Chem. Soc. 2003, 125 ,52685269. 86 73. Soellner,M.B.;Dickson,K.A.;Nilsson,B.L.;Raines,R.T.Sitespecificprotein immobilization by staudinger ligation. J. Am. Chem. Soc. 2003, 125 , 11790 11791. 74. Merkx,R.;Rijkers,D.T.S.;Kemmink,J.;Liskamp, R. M. J. Chemoselective coupling of peptide fragments using the staudinger ligation. Tetrahedron Lett. 2003, 44 ,45154518. 75. David, O.; Meester, W. J.; Bieraugel, H.; Schoemaker, H. E.; Hiemstra, H.; Maarseven, J. H. V. Intramolecular staudinger ligation: a powerful ringclosure methodtoformmediumsizedlactams. Angew. Chem. Int. Ed. 2003, 42 , 4373 4375. 76. Lin, L. F.; Hoyt, M. H.; Halbeek, V. H.; Bergman, G. R.; Bertozzi, C. R. Mechanisticinvestigationofthestaudingerligation. J. Am. Chem. Soc. 2005, 127 , 26862695. 77. Kawahara,Y.;Kato,S.;Kanda,T.;Murai,T.;Ishihara,H.Afacilepreparationof RubidiumandCesiumselenocarboxylates. J. Chem. Soc., Chem. Commun. 1993 , 277278. 78. Kawahara, Y.; Kato, S.; Kanda, T.; Murai, T. Rubidium and cesium selenocarboxylates: synthesis and characterization. Bull. Chem. Soc. Jpn. 1994, 67 ,18811885. 79. Fitzmaurice,J.C.;Williams,D.J.;Wood,P.T.;Woollins,J.D.Conversionof carboxylicacidstoselenocarboxylicacids. J. Chem. Soc., Chem. Commun. 1988 , 741743. 80. Kojima,Y.;Ibi,K.;Kanda,T.;Murai,T.;Kato,S.Afacilepreparationoflithium selenocarboxylates. Bull. Chem. Soc. Jpn. 1993, 66 ,990992. 81. Ishihara,H.;Hirabayashi,Y.Thesynthesisofpotassiumselenocarboxylatesand theirderivatives. Chem. Lett. 1976, 5,203204. 82. Ishilhara, H.; Muto, S.; Kato, S. A convenient preparation of piperidium selenocarboxylates. Synthesis 1986 ,128130. 83. Kageyama,H.;Takagi,K.;Murai,T.;Kato,S.Isolationofcrystallinepotassium alkanecarboselenoates. Z. Naturforsch 1989, 44b ,15191523. 84. Jessup, M. J.; McGinnis, L. S.; Winchester, D. P.; Eyre, H.; Fremgen, A.; Murphy,G.P.;Menck,H.R.Clinicalhighlightsfromthenational cancerdata base:1996. CA Cancer J. Clin. 1996, 46 ,485192. 87 85. Sepplorenzino,L.;Slovin,S.Prostatecancer:therapeuticpatentreview. Expert Opin. Ther. Pat. 2000, 10 ,18331842. 86. Gulley,J.;Arlen,P.;Dahut,W.Treatingsystemicprostatecancer:emergingdrug targetsandtherapies. Expert Opin. Ther Targets 2000,4,751763. 87. Walczak,J.R.;Carducci,M.A.Pharmacologicaltreatmentsforprostatecancer. Expert Opin. Investig. Drugs 2002, 11 ,17371748. 88. Gilligan, T.; Kantoff, P. W. Chemotherapy for prostate cancer. Urol. 2002, 60 , 94100. 89. Senter,P.D.W.; P.M.;Svensson;Al,H.P.;Vrudhula,V.M.;Kerr,D.E.;Hellstrom, I.;Hellstrom,K.E .Generationofcytotoxicagentsbytargetedenzymes. Bioconjug. Chem 1993, 4,39. 90. Castellani, W. J. Cancer (prostatespecific antigen). Anal. Chem. 1995 , 399R 403R. 91. McCormack,R.T.;Rittenhouse,H.G.;Finlay,J.A.;Sokoloff,R.L.;Wang,T.J.; Wolfert,R. L.; Lilja, H.;Oesterling,J.E.Molecular forms of prostatespecific antigenandthehumankallikreingenefamily:anewera. Urol. 1995, 45 ,729744. 92. Lilja, H.; Christensson, A.; Dahlen, U.; Matikainen, M. T.; Nilsson, O.; Pettersson, K.; Lovgren, T. Prostatespecific antigen in human serum occurs predominantlyincomplexwithalphachymotrypsin. Clin. Chem. 1991, 37 ,1618 1625. 93. Catalona,W.J.;Smith,D.S.;Ratliff,T.L.;Dodds,K.M.;Coplen,D.E.Yuan,J. J.J.;Petros,J.A.;Andriole,G.L.Measurementofprostatespecific antigen in serumasascreeningtestforprostatecancer. N. Engl. J. Med. 1991, 324 ,1156 1161. 94. Denmeade,S.R.;Lou,W.;Lovgren,J.;Malm,J.;Lilja,H.;Isaacs,J.T.Specific andefficientpeptidesubstratesforassayingtheproteolytic activity ofprostate specificantigen.Cancer Res. 1997, 57 ,49244930. 95. Garsky,V.M.;Lumma,P.K.;Feng,D.M.;Wai,J.;Ramjit,G.H.;Sardana,K. M.;Oliff,A.;Jones,E.R.;DeFeoJones,D.;Freidinger,M.R.Thesynthesisofa prodrugofdoxorubicindesignedtoprovidereducedsystemictoxicityandgreater targetefficacy. J. Med. Chem. 2001, 44 ,42164224. 96. Kratz,F.;Beyer,U.;Roth,T.;Tarasova,N.;Collery,P.;Lechenault,F.;Cazabat, A.;Schumacher,P.;Unger,C.;Falken,U.Trasferrinconjugatesofdoxorubicin: synthesis,characterization,cellularuptake,andinvitroefficacy. J. Pharm. Sci. 1998 , 87 (3),338346. 88 97. Khan,S.R.;Denmeade,S.R.Invivoactivityofa PSAactivated doxorubicin prodrugagainstPSAproducinghumanprostatecancerxenografts. Prostate 2000, 45 ,80. 98. DeFeoJones,D.;Garsky,V.M.;Wong,B.K.;Feng,DM.;Bolyar,T.;Haskell, K.;Kiefer,D.M.;Leander,K.;McAvoy,E.;Lumma,P.;Wai,J.;Senderak,E.T.; Motzel,S.L.;Keenan,K.;Zwieten,M.V.;Lin,J.H.; Freidinger, R.; Huff, J.; Oliff, A.; Jones, R. E. A peptidedoxorubicin 'prodrug' activated by prostate specificantigenselectivelykillsprostatetumorcellspositiveforprostatespecific antigeninvivo. Nature Med. 2000, 6,12481252. 99. Davidson, G. A.; Varhol, R. J. Kinetics of thapsigarginCa 2+ ATPase (sarcoplasmic reticulum) interaction reveals a twostep binding mechanism and picomolarinhibition. J. Biol. Chem. 1995, 270 ,1173111734. 100. Pinski,J.;Parikh,A.;Bova,S.;Isaacs,J.T.Therapeuticimplicationsofenhanced G0/G1 checkpoint control induced by co culture of prostate cancer cells with osteoblasts. Cancer Res. 2001, 61 ,63726376. 101. Schulze,H.;Isaacs,J.T.;Coffey,D.S.Acriticalreviewoftheconceptoftotal androgenablationinthetreatmentofprostatecancer Prog. Clin. Biol. Res. 1987, 243A ,119. 102. Brady,S.F.;Pawluczyk,J.M.;Lumma,P.K.;Feng,D.M.;Wai,J.M.;Jones,R.; DeFeoJones,D.;Wong,B.K.;MillerStein,C.;Lin,J.H.;Oliff,A.;Freidinger, R.M.;Garsky,V.M.Designandsynthesisofaprodrugofvinblastinetargetedat treatment of prostate cancer with enhanced efficacy and reduced systemic toxicity. J. Med. Chem. 2002, 45 ,47064715. 103. Denmeade, S. R.; Nagy, A.; Gao, J.; Lilja, H.; Schally, A. V.; Issacs, J. T. Enzymatic activation of a doxorubicin prodrug by prostatespecific antigen. Cancer Res. 1998, 58 ,25372540. 104. O’connor, P. M.; Jackman, J.; Bae, I.; Myers, T. G.; Fan, S.; Mutoh, M.; Scudiero, D. A.; Monks, A.; Sausville, E. A.; Weinstein, J. N.; Friend, S.; Fornace, A. J.; Kohn, K. W. Characterization of the p53 tumor suppressor pathwayincelllinesoftheNationalCancerInstituteAnticancerDrugscreenand correctionswithgrowthinhibitorypotencyof123anticanceragents. Cancer Res. 1997, 57 ,42854300. 105. Lipinski,C.A.;Lombardo,F.;Dominy,B.W.;Feeney,P.J.Experimentaland computational approaches to estimate solubility and permeability in drug discoveryanddevelopmentsettings. Adv. Drug. Deliv. Rev. 2001, 46 ,326. 89 106. Katritzky, R. A.; Li, J.; Stevens, V. C. An alternative synthesis of aryl and heteroarylbromidesfromactivatedarylhydroxycompounds Org. Prep. Proced. Int. 1994, 26 (4),439444. 107. Ager,J.D.;Erickson,A.R.;Froen,E.D.;Prakash,I.Thesynthesisofthehigh potencysweetener,NC00637.Part2:Preparationofthepyridinemoiety. J. Am. Chem. Soc. 2004, 8,6271. 108. Ishihara, H.; Koketsu, M.; Fukuta, Y.; Nada, F. Reaction of lithium aluminum hydride with elemental selenium: its application as a selenating reagent into organicmolecules. J. Am. Chem. Soc. 2001, 123 ,84088409. 109. Koketsu,M.;Nada,F.;Hiramatsu,S.;Ishihara,H.Reactionofacylchlorideswith LiAlHSeH.Preparationofdiacylselenides,diacyldiselenides,selenocarboxylates andcyclicselenoanhydride. J. Chem. Soc., Perkin Trans 1 2002 ,737740. 110. Bromilow, J.; Brownlee, R. T. C.; Lopez, V. O.; Taft, R. W. Parasubstituent carbon13chemicalshiftsinsubstitutedbenzenes.J. Org. Chem. 1979, 44 ,4466 4470. 111. Sawanishi, H.; Tajima, K.; Tsuchiya, T. Studies on diazepines. XXVIII. Syntheses of 5H1,3diazepines and 2H1,4diazepines from 3azidopyridines. Chem. Pharm. Bull. 1987, 35 (10),41014109. 112. Finch,N.;Campbell,T.R.;Gemenden,C.W.;Antonaccio,M.J.;Povalski,H.J. Synthesis and antihypertensive activity of 5thio2pyridinecarboxylic acid derivatives.J. Med. Chem. 1978, 21 ,12691274.