(2008) the Synthesis of Vinylphosphonate-Linked RNA. Phd Thesis, University of Nottingham

Total Page:16

File Type:pdf, Size:1020Kb

(2008) the Synthesis of Vinylphosphonate-Linked RNA. Phd Thesis, University of Nottingham Collis, Alana E.C. (2008) The synthesis of vinylphosphonate-linked RNA. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/10541/1/Alana_Collis_Thesis.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] THE SYNTHESIS OF VINYLPHOSPHONATE-LINKED RNA Alana E. C. Collis, MChem. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy February 2008 Abstract An introductory chapter discusses the steric block, RNase H and RNA interference antisense mechanisms and the application of antisense nucleic acids as therapeutic agents. Examples of existing chemical modifications of the sugar and backbone regions of nucleic acids are given, followed by the introduction of the vinylphosphonate modification. The vinylphosphonate has previously been examined in DNA and has been synthesised by either Pd(0) catalysed cross- coupling of an H-phosphonate with a vinyl bromide, or by the cross- metathesis of a vinylphosphonate with a terminal olefin. This thesis details the first examples of the vinylphosphonate modification in RNA. The initial aim of this project was the synthesis of a range of nucleosides where the 5’-C-O was replaced by a vinyl bromide carbon-carbon double bond. Starting from -D-glucose, acid catalysed formation of the 1,2:5,6- diisopropylidene -D-glucofuranose was carried out followed by protection of the 3’-OH as an acetate. The 5,6-isopropylidene was then subjected to H5IO6 mediated one-pot hydrolysis-oxidative cleavage to obtain the 5-aldehyde. Wittig olefination using CBr4 and Ph3P led to the dibromo olefin which was then stereoselectively reduced using dimethyl phosphite and diisopropylamine to obtain the pure trans-vinyl bromide. Following hydrolysis of the acetate, the stereochemistry of the 3-OH was then inverted by sequential oxidation and reduction. With the correct stereochemistry, the 3-OH - i - was protected as the 2-methylnaphthyl ether. The 1,2- isopropylidene moiety was then hydrolysed and acetylated to the bis-acetate which was subjected to Vorbrüggen conditions obtaining the uridine (93%), adenosine (77%), cytidine (30) and guanosine (63%) vinyl bromide nucleosides. The 2’-OAc of the nucleosides were hydrolysed to the 2’-OH in yields of 74-92%. The uridine 2’- OH was protected as the 2’-OTBS ether (98%), analogous to the commercially available phosphoramidites used in automated oligonucleotide synthesis. Similarly, the adenosine and uridine nucleosides could also be blocked as the 2’-OMe (59% and 73% respectively). In the case of the uridine vinyl bromide, the 3’-O-(2- methylnaphthyl) protecting group was cleaved using DDQ, this then enabled the vinylphosphonate-linked uridine dinucleotides to be functionalised at the 3’-OH as the cyanoethyl phosphoramidite using N,N-diisopropyl-2-cyanoethyl-chlorophosphoramidite, DIPEA and DMAP in dichloromethane (2’-OTBS 74%, 2’-OMe 41%). These could then be used in automated solid phase oligonucleotide synthesis. The H-phosphonates were prepared in a single step form the commercially available phosphoramidites using a tetrazole. These were then coupled to the vinyl bromide nucleosides using standard conditions of Pd(OAc)2 (0.2 eq.), dppf (0.4 eq.) and propylene oxide (20 eq.) in THF at 70 oC in a sealed vial for 6 hours. A range of vinylphosphonate-linked dinucleotides were accessed in yields of 61- 99%. - ii - A detailed experimental section at the end of this thesis describes the procedures used in the synthesis and the analysis of the structures obtained. - iii - Acknowledgements Throughout my PhD I have received guidance and advice from my supervisor Dr Chris Hayes, for which I am very grateful. The members of the Hayes research group have offered friendship, support and made my PhD both interesting and fun! The technical support staff within the Chemistry Department have always offered assistance. In particular, Dane Toplis has been indispensable in keeping things running. During my PhD I have been faced with additional challenges and I am immensely grateful to everyone who has offered support during this time. This includes everyone in the Organic section, Professor Ivan Powis and University of Nottingham Student Support. I could not have kept going without their support. Unwavering support has also come from my family and friends. They have always been there for me, giving encouragement and support whenever it is needed. Throughout my PhD I have been funded by the EPSRC and towards the end I also received financial support from the University of Nottingham. I am grateful to both of these for the support that has enabled me to complete my PhD. - iv - Table of Contents Abstract i Acknowledgements iv Abbreviations vii 1. Introduction 1 1.1 Therapeutic Agents 2 1.2 Targeting the Nucleic Acids 4 1.3 The Antisense Strategy 5 1.4 Nucleic Acid Modifications 14 1.5 Vinylphosphonate-Linked Nucleic Acids 34 1.6 The Synthesis of Vinylphosphonates 41 1.7 Aims of Research 62 Results and Discussion 65 2.1 Synthesis of the Vinyl Bromide Precursor 66 2.2 Second Generation Synthesis 72 2.3 Vinyl bromide nucleosides 101 2.4 Synthesis of H-Phosphonates 115 2.5 Palladium(0) Cross-Couplings 117 3 Conclusions and Future Work 124 3.1 Conclusions 124 3.2 Future Work 125 4 Experimental 128 - v - 4.1 General Considerations 129 4.2 Synthesis of the Generic Vinyl Bromide 132 4.3 Vinyl Bromide Nucleosides 157 4.4 H-Phosphonates 190 4.5 Vinylphosphonate-linked Dinucleotides 196 5 References 235 6 Appendix 255 - vi - Abbreviations A Adenine AIBN 2,2’-Azoisobutyronitrile AON Antisense oligonucleotide app Apparent aq Aqueous Bhoc Benzyhydroxycarbonyl borsm Based on recovered starting material BSA N,O-bis(trimethylsilyl)acetamide BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide BTEAC Benzyltriethylammonium chloride Bz Benzoyl C Cytosine CAN Cerium ammonium nitrate CE Cyanoethyl CMV Cytomegalovirus DAST Diethylamino sulphurtrifluoride DBU 1,8-Diazobicyclo[5.4.0]undec-7-ene DCA Dichloroacetic acid DCM Dichloromethane dd Double doublet ddd Double double doublet DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone DIPEA Diisopropylethyl amine DMP Dess Martin periodinane DMT Dimethoxytrityl - vii - dppf 1,1’-bis(diphenylphosphino)-ferrocene dsRNA Double stranded RNA ENA Ethylene Nucleic Acid Fmoc Fluorenylmethoxycarbonyl G Guanine HPLC High Performance Liquid Chromatography imid. Imidazole KHMDS Potassium hexamethydisilazide LNA Locked Nucleic Acid MBHA 4-Methyl benzhydrylamine mRNA Messenger RNA Nap Naphthyl nt Nucleotide PDC Pyridinium Dichromate PMB para-methoxy benzyl PNA Peptide nucleic acid pyr Pyridine RISC RNA Induced Silencing Complex RNAi RNA Interference rsm Recovered starting material siRNA Short interfering RNA ssRNA Single stranded RNA T Thymine TBAI Tetra n-butylammonium iodide TBHP tert-Butyl hydroperoxide TIPDS tetraisopropyldisiloxane - viii - Tm Melting temperature TMS Trimethylsilyl TOCSY Total correlation spectroscopy TPAP Tetra n-propylammonium perruthenate U Uracil - ix - - INTRODUCTION - - 1 - Introduction 1. Introduction 1.1 Therapeutic Agents Starting in 1990, the Human Genome Project saw one of the greatest landmarks in scientific history realised in 2003 when the sequence of the 3.7 billion base pairs that make up our human DNA was reported.1 Previous to this the two groups striving to unravel the genetic code; the International Human Genome Project (HGP) and the biotechnology firm Celera both reported outline sequences of the human genome in 2001.2,3 Identifying the 30,000 to 40,000 genes within human DNA, separated by non- coding regions also embraced new technologies.2 Building on this knowledge, it is anticipated that understanding of the proteome and other molecular machinery will increase, enabling scientists to better identify, diagnose and treat disease.4 Traditionally, disease is treated by directing small molecule drugs to target proteins such as enzymes and receptors. Drug discovery is a lengthy, expensive process; in 1997 it was estimated that 100,000 compounds were screened every day and that several million compounds screened, identified a few thousand with the desired characteristic.5 It is estimated that for every 5000-7000 compounds screened, five may progress to clinical trials and only
Recommended publications
  • Sulfonyl-Containing Nucleoside Phosphotriesters And
    Sulfonyl-Containing Nucleoside Phosphotriesters and Phosphoramidates as Novel Anticancer Prodrugs of 5-Fluoro-2´-Deoxyuridine-5´- Monophosphate (FdUMP) Yuan-Wan Sun, Kun-Ming Chen, and Chul-Hoon Kwon†,* †Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Jamaica, New York 11439 * To whom correspondence should be addressed. Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia parkway, Jamaica, NY 11439. Tel: (718)-990-5214, fax: (718)-990-6551, e-mail: [email protected]. Abstract A series of sulfonyl-containing 5-fluoro-2´-deoxyuridine (FdU) phosphotriester and phosphoramidate analogues were designed and synthesized as anticancer prodrugs of FdUMP. Stability studies have demonstrated that these compounds underwent pH dependent β-elimination to liberate the corresponding nucleotide species with half-lives in the range of 0.33 to 12.23 h under model physiological conditions in 0.1M phosphate buffer at pH 7.4 and 37 °C. Acceleration of the elimination was observed in the presence of human plasma. Compounds with FdUMP moiety (4-9) were considerably more potent than those without (1-3) as well as 5-fluorouracil (5-FU) against Chinese hamster lung fibroblasts (V-79 cells) in vitro. Addition of thymidine (10 µM) reversed the growth inhibition activities of only 5-FU and the compounds with FdUMP moiety, but had no effect on those without. These results suggested a mechanism of action of the prodrugs involving the intracellular release of FdUMP. Introduction 5-Fluoro-2´-deoxyuridine-5´-monophosphate (FdUMP) is the major metabolite responsible for the anticancer activity of 5-FU (Chart 1).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • 744 Hydrolysis of Chiral Organophosphorus Compounds By
    [Frontiers in Bioscience, Landmark, 26, 744-770, Jan 1, 2021] Hydrolysis of chiral organophosphorus compounds by phosphotriesterases and mammalian paraoxonase-1 Antonio Monroy-Noyola1, Damianys Almenares-Lopez2, Eugenio Vilanova Gisbert3 1Laboratorio de Neuroproteccion, Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Morelos, Mexico, 2Division de Ciencias Basicas e Ingenierias, Universidad Popular de la Chontalpa, H. Cardenas, Tabasco, Mexico, 3Instituto de Bioingenieria, Universidad Miguel Hernandez, Elche, Alicante, Spain TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Organophosphorus compounds (OPs) and their toxicity 2.2. Metabolism and treatment of OP intoxication 2.3. Chiral OPs 3. Stereoselective hydrolysis 3.1. Stereoselective hydrolysis determines the toxicity of chiral compounds 3.2. Hydrolysis of nerve agents by PTEs 3.2.1. Hydrolysis of V-type agents 3.3. PON1, a protein restricted in its ability to hydrolyze chiral OPs 3.4. Toxicity and stereoselective hydrolysis of OPs in animal tissues 3.4.1. The calcium-dependent stereoselective activity of OPs associated with PON1 3.4.2. Stereoselective hydrolysis commercial OPs pesticides by alloforms of PON1 Q192R 3.4.3. PON1, an enzyme that stereoselectively hydrolyzes OP nerve agents 3.4.4. PON1 recombinants and stereoselective hydrolysis of OP nerve agents 3.5. The activity of PTEs in birds 4. Conclusions 5. Acknowledgments 6. References 1. ABSTRACT Some organophosphorus compounds interaction of the racemic OPs with these B- (OPs), which are used in the manufacturing of esterases (AChE and NTE) and such interactions insecticides and nerve agents, are racemic mixtures have been studied in vivo, ex vivo and in vitro, using with at least one chiral center with a phosphorus stereoselective hydrolysis by A-esterases or atom.
    [Show full text]
  • Asymmetric Synthesis of Organophosphates and Their
    ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Batool J. Murtadha Dayton, Ohio May 2020 ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. APPROVED BY: __________________________________ Jeremy Erb, Ph.D. Research Advisor Assistant Professor Department of Chemistry University of Dayton ___________________________________ Vladimir Benin, Ph.D. Professor of Chemistry Department of Chemistry University of Dayton ___________________________________ Justin C. Biffinger, Ph.D. Committee Member Assistant Professor Department of Chemistry University of Dayton ii © Copyright by Batool J. Murtadha All rights reserved 2020 iii ABSTRACT ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. University of Dayton Advisor: Dr. Jeremy Erb Organophosphorus compounds (OPs) are widely used in the agricultural industry especially in the pesticide market. Phosphates play a huge role as biological compounds in the form of energy carrier compounds like ATP, and medicine as antivirals. OPs have become increasingly important as evidenced by the publication of new methods devoted to their uses and synthesis. These well-established studies lay the basis for industrial organic derivatives of phosphorus preparations. The current work explored methods of synthesizing chiral organophosphate triesters. We experimented with different processes roughly divided into either an electrophilic or nucleophilic strategy using chiral Lewis acids, organocatalysts (HyperBTM), activating agents, and chiral auxiliaries with the goal of control stereoselectivity. These methods were explored through the use of different starting materials like POCl3, triethyl phosphate, methyl phosphordichloradate, and PSCl3.
    [Show full text]
  • Synthesis of 4-Phosphono Β-Lactams and Related Azaheterocyclic Phosphonates
    SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES IR . KRISTOF MOONEN To Elza Vercauteren Promotor: Prof. dr. ir. C. Stevens Department of Organic Chemistry, Research Group SynBioC Members of the Examination Committee: Prof. dr. ir. N. De Pauw (Chairman) Prof. dr. J. Marchand-Brynaert Prof. dr. A. Haemers Prof. dr. S. Van Calenbergh Prof. dr. ir. E. Vandamme Prof. dr. ir. R. Verhé Prof. dr. ir. N. De Kimpe Dean: Prof. dr. ir. H. Van Langenhove Rector: Prof. dr. P. Van Cauwenberge IR . KRISTOF MOONEN SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Chemistry Dutch translation of the title: Synthese van 4-fosfono-β-lactamen en aanverwante azaheterocyclische fosfonaten ISBN-Number: 90-5989-129-5 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Woord Vooraf Toen ik op een hete dag in de voorbije zomer dit woord vooraf schreef, stond ik voor één van de laatste horden te nemen in de weg naar het “doctoraat”. Het ideale moment voor een nostalgische terugblik op een zeer fijne periode, hoewel het onzinnig zou zijn te beweren dat alles rozegeur en maneschijn was. En op het einde van de rit komt dan ook het moment waarop je eindelijk een aantal mensen kunt bedanken, omwille van sterk uiteenlopende redenen.
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Division of Polymer Chemistry (POLY)
    Division of Polymer Chemistry (POLY) Graphical Abstracts Submitted for the 258th ACS National Meeting & Exposition August 25 - 29, 2019 | San Diego, CA Table of Contents [click on a session time (AM/PM/EVE) for link to abstracts] Session SUN MON TUE WED THU AM AM Polymerization-Induced Nanostructural Transitions PM PM Paul Flory's "Statistical Mechanics of Chain Molecules: The 50th AM AM Anniversary of Polymer Chemistry" PM PM AM AM AM Eco-Friendly Polymerization PM PM EVE AM Characterization of Plastics in Aquatic Environments PM PM AM General Topics: New Synthesis & Characterization of Polymers AM PM AM PM EVE Future of Biomacromolecules at a Crossroads of Polymer Science & AM AM EVE Biology PM PM Industrial Innovations in Polymer Science PM AM AM Polymers for Defense Applications PM AM PM EVE Henkel Outstanding Graduate Research in Polymer Chemistry in AM Honor of Jovan Kamcev AM AM Polymeric Materials for Water Purification PM AM PM EVE Young Industrial Polymer Scientist Award in Honor of Jason Roland AM Biomacromolecules/Macromolecules Young Investigator Award PM Herman F. Mark Award in Honor of Nicholas Peppas AM DSM Graduate Student Award AM Overberger International Prize in Honor of Kenneth Wagner PM Note: ACS does not own copyrights to the individual abstracts. For permission, please contact the author(s) of the abstract. POLY 1: High throughput and solution phase TEM for discovery of new pisa reaction manifolds Nathan C. Gianneschi1, [email protected], Mollie A. Touve1, Adrian Figg1, Daniel Wright1, Chiwoo Park2, Joshua Cantlon3, Brent S. Sumerlin4. (1) Chemistry, Northwestern University, Evanston, Illinois, United States (2) Florida State University, Tallahassee, Florida, United States (3) SCIENION, San Francisco, California, United States (4) Department of Chemistry, University of Florida, Gainesville, Florida, United States We describe the development of a high-throughput, automated method for conducting TEM characterization of materials, to remove this bottleneck from the discovery process.
    [Show full text]
  • Aldrichimica Acta 53.1 2020
    VOLUME 53, NO. 1 | 2020 CHEMISTRY IN CHINA SPECIAL ISSUE (中国特刊) ALDRICHIMICA ACTA CONTRIBUTORS TO THIS ISSUE (此特刊的贡献者) Xiaoming Feng (冯小明), Sichuan University Shu-Li You (游书力), SIOC, Chinese Academy of Sciences Xuefeng Jiang (姜雪峰), East China Normal University Wenjun Tang (汤文军), SIOC, Chinese Academy of Sciences The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. DEAR READER: 1 Nature Index Country/Territory Outputs – By most measures, China’s transformation over the past half-century Chemistry (https://www.natureindex.com/ country-outputs/generate/Chemistry/global/ has been nothing short of spectacular, with its economy now ranked All/n_article) second in the world, an annual GDP north of USD 13 trillion, and 119 2 Nature Index 2019 Tables: Institutions – Chemistry (https://www.natureindex.com/ Chinese companies making it into Fortune magazine’s Global 500 list. annual-tables/2019/institution/all/chemistry) Noteworthy also are China’s commitment to, and remarkable advances in, basic and applied research in the natural sciences. Factors such as increased funding for scientific research, workforce qualification and size, and research output, quality, and innovation have propelled China to the #1 spot worldwide in terms of chemistry papers published,1 and Chinese Universities to occupy 5 of the top 10 spots in chemistry research quality worldwide.2 At Merck KGaA, Darmstadt, Germany, we laud China’s vigorous research efforts in chemistry and the life sciences, which we believe hold great promise for improving the quality of life for millions of people throughout the world. Moreover, we look forward to establishing strong collaborations with Chinese researchers to make their inventions more accessible worldwide to advance human health for all.
    [Show full text]
  • Advanced Studies on the Synthesis of Organophosphorus Compounds
    ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN SCIENZE CHIMICHE (XIX° ciclo) Area 03 Scienze Chimiche-CHIM/06 Chimica Organica Dipartimento di Chimica Organica “A. Mangini” Coordinatore: Chiar.mo Prof. Vincenzo Balzani Advanced Studies on the Synthesis of Organophosphorus Compounds Dissertazione Finale Presentata da: Relatore: Dott. ssa Marzia Mazzacurati Prof. Graziano Baccolini Co-relatore: Dott.ssa Carla Boga INDEX Index: Keywords…………………………………………………………….………….VII Chapter 1…………………………………………………………………………..3 GENERAL INTRODUCTION ON PHOSPHORUS CHEMISTRY 1.1 Organophosphorus Chemistry………………………………………………….4 1.1.1 Phosphines………………………………………………………………..5 1.1.2 Phosphonates……………………………………………………………..6 1.1.3 Phosphites………………………………………………………………...7 1.2 Uses of Organophosphorus Compounds………………………………………..7 1.2.1 Agricultural Application………………………………………………….8 1.2.2 Catalysis……………………………………………………………..…....9 1.2.3 Organophosphorus Conpounds in Medicine…………………………….11 1.2.4 Phosphorus in Biological Compounds…………………………………..12 1.3 References……………………………………………………………………..15 Chapter 2…………………………………………………………………………17 THE HYPERCOORDINATE STATES OF PHOSPHORUS 2.1 The 5-Coordinate State of Phosphorus……………………………………….17 2.2 Pentacoordinated structures and their non rigid character…………………….18 2.3 Permutational isomerization…………………………………………………..19 2.3.1 Berry pseudorotation……………………………………………………20 2.3.2 Turnstile rotation………………………………………………………..21 2.4 The 6-Coordinate State of Phosphorus……………………………………….22 2.5 References…………………………………………………………………......24 I Chapter
    [Show full text]
  • 1/2 Toxic Compound Data Sheet Name: 1,1-Biphenyl CAS Number
    1/2 Toxic Compound Data Sheet Name: 1,1-Biphenyl CAS Number: 00092-52-4 Justification: This compound is listed in Ohio Administrative Code 3745 - 114 - 01 because it fulfills one or more of the following criteria: substances that are known to be, or may reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, or neurotoxic, causes reproductive dysfunction, is acutely or chronically toxic, or causes the threat of adverse environmental effects through ambient concentrations, bioaccumulation, or atmospheric deposition. 1,1- Biphenyl is listed by U.S. EPA as a Hazardous Air Pollutant (HAP), and is toxic by causing pulmonary impairment. Molecular Weight: 154.20 g/mol Synonyms: Biphenyl, Diphenyl, Phenyl benzene, Lemonene, Bibenzene, Biphenyl, 1,1- , Phenador-X, PHPH, Xenene. U.S. EPA Carcinogenic Classification (IRIS): Classification -- D; not classifiable as to human carcinogenicity. PBT: Not Listed as persistent, bioaccumulative and toxic. NTP: Not listed by the National Toxicology Program (NTP). HAP: Listed as a Hazardous Air Pollutant (HAP) by the U.S. EPA. 112r: Not listed in Section 112r of the Clean Air Act. ACGIH: TLV- TWA 0.2 ppm or 1261 ug/m^3. Critical effects: pulmonary impairment. HSDB: Listed in the Hazardous Substances Data Bank. International IARC: Not listed as reviewed by IARC. ATSDR, MRL: Not available. DataSheet 1,1- Biphenyl.wpd 2/2 Reference Material 1. U.S. EPA Integrated Risk Information System (IRIS) http://www.epa.gov/iris/subst/0013.htm 2. U.S. EPA Hazardous Air Pollutant (HAP) List and Health Affects Notebook. http://www.epa.gov/ttn/atw/188polls.html http://www.epa.gov/ttn/atw/hlthef/biphenyl.html 3.
    [Show full text]
  • Organophosphorus Chemistry (Kanda, 2019)
    Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 bonding and non-bonding MOs of PH3 bonding and non-bonding MOs of PH5 # of R P(III) ← → P(V) O P P R R R R R R phosphine phosphine oxide D3h C3v C2v O O JACS. 1972, 3047. P P P P R NH R OH R OH R NH Chem. Rev. 1994, 1339. R 2 R R R 2 D C phosphineamine phosphinite phosphinate phosphinamide 3h 4v O O O R P R P R P R P R P R P NH2 NH2 OH OH NH2 NH2 H2N HO HO HO HO H2N phosphinediamine phosphonamidite phosphonite phosphonate phosphonamidate phosphonamide O O O O H N P P P P P P P P 2 NH HO HO HO HO HO HO H2N H N 2 NH2 NH2 OH OH NH2 NH2 NH2 2 H2N HO HO HO HO H2N H2N phosphinetriamine phosphorodiamidite phosphoramidite phosphite phosphate phosphoramidate phosphorodiamidate phosphoramide more N O more O Useful Resources more N P P P Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and H OH H H H H H H H Technology, 6th ed.; CRC Press Majoral, J. P. New Aspects In Phosphorus Chemistry III.; Springer phosphinous phosphane phosphane Murphy, P. J. Organophosphorus Reagents.; Oxford acid oxide Hartley, F. R. The chemistry of organophosphorus compounds, O O volume 1-3.; Wiley P P P Cadogan. J. I. G. Organophosphorus Reagents in Organic H OH H OH H OH HO HO H Synthesis.; Academic Pr phosphonate phosphonus acid phosphinate Not Going to Cover ↔ (phosphite) Related GMs Metal complexes, FLP, OPV Highlights in Peptide and Protein NH S R • oxidation state +5, +4, +3, +2, +1, 0, -1, -2, -3 Synthesis (Malins, 2016) R P-Stereogenic Compounds P P R P • traditionally both +3 and -3 are written as (III) R • 13/25th most abundant element on the earth (Rosen, 2014) R • but extremely rare outside of our solar system Ligands in Transition Metal phosphine imide phosphine sulfide phosphorane Catalysis (Farmer, 2016) Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 Me P Me Me Low-Coordinate Low Oxidation State P tBu tBu P P phosphaalkyne R N P PivCl 2 P Me Cl TMS OTMS NaOH R = tBu Nb N tBu PTMS3 P O H O P NR2 then Na/Hg tBu N -2 Nb tBu R2N Me Nb N tBu 5x10 mbar, 160 ºC NR2 95% R2N Me N O 1.
    [Show full text]
  • (Difluoromethylene)Triphosphoric Acid
    Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis- (difluoromethylene)triphosphoric acid G. K. Surya Prakasha,1, Mikhail Zibinskya, Thomas G. Uptona, Boris A. Kashemirova, Charles E. McKennaa, Keriann Oertella, Myron F. Goodmana, Vinod K. Batrab, Lars C. Pedersenb, William A. Beardb, David D. Shockb, Samuel H. Wilsonb, and George A. Olaha,1 aLoker Hydrocarbon Research Institute, Department of Chemistry and Department of Biology, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661; and bLaboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 Contributed by George A. Olah, June 3, 2010 (sent for review April 28, 2010) It is difficult to overestimate the importance of nucleoside tri- the altered chemical properties conferred on the compound by phosphates in cellular chemistry: They are the building blocks the fluorine substituent. The van der Waals’ radius of the fluorine for DNA and RNA and important sources of energy. Modifications atom (1.47 Å) is close to the size of hydrogen (1.2 Å). Most of the of biologically important organic molecules with fluorine are of other substituent groups often used to replace hydrogen in the great interest to chemists and biologists because the size and creation of analogs are much larger. Thus fluorine is of electronegativity of the fluorine atom can be used to make defined unique value in the design of analogs, which can very closely ap- structural
    [Show full text]