Complex Combinatorial Chemical Libraries Encoded with Tags

Total Page:16

File Type:pdf, Size:1020Kb

Complex Combinatorial Chemical Libraries Encoded with Tags Europäisches Patentamt *EP000665897B1* (19) European Patent Office Office européen des brevets (11) EP 0 665 897 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12Q 1/68, C07H 21/02, of the grant of the patent: C07H 21/04, A61K 48/00, 09.07.2003 Bulletin 2003/28 A61K 38/00 (21) Application number: 94900350.3 (86) International application number: PCT/US93/09345 (22) Date of filing: 01.10.1993 (87) International publication number: WO 94/008051 (14.04.1994 Gazette 1994/09) (54) COMPLEX COMBINATORIAL CHEMICAL LIBRARIES ENCODED WITH TAGS KOMPLEXE KOMBINATORISCHE CHEMISCHE BANKEN, DIE MIT MARKIERUNGEN VERSEHEN SIND BANQUES CHIMIQUES COMBINATOIRES COMPLEXES CODEES AVEC DES ETIQUETTES (84) Designated Contracting States: (56) References cited: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL WO-A-90/00626 WO-A-92/00091 PT SE WO-A-93/06121 WO-A-93/09668 WO-A-93/19205 WO-A-93/20242 (30) Priority: 01.10.1992 US 955371 WO-A-93/22684 US-A- 4 631 211 04.02.1993 US 13948 US-A- 4 755 558 (43) Date of publication of application: • JOURNAL OF THE AMERICAN CHEMICAL 09.08.1995 Bulletin 1995/32 SOCIETY., vol.114, no.27, 30 December 1992, GASTON, PA US pages 10997 - 8 B.A.BUNIN ET (73) Proprietors: AL. ’A General and Expedient Method for the • THE TRUSTEES OF COLUMBIA UNIVERSITY IN Solid-Phase Synthesis of 1,4-Benzodiazepine THE CITY OF NEW YORK Derivatives.’ New York, New York 10027 (US) • PROCEEDINGS OF THE NATIONAL ACADEMY • COLD SPRING HARBOR LABORATORY OF SCIENCES OF USA., vol.90, no.23, 1 Cold Spring Harbor New York 11724 (US) December 1993, WASHINGTON US pages 10922 - 10926 M.H.OHLMEYER ET AL. ’Complex (72) Inventors: Synthetic Chemical Libraries Indexed with • STILL, W., Clark Molecular Tags.’ Rhinebeck, NY 12572 (US) • P.N.A.S., Volume 89, issued June 1992, • OHLMEYER, Michael, H., J. BRENNER et al., "Encoded Combinatorial Plainsboro, NJ 08536 (US) Chemistry", pages 5381-5383, see entire • WIGLER, Michael, H. document. Lloyd Harbor, NY 11743 (US) • Nature, Volume 354, issued 07 November 1991, • DILLARD, Lawrence, W. LAM et al., "A New Type of Synthetic Peptide Plainsboro, NJ 08536 (US) Library for Identifying Ligand-Binding Activity", • READER, John, C. pages 82-84, see page 82, summary. Princeton, NJ 08540 (US) • Science, Volume 257, issued 17 July 1992, AMATO et al., "Speeding Up a Chemical Game of (74) Representative: VOSSIUS & PARTNER Change", pages 330-331, see entire document. Postfach 86 07 67 81634 München (DE) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 665 897 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 0 665 897 B1 • Nature, Volume 354, issued 07 November 1991, • J. AM. CHEM. SOC. vol. 115, 1993, pages 2529 - HOUGHTEN et al., "Generation and Use of 2531 Synthetic Peptide Combinatorial Libraries for • CLIN. CHEM. vol. 28, no. 9, 1982, pages 1844 - Basic Research and Drug Discovery", pages 1847 84-86, see entire document. • PROC. NATL. ACAD. SCI. vol. 90, 1993, pages • TRENDS ANAL CHEM vol. 2, 1983, page 166 10922 - 10926 • GEN vol. 14, 1994, pages 32 - 38 2 EP 0 665 897 B1 Description Introduction 5 Technical Field [0001] The field of this invention concerns combinatorial chemistry which involves syntheses having a plurality of stages, with each stage involving a plurality of choices, where large numbers of products having varying compositions are obtained. 10 Background of the Invention [0002] There is substantial interest in devising facile methods for the synthesis of large numbers of diverse com- pounds which can then be screened for various possible physiological or other activities. Typically such a synthesis 15 involves successive stages, each of which involves a chemical modification of the then existing molecule. For example, the chemical modification may involve the addition of a unit, e.g. a monomer or synthon, to a growing sequence or modification of a functional group. By employing syntheses where the chemical modification involves the addition of units, such as amino acids, nucleotides, sugars, lipids, or heterocyclic compounds where the units may be naturally- occurring, synthetic, or combinations thereof. One may create a large number of compounds. Thus, even if one re- 20 stricted the synthesis to naturally-occurring units or building blocks, the number of choices would be very large, 4 in the case of nucleotides, 20 in the case of the common amino acids, and essentially an unlimited number in the case of sugars. [0003] One disadvantage heretofore inherent in the production of large number of diverse compounds, where at each stage of the synthesis there are a significant number of choices, is the fact that each individual compound will 25 be present in a minute amount. While a characteristic of a particular compound, e.g. a physiological activity, may be determinable, it is usually impossible to identify the chemical structure of this particular compound present. [0004] Moreover, physiologically-active compounds have historically been discovered by assaying crude broths us- ing Edisonian or stochastic techniques, where only a relatively few compounds are assayed at a time, or where a limited number of structural similar homologs of naturally-occurring physiologically-active compounds are assayed. 30 Two of the major problems has been associated with the use of such crude broths, namely, the necessity to purify the reaction mixture into individual component compounds and the time-consuming effort required to establish the structure of the compound once purified. [0005] To address these disadvantages and problems, techniques have been developed in which one adds individual units as part of a chemical synthesis sequentially, either in a controlled or a random manner, to produce all or a sub- 35 stantial proportion of the possible compounds which can result from the different choices possible at each sequential stage in the synthesis. However, for these techniques to be successful it is necessary for the compounds made by them to be amenable to methods which will allow one to determine the composition of a particular compound so made which shows a characteristic of interest. [0006] one such approach involves using a chip which allows for separate analysis at physically separate sites on 40 the surface of the chip (Fodor et al., Science 251: 767 [1991]). By knowing what reactant is added sequentially at each such site, one can record the sequence of events and thus the series of reactions. If one then subjects the chip to a screening method for a particular desired characteristic and detects the characteristic one can really determine the compound synthesized at the site which demonstrates that characteristic. [0007] Another such technique involves the theoretical synthesis of oligonucleotides in parallel with the synthesis of 45 oligopeptides as the compounds of interest (Brenner and Lerner, PNAS USA [1992] 81: 5381-5383). [0008] Further techniques are also disclosed in the following publications: Amoto, Science (1992) 257, 330-331 discusses the use of cosynthesized DNA labels to identify polypeptides. Lam, et al., Nature (1991) 354, 82-84 describe a method for making large peptide libraries. Houghton, et al., Nature (1991) 354, 84-86 and Jung and Beck-Sickinger, Angew. Chem. Int. Ed. Engl. (1992) 91, 367-383 describe methodology for making large peptide libraries. Kerr et al., 50 J. Amer. Chem. Soc., (1993) 115, 2529-31 teach a method of synthesizing oligomer libraries encoded by peptide chains. [0009] In WO 93/06121 there is provided a general stochastic method for synthesizing random oligomers which can be used to synthesise compounds to screen for desired properties. The use of identification tags on the oligomers is reported to facilitate identification of oligomers with desired properties. In the identification process the tags are read on a solid support or are amplified while on the solid support. 55 [0010] In WO 93/09668 there is described a method and device for forming large arrays of polymers on a substrate. According to a preferred aspect of the invention, the substrate is contacted by a channel block having channels therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage and the process is repeated to.form arrays of polymers on the substrate. The method may be combined with lights directed to method 3 EP 0 665 897 B1 arches. The reaction history is retained by virtue of the molecules' location. [0011] In WO 93/22684 there is provided a method and library for determining the sequence of monomers in a polymer which is complementary to a receptor. The method provides for formation of pooled and separate products. Separate products are subjected only to subsequent pooled coupling steps. Each pooled product is subsequently 5 divided for formation of pools and separate products. The resulting polymer library includes groups of polymer products. A first group of products is used to identify the monomer at a first location in a polymer that is complimentary to a receptor. A second group of products is used to identify the monomer at a second location in a polymer that is com- plementary to a receptor. [0012] In WO 93/20242 there is disclosed an encoded combinatorial chemical library comprised of a plurality of bi- 10 functional molecules having both a chemical polymer and an identifier oligonucleotide sequence that defines the struc- ture of the chemical polymer.
Recommended publications
  • Sulfonyl-Containing Nucleoside Phosphotriesters And
    Sulfonyl-Containing Nucleoside Phosphotriesters and Phosphoramidates as Novel Anticancer Prodrugs of 5-Fluoro-2´-Deoxyuridine-5´- Monophosphate (FdUMP) Yuan-Wan Sun, Kun-Ming Chen, and Chul-Hoon Kwon†,* †Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Jamaica, New York 11439 * To whom correspondence should be addressed. Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia parkway, Jamaica, NY 11439. Tel: (718)-990-5214, fax: (718)-990-6551, e-mail: [email protected]. Abstract A series of sulfonyl-containing 5-fluoro-2´-deoxyuridine (FdU) phosphotriester and phosphoramidate analogues were designed and synthesized as anticancer prodrugs of FdUMP. Stability studies have demonstrated that these compounds underwent pH dependent β-elimination to liberate the corresponding nucleotide species with half-lives in the range of 0.33 to 12.23 h under model physiological conditions in 0.1M phosphate buffer at pH 7.4 and 37 °C. Acceleration of the elimination was observed in the presence of human plasma. Compounds with FdUMP moiety (4-9) were considerably more potent than those without (1-3) as well as 5-fluorouracil (5-FU) against Chinese hamster lung fibroblasts (V-79 cells) in vitro. Addition of thymidine (10 µM) reversed the growth inhibition activities of only 5-FU and the compounds with FdUMP moiety, but had no effect on those without. These results suggested a mechanism of action of the prodrugs involving the intracellular release of FdUMP. Introduction 5-Fluoro-2´-deoxyuridine-5´-monophosphate (FdUMP) is the major metabolite responsible for the anticancer activity of 5-FU (Chart 1).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Asymmetric Synthesis of Organophosphates and Their
    ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Batool J. Murtadha Dayton, Ohio May 2020 ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. APPROVED BY: __________________________________ Jeremy Erb, Ph.D. Research Advisor Assistant Professor Department of Chemistry University of Dayton ___________________________________ Vladimir Benin, Ph.D. Professor of Chemistry Department of Chemistry University of Dayton ___________________________________ Justin C. Biffinger, Ph.D. Committee Member Assistant Professor Department of Chemistry University of Dayton ii © Copyright by Batool J. Murtadha All rights reserved 2020 iii ABSTRACT ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. University of Dayton Advisor: Dr. Jeremy Erb Organophosphorus compounds (OPs) are widely used in the agricultural industry especially in the pesticide market. Phosphates play a huge role as biological compounds in the form of energy carrier compounds like ATP, and medicine as antivirals. OPs have become increasingly important as evidenced by the publication of new methods devoted to their uses and synthesis. These well-established studies lay the basis for industrial organic derivatives of phosphorus preparations. The current work explored methods of synthesizing chiral organophosphate triesters. We experimented with different processes roughly divided into either an electrophilic or nucleophilic strategy using chiral Lewis acids, organocatalysts (HyperBTM), activating agents, and chiral auxiliaries with the goal of control stereoselectivity. These methods were explored through the use of different starting materials like POCl3, triethyl phosphate, methyl phosphordichloradate, and PSCl3.
    [Show full text]
  • Synthesis of 4-Phosphono Β-Lactams and Related Azaheterocyclic Phosphonates
    SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES IR . KRISTOF MOONEN To Elza Vercauteren Promotor: Prof. dr. ir. C. Stevens Department of Organic Chemistry, Research Group SynBioC Members of the Examination Committee: Prof. dr. ir. N. De Pauw (Chairman) Prof. dr. J. Marchand-Brynaert Prof. dr. A. Haemers Prof. dr. S. Van Calenbergh Prof. dr. ir. E. Vandamme Prof. dr. ir. R. Verhé Prof. dr. ir. N. De Kimpe Dean: Prof. dr. ir. H. Van Langenhove Rector: Prof. dr. P. Van Cauwenberge IR . KRISTOF MOONEN SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Chemistry Dutch translation of the title: Synthese van 4-fosfono-β-lactamen en aanverwante azaheterocyclische fosfonaten ISBN-Number: 90-5989-129-5 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Woord Vooraf Toen ik op een hete dag in de voorbije zomer dit woord vooraf schreef, stond ik voor één van de laatste horden te nemen in de weg naar het “doctoraat”. Het ideale moment voor een nostalgische terugblik op een zeer fijne periode, hoewel het onzinnig zou zijn te beweren dat alles rozegeur en maneschijn was. En op het einde van de rit komt dan ook het moment waarop je eindelijk een aantal mensen kunt bedanken, omwille van sterk uiteenlopende redenen.
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Division of Polymer Chemistry (POLY)
    Division of Polymer Chemistry (POLY) Graphical Abstracts Submitted for the 258th ACS National Meeting & Exposition August 25 - 29, 2019 | San Diego, CA Table of Contents [click on a session time (AM/PM/EVE) for link to abstracts] Session SUN MON TUE WED THU AM AM Polymerization-Induced Nanostructural Transitions PM PM Paul Flory's "Statistical Mechanics of Chain Molecules: The 50th AM AM Anniversary of Polymer Chemistry" PM PM AM AM AM Eco-Friendly Polymerization PM PM EVE AM Characterization of Plastics in Aquatic Environments PM PM AM General Topics: New Synthesis & Characterization of Polymers AM PM AM PM EVE Future of Biomacromolecules at a Crossroads of Polymer Science & AM AM EVE Biology PM PM Industrial Innovations in Polymer Science PM AM AM Polymers for Defense Applications PM AM PM EVE Henkel Outstanding Graduate Research in Polymer Chemistry in AM Honor of Jovan Kamcev AM AM Polymeric Materials for Water Purification PM AM PM EVE Young Industrial Polymer Scientist Award in Honor of Jason Roland AM Biomacromolecules/Macromolecules Young Investigator Award PM Herman F. Mark Award in Honor of Nicholas Peppas AM DSM Graduate Student Award AM Overberger International Prize in Honor of Kenneth Wagner PM Note: ACS does not own copyrights to the individual abstracts. For permission, please contact the author(s) of the abstract. POLY 1: High throughput and solution phase TEM for discovery of new pisa reaction manifolds Nathan C. Gianneschi1, [email protected], Mollie A. Touve1, Adrian Figg1, Daniel Wright1, Chiwoo Park2, Joshua Cantlon3, Brent S. Sumerlin4. (1) Chemistry, Northwestern University, Evanston, Illinois, United States (2) Florida State University, Tallahassee, Florida, United States (3) SCIENION, San Francisco, California, United States (4) Department of Chemistry, University of Florida, Gainesville, Florida, United States We describe the development of a high-throughput, automated method for conducting TEM characterization of materials, to remove this bottleneck from the discovery process.
    [Show full text]
  • Aldrichimica Acta 53.1 2020
    VOLUME 53, NO. 1 | 2020 CHEMISTRY IN CHINA SPECIAL ISSUE (中国特刊) ALDRICHIMICA ACTA CONTRIBUTORS TO THIS ISSUE (此特刊的贡献者) Xiaoming Feng (冯小明), Sichuan University Shu-Li You (游书力), SIOC, Chinese Academy of Sciences Xuefeng Jiang (姜雪峰), East China Normal University Wenjun Tang (汤文军), SIOC, Chinese Academy of Sciences The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. DEAR READER: 1 Nature Index Country/Territory Outputs – By most measures, China’s transformation over the past half-century Chemistry (https://www.natureindex.com/ country-outputs/generate/Chemistry/global/ has been nothing short of spectacular, with its economy now ranked All/n_article) second in the world, an annual GDP north of USD 13 trillion, and 119 2 Nature Index 2019 Tables: Institutions – Chemistry (https://www.natureindex.com/ Chinese companies making it into Fortune magazine’s Global 500 list. annual-tables/2019/institution/all/chemistry) Noteworthy also are China’s commitment to, and remarkable advances in, basic and applied research in the natural sciences. Factors such as increased funding for scientific research, workforce qualification and size, and research output, quality, and innovation have propelled China to the #1 spot worldwide in terms of chemistry papers published,1 and Chinese Universities to occupy 5 of the top 10 spots in chemistry research quality worldwide.2 At Merck KGaA, Darmstadt, Germany, we laud China’s vigorous research efforts in chemistry and the life sciences, which we believe hold great promise for improving the quality of life for millions of people throughout the world. Moreover, we look forward to establishing strong collaborations with Chinese researchers to make their inventions more accessible worldwide to advance human health for all.
    [Show full text]
  • 1/2 Toxic Compound Data Sheet Name: 1,1-Biphenyl CAS Number
    1/2 Toxic Compound Data Sheet Name: 1,1-Biphenyl CAS Number: 00092-52-4 Justification: This compound is listed in Ohio Administrative Code 3745 - 114 - 01 because it fulfills one or more of the following criteria: substances that are known to be, or may reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, or neurotoxic, causes reproductive dysfunction, is acutely or chronically toxic, or causes the threat of adverse environmental effects through ambient concentrations, bioaccumulation, or atmospheric deposition. 1,1- Biphenyl is listed by U.S. EPA as a Hazardous Air Pollutant (HAP), and is toxic by causing pulmonary impairment. Molecular Weight: 154.20 g/mol Synonyms: Biphenyl, Diphenyl, Phenyl benzene, Lemonene, Bibenzene, Biphenyl, 1,1- , Phenador-X, PHPH, Xenene. U.S. EPA Carcinogenic Classification (IRIS): Classification -- D; not classifiable as to human carcinogenicity. PBT: Not Listed as persistent, bioaccumulative and toxic. NTP: Not listed by the National Toxicology Program (NTP). HAP: Listed as a Hazardous Air Pollutant (HAP) by the U.S. EPA. 112r: Not listed in Section 112r of the Clean Air Act. ACGIH: TLV- TWA 0.2 ppm or 1261 ug/m^3. Critical effects: pulmonary impairment. HSDB: Listed in the Hazardous Substances Data Bank. International IARC: Not listed as reviewed by IARC. ATSDR, MRL: Not available. DataSheet 1,1- Biphenyl.wpd 2/2 Reference Material 1. U.S. EPA Integrated Risk Information System (IRIS) http://www.epa.gov/iris/subst/0013.htm 2. U.S. EPA Hazardous Air Pollutant (HAP) List and Health Affects Notebook. http://www.epa.gov/ttn/atw/188polls.html http://www.epa.gov/ttn/atw/hlthef/biphenyl.html 3.
    [Show full text]
  • (2008) the Synthesis of Vinylphosphonate-Linked RNA. Phd Thesis, University of Nottingham
    Collis, Alana E.C. (2008) The synthesis of vinylphosphonate-linked RNA. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/10541/1/Alana_Collis_Thesis.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] THE SYNTHESIS OF VINYLPHOSPHONATE-LINKED RNA Alana E. C. Collis, MChem. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy February 2008 Abstract An introductory chapter discusses the steric block, RNase H and RNA interference antisense mechanisms and the application of antisense nucleic acids as therapeutic agents.
    [Show full text]
  • Organophosphorus Chemistry (Kanda, 2019)
    Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 bonding and non-bonding MOs of PH3 bonding and non-bonding MOs of PH5 # of R P(III) ← → P(V) O P P R R R R R R phosphine phosphine oxide D3h C3v C2v O O JACS. 1972, 3047. P P P P R NH R OH R OH R NH Chem. Rev. 1994, 1339. R 2 R R R 2 D C phosphineamine phosphinite phosphinate phosphinamide 3h 4v O O O R P R P R P R P R P R P NH2 NH2 OH OH NH2 NH2 H2N HO HO HO HO H2N phosphinediamine phosphonamidite phosphonite phosphonate phosphonamidate phosphonamide O O O O H N P P P P P P P P 2 NH HO HO HO HO HO HO H2N H N 2 NH2 NH2 OH OH NH2 NH2 NH2 2 H2N HO HO HO HO H2N H2N phosphinetriamine phosphorodiamidite phosphoramidite phosphite phosphate phosphoramidate phosphorodiamidate phosphoramide more N O more O Useful Resources more N P P P Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and H OH H H H H H H H Technology, 6th ed.; CRC Press Majoral, J. P. New Aspects In Phosphorus Chemistry III.; Springer phosphinous phosphane phosphane Murphy, P. J. Organophosphorus Reagents.; Oxford acid oxide Hartley, F. R. The chemistry of organophosphorus compounds, O O volume 1-3.; Wiley P P P Cadogan. J. I. G. Organophosphorus Reagents in Organic H OH H OH H OH HO HO H Synthesis.; Academic Pr phosphonate phosphonus acid phosphinate Not Going to Cover ↔ (phosphite) Related GMs Metal complexes, FLP, OPV Highlights in Peptide and Protein NH S R • oxidation state +5, +4, +3, +2, +1, 0, -1, -2, -3 Synthesis (Malins, 2016) R P-Stereogenic Compounds P P R P • traditionally both +3 and -3 are written as (III) R • 13/25th most abundant element on the earth (Rosen, 2014) R • but extremely rare outside of our solar system Ligands in Transition Metal phosphine imide phosphine sulfide phosphorane Catalysis (Farmer, 2016) Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 Me P Me Me Low-Coordinate Low Oxidation State P tBu tBu P P phosphaalkyne R N P PivCl 2 P Me Cl TMS OTMS NaOH R = tBu Nb N tBu PTMS3 P O H O P NR2 then Na/Hg tBu N -2 Nb tBu R2N Me Nb N tBu 5x10 mbar, 160 ºC NR2 95% R2N Me N O 1.
    [Show full text]
  • (Difluoromethylene)Triphosphoric Acid
    Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis- (difluoromethylene)triphosphoric acid G. K. Surya Prakasha,1, Mikhail Zibinskya, Thomas G. Uptona, Boris A. Kashemirova, Charles E. McKennaa, Keriann Oertella, Myron F. Goodmana, Vinod K. Batrab, Lars C. Pedersenb, William A. Beardb, David D. Shockb, Samuel H. Wilsonb, and George A. Olaha,1 aLoker Hydrocarbon Research Institute, Department of Chemistry and Department of Biology, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661; and bLaboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 Contributed by George A. Olah, June 3, 2010 (sent for review April 28, 2010) It is difficult to overestimate the importance of nucleoside tri- the altered chemical properties conferred on the compound by phosphates in cellular chemistry: They are the building blocks the fluorine substituent. The van der Waals’ radius of the fluorine for DNA and RNA and important sources of energy. Modifications atom (1.47 Å) is close to the size of hydrogen (1.2 Å). Most of the of biologically important organic molecules with fluorine are of other substituent groups often used to replace hydrogen in the great interest to chemists and biologists because the size and creation of analogs are much larger. Thus fluorine is of electronegativity of the fluorine atom can be used to make defined unique value in the design of analogs, which can very closely ap- structural
    [Show full text]
  • Chemicals Subject to TSCA Section 12(B) Export Notification Requirements (January 16, 2020)
    Chemicals Subject to TSCA Section 12(b) Export Notification Requirements (January 16, 2020) All of the chemical substances appearing on this list are subject to the Toxic Substances Control Act (TSCA) section 12(b) export notification requirements delineated at 40 CFR part 707, subpart D. The chemicals in the following tables are listed under three (3) sections: Substances to be reported by Notification Name; Substances to be reported by Mixture and Notification Name; and Category Tables. TSCA Regulatory Actions Triggering Section 12(b) Export Notification TSCA section 12(b) requires any person who exports or intends to export a chemical substance or mixture to notify the Environmental Protection Agency (EPA) of such exportation if any of the following actions have been taken under TSCA with respect to that chemical substance or mixture: (1) data are required under section 4 or 5(b), (2) an order has been issued under section 5, (3) a rule has been proposed or promulgated under section 5 or 6, or (4) an action is pending, or relief has been granted under section 5 or 7. Other Section 12(b) Export Notification Considerations The following additional provisions are included in the Agency's regulations implementing section 12(b) of TSCA (i.e. 40 CFR part 707, subpart D): (a) No notice of export will be required for articles, except PCB articles, unless the Agency so requires in the context of individual section 5, 6, or 7 actions. (b) Any person who exports or intends to export polychlorinated biphenyls (PCBs) or PCB articles, for any purpose other than disposal, shall notify EPA of such intent or exportation under section 12(b).
    [Show full text]