Chapter 11 - 253

Chapter 11

Overview

Among vascular , different life cycles are associated with characteristic ranges of propagule size. In the modern flora, isospores of homosporous pteridophytes are almost all smaller than 150 urn diameter, of heterosporous pteridophytes fall in the range 100-1000 urn diameter, seeds are possibly all larger than the largest megaspores, but the smallest angiosperm seeds are of comparable size to large isospores (see Chapter 1). Chapters 2-8 attempt to explain these associations. Propagule size is one of the most important features of a 's reproductive strategy (see Chapter 2). Roughly speaking, larger propagules have larger food reserves, and a greater probability of successful establishment, than smaller propagules, but a sporophyte can produce more small propagules from the same quantity of resources. Therefore, optimal propagule size is determined by the trade-off between producing fewer, larger propagules (each with a higher probability of success) and producing more, smaller propagules. Different species have adopted very different size-versus-number compromises. The characteristic ranges of propagule size, in each of the major groups of vascular plants, suggest that certain life cycles are incompatible with particular size-versus-number compromises. of the earliest vascular plants were homosporous and produced only one type of . Several homosporous groups gave rise to heterosporous lineages, at least one of which was the progeniture of the seed plants. Heterosporous pteridophytes differ from homosporous pteridophytes in at least four important respects. (1) Homosporous sporophytes produce of a single size, but heterosporous pteridophytes produce spores of two distinct sizes. (2) There is little size overlap between the largest isospores of homosporous pteridophytes and the smallest megaspores of heterosporous pteridophytes. (3) Spore dimorphism is associated with a sexual division of labour. Large megaspores developed into and small Chapter 11 - 254 developed into male gametophytes, whereas isospores develop into male, female or hermaphrodite gametophytes, depending on the environmental conditions encountered after dispersal. (4) Gametophytes of heterosporous pteridophytes develop within the spore wall, and successful reproduction depends on food reserves supplied with the spore. On the other hand, gametophytes of homosporous pteridophytes develop outside the spore wall, and female reproduction is dependent on photosynthate accumulated after germination. Chapters 3 and 4 develop a model for the origin of heterospory which explains why these characters are associated. The model is based on the premise that sex expression is controlled by genes expressed in gametophytes, but spore size is controlled by genes expressed in sporophytes. Heterospory has evolved on several occasions from homospory. Therefore, the model requires an understanding of optimal sex expression and optimal spore size in homosporous pteridophytes. Chapter 3 discusses optimal sex expression in homosporous . Chapter 4 discusses the optimal size of isospores and presents the model for the origin of heterospory from a homosporous ancestor. Sex expression in homosporous pteridophytes is a property of gametophytes (homosporous sporophytes are essentially asexual). A reproduces as a female when one of its egg cells is fertilized and develops into a young sporophyte. This sporophyte takes root at the site of the maternal gametophyte. A gametophyte reproduces as a male when it produces a sperm that swims to, and fertilizes, an egg. Gametophytes should produce either eggs or sperm depending on which course of action gives the greatest chance of reproductive success. A maternal gametophyte must contribute much greater resources to a young sporophyte than the paternal gametophyte, because the maternal gametophyte nourishes the young sporophyte during its early growth whereas the only material contribution of the paternal gametophyte is a sperm cell. Therefore, within a species, smaller gametophytes should tend to reproduce as males. Gametophytes with abundant resources would be more likely to reproduce as than gametophytes with limited resources. Consistent with these predictions, large female gametophytes release substances (antheridiogens) which Chapter 11 - 255 induce smaller neighbouring gametophytes to produce sperm. In heterosporous species, a gametophyte's gender is determined by spore size before dispersal, rather than by environmental conditions after dispersal as in homosporous species. Large spores develop into female gametophytes, whereas small spores develop into male gametophytes. However, the underlying mechanisms of sex determination should be similar because heterosporous species had homosporous ancestors. The adaptive determination of sex expression by homosporous gametophytes, discussed in Chapter 3 (and above), provides a possible explanation. A gametophyte's optimal sex expression is influenced by its access to resources. This is determined by (1) the quantity of food reserves in its spore and (2) the quantity of resources accumulated by the gametophyte's own activities. If a sporophyte produced spores of two sizes, gametophytes developing from the larger spores would be more likely to reproduce as females than gametophytes developing from the smaller spores, because the pre-existing mechanisms of sex determination would favor production of archegonia by larger gametophytes. Thus, the predicted mechanisms of sex determination in homosporous species could also explain the differences in sex expression of gametophytes developing from large and small spores in heterosporous species. This is the basis of the model for the origin of heterospory presented in Chapter 4. The model of Chapter 4 assumes adaptive sex determination by gametophytes and asks when it will be in a sporophyte's interests to produce spores of two sizes. The model predicts the existence of a "heterospory threshold". For spore sizes below the threshold, homosporous reproduction is evolutionarily stable because gametophytes must rely on their own activities to accumulate sufficient resources for successful female reproduction. Resource availability is strongly influenced by environmental conditions and a gametophyte benefits from being able to adjust its sex expression in response to these conditions. For spore sizes above the threshold, homosporous reproduction is evolutionarily unstable. As spore size increases, nutrients stored in the spore replace nutrients acquired after germination as the principal source of reproductive resources. In Chapter 11 - 256

such circumstances, a sporophyte has different optimal spore sizes for female and male reproduction because the food reserves necessary for female reproduction are more than sufficient for a "male" gametophyte to produce enough sperm to fertilize all eggs within its neighbourhood. Above the critical size, a sporophyte can attain higher fitness by producing a greater number of smaller, male-specialist spores which could land in additional locations and fertilize additional eggs. The concept of a heterospory threshold explains the lack of overlap between the size distributions of megaspores and isospores. Adaptive sex expression by gametophytes explains the association between spore size and sex expression. Gametophytes of heterosporous species have endosporic development (within the spore wall) because heterospory is associated with a reliance on spore food reserves for successful reproduction. The evolution of heterospory had profound consequences. Isospores had to fulfill both male and female functions, and this dual role placed constraints on adaptation for either function. An isospore was a jack and jill of all trades but a master of none. Once a sporophyte produced two types of spores, microspores and megaspores could become specialized for male and female function respectively. Perhaps most importantly, heterospory allowed great increases in propagule size, because male reproduction could be performed by the smaller microspores. The most successful heterosporous lineage (or lineages) is that of the seed plants. Chapter 5 discusses selective forces in the evolution of the seed habit, and considers which characters account for the success of seed plants relative to other heterosporous lineages. Most seed characters can be understood as adaptive responses to an increase in propagule size. For example, the evolution of a single-spored megasporangium, to contain a large , meant that the megasporangium could be shed with the megaspore. The megasporangium or other surrounding structures could then take on a protective role. A seed is usually defined by the possession of integuments, but integument-like structures are also possessed by some heterosporous pteridophytes. Therefore, integuments are unlikely to account for the success of seed plants. A better candidate for Chapter 11 - 257

the crucial adaptive feature of the seed habit is pollination, the capture of microspores before, rather than after, dispersal of the propagule. Traditionally, pollination has been considered to be a major adaptive advance because it frees sexual reproduction from dependence on external fertilization by free- swimming sperm. I propose that pollination has a more important advantage. In heterosporous pteridophytes, a megaspore is provisioned whether or not it will be fertilized, whereas seeds are only provisioned if they are pollinated. This should allow a major increase in the efficiency with which maternal resources are expended and allocated to different offspring. Chapter 6 reviews mechanisms and functions of brood reduction in , made practicable by pollination before dispersal. Unpollinated ovules are aborted, as are seeds with lethal embryo genotypes. There is circumstantial evidence that seeds are sometimes aborted because of resource limitations. Most gymnosperms produce more than one embryo genotype within an ovule (simple polyembryony), thus allowing developmental selection within ovules. By contrast, angiosperms produce only one embryo per ovule, and developmental selection must occur among ovules. The total cost to a sporophyte of producing a seed cannot be assessed solely from the seed's energy and nutrient content. Rather, each seed also has an associated supplementary cost of adaptations for pollen capture and of resources committed to ovules that remain unpollinated. Chapter 7 explores the consequences of the supplementary cost per seed. First, supplementary costs are expected to be proportionately greater for smaller seeds. Thus, the benefits of decreasing seed size (in order to produce more seeds) are reduced for species with small seeds. This effect may explain minimum seed sizes. Second, supplementary costs are greater for populations at lower density. Thus, there is a minimum density below which a species cannot maintain its numbers. By far the most successful group of seed plants in the modern flora are the angiosperms. Two types of evidence suggest that early angiosperms had a lower supplementary cost per seed than contemporary gymnosperms. First, the minimum size of angiosperm seeds was much smaller than the minimum size of Chapter 11 - 258 gymnosperm seeds. This suggests that angiosperms could produce small seeds more cheaply than could gymnosperms. Second, angiosperm-dominated floras were more speciose than the gymnosperm-dominated floras they replaced. This suggests that the supplementary cost per seed of angiosperms does not increase as rapidly as that of gymnosperms, as population density decreases. In consequence, angiosperms were able to displace gymnosperms from many habitats, because the angiosperms had a lower cost of rarity. Chapter 8 discusses possible reasons for the evolutionary success of angiosperms, including the hypothesis that angiosperms had lower supplementary costs per seed. A couple of factors may have contributed to lower supplementary costs in angiosperms. First, the small size and rapid development of angiosperm ovules meant that ovules were cheaper to produce. Second, insect pollination may have been more efficient than wind pollination at low population densities. These factors may have had an important role in angiosperm success, but current evidence appears insufficient to come to a definitive conclusion. Angiosperm embryology has a number of distinctive features that may be related to the group's success. The female gametophyte of angiosperms is greatly reduced as compared to the female gametophyte of gymnosperms. In gymnosperms, the tissue which accumulates nutrients (and is later digested by the embryo) is the female gametophyte. In most angiosperms, this role of the female gametophyte is taken by the endosperm, a tissue unique to angiosperms. At fertilization, a male gametophyte releases two sperm into the female gametophyte, one of which fertilizes the egg to form the zygote. The second sperm fuses with one or more female gametophyte nuclei, and this fusion nucleus is the initial nucleus of the endosperm. The commonest form of endosperm is triploid and has two copies of maternal genes to every copy of paternal genes. Chapter 9 presents a new theory to explain this genetic constitution. Paternal genes in endosperm would benefit from their endosperm receiving more resources than the amount which maximizes the fitness of maternal genes. I argue that this conflict is expressed as parent-specific gene expression in endosperm. The Chapter 11 - 259 effect of the second maternal genome is to increase maternal control of nutrient acquisition. The possibility of differential gene expression, based on parent of origin, has much wider applications in evolutionary biology. For example, the progeny of a singly-mated hymenopteran female are clonal with respect to paternal genes. If genes can have parent-specific expression, one might predict conflict between maternal and paternal alleles within individual ants and bees. Chapter 10 reviews developmental processes in the formation of the angiosperm female gametophyte. Female gametophytes are traditionally classified as monosporic, bisporic or tetrasporic, depending on the number of megaspores that contribute nuclei to the embryo sac. Bisporic and tetrasporic embryo sacs contain the derivatives of more than one megaspore nucleus. I refer to the megaspore nucleus which gives rise to the functional egg of the embryo sac as the germinal spore. I refer to the other megaspore nuclei in the embryo sac as somatic spores. There is potential for conflict within the embryo sac between the derivatives of somatic and germinal spores. Many previously inexplicable observations can be understood in terms of this genetic conflict. In particular, the behavior of somatic spores and their derivatives is highly variable (sometimes within a species) in contrast to the relatively uniform behavior of germinal spores and their derivatives. Somatic spores will sometimes produce additional eggs in competition with the egg produced by the germinal spore. I present a new classification of female gametophytes based on the developmental behavior of the somatic spore and its derivatives. 260

GLOSSARY

This glossary contains the definitions of technical terms used in the text. Some of my usages are non-standard (e.g. extending pollination to encompass encounters between microspores and megaspores that occur before dispersal of the megaspore). These non-standard usages are explained where they first appear in the text. antheridium the sperm-producing organ of a gametophyte antipodal the opposite end of an embryo sac to the egg and synergids archegonium the organ of a gametophyte which produces an egg chalazal the opposite end of an ovule to the micropyle; the end closest to the ovule's vascular supply embryo a young sporophyte, derived from a zygote embryo sac in angiosperms, the derivatives of the cell formed after the meiotic divisions of a megaspore mother cell, traditionally considered to be synonymous with a female gametophyte endosperm the tissue formed from the fertilization of one or more polar nuclei by a sperm cell endosporic refers to gawetophytes that complete their development within the spore wall exosporic refers to gawetophytes that complete their development outside of the spore wall fertilization syngamy; the union of a sperm and egg nucleus; 261

fertilization is distinct from pollination gamete an egg or sperm cell (or nucleus); produced by mitosis gametophyte the gamete-producing ; derived from a spore germinal spore the member of a megaspore tetrad which gives rise to a functional egg, by contrast to a somatic spore gib two gametophytes are gibs if they are derived from

the same sporophyte; by analogy to sib heterosporous producing wegaspores and microspores homosporous producing one type of spore (isospores) isospore a spore produced by a homosporous sporophyte megaspore a spore produced by a heterosporous sporophyte, which develops into a female gametophyte micropylar the end of an ovule closest to the micropyle micropyle the opening through which a pollen grain or pollen tube enters the ovule a spore produced by a heterosporous sporophyte, which develops into a male gametophyte mycoparasitic a nonphotosynthetic gametophyte or seedling that is dependent on a fungal symbiont for its carbon metabolism; such plant/fungal associations have often been assumed to be mutualistic even though there is no evidence of benefit to the fungus polar nuclei female gametophyte nuclei located in the central cell of the embryo sac; the polar nuclei fuse with 262

a sperm cell to initiate endosperm; a silly name because the nuclei are centrally placed (one nucleus is derived from each pole) pollen grain the microspore of seed plants, or the male gametophyte before germination from the spore wall pollen tube the male gametophyte of seed plants (after germination from the pollen grain) pollination the capture of microspores or pollen grains before dispersal of the propagule propagule an isospore, megaspore or seed; the structure that is dispersed to the site where a new sporophyte" becomes established somatic spore a megaspore that does not give rise to a functional egg, by contrast to a germinal spore sib two sporophytes are sibs if they share a parent siphonogamy fertilization by sperm that are delivered directly to egg cells by a pollen tribe spore one of the products of meiosis sporophyte the spore-producing plant; derived from a zygote suspensor a structure derived from the zygote that does not form part of the embryo proper synergid two micropylar cells of the embryo sac; the pollen tube enters the embryo sac through a synergid zooidogamy fertilization by free-swimming sperm that are released from a pollen tube and swim to an archegonium (cf. siphonogamy) 263

KINSHIP TEHMS IN PLANTS: An immoderate proposal

The terms commonly used to describe relatives (mothers, fathers, half siblings etc.) were developed for life cycles in which the only haploid cells are gametes. These terms are sometimes ambiguous when applied to vascular plants. Is the "mother" of a sporophyte the gametophyte that produced the egg or the sporophyte that produced this gametophyte? what is meant by pollen grains being full-sibs (Charnov 1979)? If humans had alternation of generations how would we classify our relatives? In this section, I present a set of kinship terms that I hope embodies the logical structure of how plants would talk about their families. Consider the ancestors of a sporophyte ("ego"). Some of these ancestors are sporophytes and others are gametophytes. Ego would have two ancestors in the previous sporophyte generation, four ancestors in the next sporophyte generation and so on. Sporophytes are diploid and the conventional English terms are appropriate. Thus, ego would have two parents (mother and father), four grandparents, eight great-grandparents and so on. Ego's gametophyte relatives would reguire a different set of terms. Ego was formed by the union of an egg and a sperm, each produced by a gametophyte. I will refer to the first generation gametophyte ancestors as "doms" (short for dads/moms). Just as for sporophytes, the potential number of gametophyte ancestors doubles for each generation further back in time. These more distant ancestors could be called granddoms, great-granddoms and so on. Prefixes could be used to distinguish between the madernal and padernal gametophytes. Thus, the sperm-producing gametophyte could be described as a "padom" and the egg-producing gametophyte could be described as a "madom". This use of prefixes could be readily extended to ego's four granddoms, eight great-granddoms etc. For example, the madernal grandmadom would be a mamadom (the madom's madom) and the madernal grandpadom would be a mapadom 264

(the madom's padom). I have chosen to use prefixes that work backwards from ego, because the madernal grandpadom is a padom in his own right and this arrangement places the "pa-" closest to the "dom". Separate terms are similarly required for sporophyte and gametophyte descendants. Ego's sporophyte offspring will be called "sprogs", her sprogs' sprogs will be "grandsprogs" and so on. Ego's gametophyte offspring will be called "tads", her sprogs' tads will be grandtads and so on. "Sprog" is a colloquial term for "a youngster, a child, a baby" (OED, 2nd Edition). "Tad" is a colloquial usage for "a young or small child" or for a "small amount" (OED, 2nd Edition). Neither term has a previous botanical usage (see Figure A). Now suppose that ego is a gametophyte. The same set of terms can be used. Ego's sporophyte ancestors are a parent, two grandparents and four great-grandparents. Her gametophyte ancestors are two doms, four granddoms and eight great-granddoms. Ego contributes gametes to her sprogs. These sprogs produce ego's tads which are her closest gametophyte descendants. The prefixes "grand-" and "great-", appended to the term for an ancestor or descendant, each denote separation from ego by an additional gametophyte or sporophyte generation (see Figure B). Siblings are sporophytes that share a common parent. In vascular plants there are 13 distinct ways in which two sporophytes can share one or two parents (see Figure C). If cases are excluded where a gametophyte fertilizes itself, there are nine distinct types of siblings. If cases are excluded in which the two sporophytes share a common dom, this number is reduced to three: half-siblings (one shared parent), full-siblings (two shared parents) or "selfed-siblings" (a single parent). Giblings are gametophytes produced by the same sporophyte. Three kinds of mating can produce a sprog: (1) the sprog has two doms that are not giblings; (2) the sprog has two doms that are giblings; or (3) the sprog has a single dom that fertilizes itself. Klekowski (1969a) has called these three types of mating intergametophytic crossing, intergametophytic selfing and intragametophytic selfing. The following terms appear to be simpler and less easily confused: (1) biparental crossing, (2) 265 sporophytic selfing (or gib-mating), (3) gametophytic selfing.

Summary sprogs are sporophyte offspring tads are gametophyte offspring doms are gametophyte dads and moms

sprogs that share a parent = sibs (sporophytes) tads that share a parent = gibs (gametophytes)

intragametophytic selfing = gametophytic selfing, haploid selfing

intergametophytic selfing = sporophytic selfing, diploid selfing, gib-mating 266

Figure A: The family tree of a sporophyte

GRANDDOMS papadom pamadom mapadom mamadom

PARENTS father mother

DOMS padom madom

SELF (sporophyte) self

TADS tad

SPROGS sprog

GRANDTADS grandtads

GRANDSPROGS grandsprogs 267

Figure B: The family tree of a gametophyte

GRANDDOMS papadom pamadom mapadom mamadom

GRANDPARENTS grandfather grandmother

DOMS padom madom

PARENT parent

SELF (gametophyte) self

SPROGS sprog

TADS tad

GRANDSPROGS grandsprogs 268

Figure C: The 13 types of siblings

H

Key: closed circles are sporophytes, open circles are gametophytes; for each type of sibling, the top row are the sporophyte parents, the middle row are the gametophyte doms, and the bottom row are the sporophyte siblings. 269

Literature Cited

Andrews, H. N. 1963. Early seed plants. Science 142: 925-931.

Andrews, H. N., P. G. Gensel & W. H. Forbes. 1974. An apparently heterosporous plant from the Middle of New Brunswick. Palaeontology 17: 387-408.

Apsit, V. J., R. R. Nakamura & N. C. Wheeler. 1989. Differential male reproductive success in Douglas fir. Theoretical and Applied Genetics 77: 681-684.

Arditi, R. & B. Dacorogna. 1988. Optimal foraging on arbitrary food distributions and the definition of habitat patches. American Naturalist 131: 837-846.

Arditti, J. 197 9. Aspects of the physiology of orchids. Advances in Botanical Research 7: 420-655.

Arekal, G. D. & C. R. Nagendran. 1976. Embryo sac of Eydrobryopsis sessilis (Podostemaceae) — origin, organization and significance. Botaniska Notiser 128: 332-338.

Arekal, G. D. & G. R. Shivamurthy. 1978. Female gametophyte in two species of Balanophora — a reinvestigation. Phytomorphology 28: 7-13.

Audley-Charles, M. G. 1987. Dispersal of Gondwanaland: relevance to evolution of the angiosperms. Pages 5-25, in T. C Whitmore (ed.), Biogeographical Evolution of the Malay Archipelago. Oxford: Oxford University Press.

Axelrod, R. 1984. The evolution of cooperation. New York: Basic Books.

Baird, A. M. 1939. A contribution to the life-history of 270

Macrozamia reidlei. Journal of the Royal Society of Western 25: 153-175.

Baird, A. M. 1953. The life-history of Callitris. Phytavorphology 3: 253-284.

Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology 53: 997-1010.

Bambacioni-Mezzetti, V. 1931. Nuove ricerche sull'embriologia delle Gigliaceae. Annali di Botani (Roma) 19: 365-382.

Barrett, S. C. H. 1988. The evolution, maintenance, and loss of self-incompatibility systems. Pages 98-124 in J. Lovett Doust & L. Lovett Doust (eds.), Plant reproductive ecology. New York: Oxford University Press.

Barton, S. C, M. A. H. Surani & M. L. Norris. 1984. Role of paternal and maternal genomes in mouse development. Nature 311: 374-376.

Battaglia, E. 1951. The male and female gametophytes of angiosperms — an interpretation. Phytomorphology 1: 86-116.

Battaglia, E. 1971. The embryo sac of Podostemaceae — an interpretation. Caryologia 24: 403-420.

Baxter, R. W. 1963. Calamxarpon insignis, a new genus of heterosporous, petrified calamitean cones from the American . American Journal of 50: 469-476.

Beck, C. B. 1985. Gymnosperm phylogeny — a commentary on the views of S. v. Meyen. Botanical Review 51: 273-294.

Bell, G. J. 1978. The evolution of anisogamy. Journal of Theoretical Biology 73: 247-270.

Bell, P. R. 1985. Maturation of the megaspore in Marsilea 271 vestita. Proceedings of the Royal Society of London, B 223: 485-494.

Benson, M. 1908. Miadesmia wenbranacea, Bertrand; a new Palaeozoic lycopod with a seed-like structure. Philosophical Transactions of the Royal Society of London, B 199: 409-429.

Berlyn, G. P. 1962. Developmental patterns in pine polyembryony. American Journal of Botany 49: 327-333.

Bernhardt, P. & L. B. Thien. 1987. Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Systewatics and Evolution 156: 159-176.

Bernstein, H., H. C. Byerley, F. A. Hopf & R. E. Michod. 1985. Sex and the emergence of species. Journal of Theoretical Biology 117: 665-690.

Bhandari, N. N. & P. Chitralekha. 1989. Cellularization of the female gametophyte in Ranunculus scleratus. Canadian Journal of Botany 67: 1325-1330.

Bhandari, N. N. & S. C. A. Vohra. 1983. Embryology and affinities of Viscaceae. Pages 69-86, in M. Calder & P. Bernhardt (eds.) The Biology of Mistletoes. Sydney: Academic Press Australia.

Bhatnagar, S. P. & A. K. Bhatnagar. 1986. Review of Embryology of Angiosperms, B. M. Johri (ed.) 1984. Phytomorphology 36: 174-177.

Bhatnagar, S. P. & B. M. Johri. 1983. Embryology of Loranthaceae. Pages 47-68, in M. Calder & P. Bernhardt (eds.) The Biology of Mistletoes. Sydney: Academic Press Australia.

Bierzychudek, P. 1981. Pollinator limitation of plant reproductive effort. American Naturalist 117: 838-840.

Bilderback, D. E., D. E. Bilderback, T. L. Jahn & J. R. Fonseca. 1973. The release mechanism and locomotor behavior of Equisetum 272 sperm. American Journal of Botany 60: 796-801.

Bino, R. J., A. Dafni & A. D. J. Meeuse. 1984. Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. (= E. alte C.A. Mey.), with some notes on E. campylopoda C.A. Mey. I. Aspects of the entomophilous syndrome. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen C 87: 1-13.

Bino, R. J., N. Devente & A. D. J. Meeuse. 1984. Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. (= E. alte C.A. Mey.), with some notes on E. campylopoda C.A. Mey. II. Pollination droplets, nectaries, and nectarial secretion in Ephedra. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen C 87: 15-24.

Bishir, J. & G. Namkoong. 1987. Unsound seed in : estimation of number of lethal alleles and of magnitudes of effects associated with the maternal parent. Silvae Genetica 36: 3-4.

Bjornstad, I. N. 1970. Comparative embryology of Asparagoideae- Polygonateae, Liliaceae. Nytt Magasin for Botanik 17: 169-207.

Bliss, M. C. 1921. The vessel in seed plants. Botanical Gazette 71: 314-326.

Bloom, A. J., F. S. Chapin & H. A. Mooney. 1985. Resource limitation in plants - an economic analogy. Annual Review of Ecology and Systematics 16: 363-392.

Bold, H. C. 1973. Morphology of Plants, 3rd edition. New York: Harper & Row.

Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227-249.

Bouman, F. 1984. The ovule. Pages 123-157, in B. M. Johri (ed.) 273

Embryology of Angiosperms. Berlin: Springer-Verlag.

Boyes, J. W. 1939. Development of the embryo sac of Plumbagella micrantha. American Journal of Botany 26: 539-547.

Boyes, J. W. & E. Battaglia. 1951. The tetrasporic embryo sacs of Plumbago coccinea, P. scandens, and Ceratostigma willmottianum. Botanical Gazette 112: 485-489.

Briggs, C. L., M. Westoby, P. M. Selkirk & R. J. Oldfield. 1987. Embryology of early abortion due to limited maternal resources in Pisum sativum L. Annals of Botany 59: 611-619.

Brink, R. A. & D. C. Cooper. 1940. Double fertilization and development of the seed in angiosperms. Botanical Gazette 102: 1-25.

Brough, P. & M. H. Taylor. 1940. An investigation of the life cycle of Macrozamia spiralis Miq. Proceedings of the Linnean Society of New South Wales 65: 494-524.

Brown, J. S. & D. L. Venable. 1986. Evolutionary ecology of seed- bank annuals in temporally varying environments. American Naturalist 127: 31-47.

Brown, W. H.. 1908. The nature of the embryo sac of Peperomia. Botanical Gazette 46: 445-460.

Buchholz, J. T. 1918. Suspensor and early embryo of Pinus. Botanical Gazette 66: 185-228.

Buchholz, J. T. 1922. Developmental selection in vascular plants. Botanical Gazette 73: 249-286.

Buchholz, J. T. 1939a. The morphology and embryogeny of Sequoia gigantea. American Journal of Botany 26: 93-101.

Buchholz, J. T. 1939b. The embryogeny of Sequoia sempervirens 274 with a comparison of the sequoias. American Journal of Botany 26: 248-257.

Buchholz, J. T. 1946. Volumetric studies of seeds, endosperms, and embryos in Pinus ponderosa during embryonic differentiation. Botanical Gazette 108: 232-244.

Buchmann, S. L., M. K. O'Rourke & K. J. Niklas. 1989. Aerodynamics of Ephedra trifurca. III. Selective pollen capture by pollination droplets. Botanical Gazette 150: 122-131.

Bulmer, M. G. 1984. Delayed germination of seeds: Cohen's model revisited. Theoretical Population Biology 26: 367-377.

Burdon, R. D. & C. B. Low. 1973. Seed production in radiata pine clones on four different sites. New Zealand Journal of Forest Science 3: 211-219.

Burdon, R. D. & J. A. Zabkiewicz. 1973. Identical and non- identical seedling twins in Pinus radiata. Canadian Journal of Botany 51: 2001-2004.

Burger, W. C. 1981. Why are there so many kinds of flowering plants? BioScience 31: 572-581.

Burlingame, L. L. 1915. The morphology of Araucaria brasiliensis. III. Fertilization, the embryo and the seed. Botanical Gazette 59: 1-39.

Bushnell, W. R. 1979. The nature of basic compatibility: comparisons between pistil-pollen and host-parasite interaction. Pages 211-227, in J. M. Daly & I. Uritani (eds.) Recognition and Specificity in Plant Host-Parasite Interactions. Tokyo: Japanese Science Society Press.

Caldwell, 0. w. 1907. Microcycas calocoma. Botanical Gazette 44: 118-141. 275

Campbell, D. R. 1989. Inflorescence size: test of the male function hypothesis. American Journal of Botany 76: 730-738.

Casper, B .B. 1984. On the evolution of embryo abortion in the herbaceous perennial Cryptantha flava. Evolution 38: 1332-1349.

Cass, D. D. 1972. Occurrence and development of a filiform apparatus in the egg of Plumbago capensis. American Journal of Botany 59: 279-283.

Cass, D. D., D. J. Peteya & B.L. Robertson. 1985. Megagametophyte development in Hordeum vulgare. 1. Early megagametogenesis and the nature of cell wall formation. Canadian Journal of Botany 63: 2164-2171.

Cass, D. D., D. J. Peteya & B.L. Robertson. 1986. Megagametophyte development in Hordeum vulgare. 2. Later stages of wall development and morphological aspects of megagametophyte cell differentiation. Canadian Journal of Botany 64: 2327-2336.

Cattanach, B. M. & M. Kirk. 1985. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315: 496-498.

Cavers, P. B. & M. G. Steel. 1984. Patterns of change in seed weight over time on individual plants. American Naturalist 124: 324-335.

Chaloner, W. G. 1958. Isolated megaspore tetrads of Stauropteris bumtislandica. Annals of Botany 22: 197-204.

Chaloner, W. G. 1967. Spores and land-plant evolution. Review of Palaeobotany and Palynology 1: 83-93.

Chaloner, W. G. 1970. The evolution of miospore polarity. Geoscience and Man 1: 47-56.

Chaloner, W. G. & J. M. Pettitt. 1987. The inevitable seed. 276

Bulletin de la Society botanique de France 134: 39-49.

Chaloner, W. G. & A. Sheerin. 1981. The evolution of reproductive strategies in early land plants. Pages 93-100, in G. G. E. Scudder & J. L. Reveal (eds.) Evolution Today. Proceedings of the Second International Congress of Systematic and Evolutionary Biology.

Chamberlain, C. J. 1912. Morphology of Ceratozamia. Botanical Gazette 53: 1-19.

Chamberlain, C. J. 1913. Macrozamia woorei, a connecting link between living and fossil . Botanical Gazette 55: 142-154.

Chamberlain, C. J. 1916. Stangeria paradoxa. Botanical Gazette 61: 353-372.

Chamberlain, C. J. 1935. Gymnosperms: structure and evolution. Chicago: University of Chicago Press.

Charlesworth, B. 1988. Appendix to Haig & Westoby (1988b).

Charnov, E. L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129-136.

Charnov, E. L. 1979. Simultaneous hermaphroditism and sexual selection. Proceedings of the National Academy of Sciences, U.S.A. 76: 2480-2484.

Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton: Princeton University Press.

Charnov, E. L. & J. J. Bull. 1977. When is sex environmentally determined? Nature 266: 828-830.

Charnov, E. L., J. Maynard Smith & J. J. Bull. 1976. Why be an hermaphrodite? Nature 263: 125-126. 277

Chase, S. S. 1969. Monoploids and monoploid-derivatives of maize (Zea mays h.). Botanical Review 35: 117-167.

Cohen, D. 1966. Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology 12: 119-129.

Cohen, D. 1967. Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. Journal of Theoretical Biology 16: 1-14.

Cohen, D. 1968. A general model of optimal reproduction in a randomly varying environment. Journal of Ecology 56: 219-228.

Comins, H. N. 1982. Evolutionarily stable strategies for localized dispersal in two dimensions. Journal of Theoretical Biology 94: 579-606.

Comins, H. N., W. D. Hamilton & R. M. May. 1980. Evolutionarily stable dispersal strategies. Journal of Theoretical Biology 82: 205-230.

Cooke, T J. & R. H. Racusen. (1988). The growth forms of developing gametophytes: a theoretical consideration of form and function relationships. Annals of Botany 62: 633-641.

Cooper, D. C. 1939. Development of megagametophyte in Erythronium albidum. Botanical Gazette 100: 862-867.

Corey, E. J. & A. G. Myers. 1985. Total synthesis of (±)- antheridium-inducing factor (A. , 2) of the fern Anemia An phyllitidis. Clarification of stereochemistry. Journal of the American Chemical Society 107: 5574-5576.

Corner, E. J. H. 1951. The leguminous seed. Phytomornhology 1: 115-150.

Corner, E. J. H. 1976. The Seeds of Dicotyledons, Volume 1. 278

Cambridge: Cambridge University Press.

Cornet, B. 1989. The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the Late . Evolutionary Trends in Plants 3: 25-51.

Cosmides, L. M. & J. Tooby. 1981. Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology 89: 83-129.

Coulter, J. M. 1898. The origin of gymnosperms and the seed habit. Botanical Gazette 26: 153-168.

Coulter, J. M. & W. J. G. Land. 1905. Gametophytes and embryos of Torreya taxifolia. Botanical Gazette 39: 161-178.

Cousens, M. I. 1981. Blechnum spicant: habitat and vigor of optimal, marginal, and disjunct populations, and field observations of gametophytes. Botanical Gazette 142: 251-258.

Cousens, M. I. 1988. Reproductive strategies of pteridophytes. Pages 307-328, in J. Lovett Doust & L. Lovett Doust (eds.) Plant Reproductive Biology. Oxford: Oxford University Press.

Cox, P. A. 1983. Search theory, random motion, and the convergent evolution of pollen and spore morphology in aquatic plants. American Naturalist 121: 9-31.

Cox, P. A. & J. A. Sethian. 1985. Gamete motion, search, and the evolution of anisogamy, oogamy, and chemotaxis. American Naturalist 125: 74-101.

Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden 72: 716-793.

Crane, P. R. 1987. Vegetational consequences of the angiosperm diversification. Pages 107-144, in E. M. Friis, W. G. Chaloner & P. R. Crane (eds.) The origins of angiosperms and their 279 biological consequences. Cambridge: Cambridge University Press.

Crepet, W. L. 1984. Advanced (constant) insect pollination mechanisms: pattern of evolution and implications vis-a-vis angiosperm diversity. Annals of Missouri Botanical Garden 71: 607-630.

Crepet, W. L. & E. M. Friis. 1987. The evolution of insect pollination in angiosperms. Pages 181-201, in E. M. Friis, W. G. Chaloner & P. R. Crane (eds.) The origins of angiosperms and their biological consequences. Cambridge: Cambridge University Press.

Cronquist, A. 1988. The evolution and classification of floering plants, Second Edition. New York: New York Botanical Garden.

Crow, C. F. & M. Kimura. 1970. Introduction to Population Genetics Theory. New York: Harper.

Dahlgren, K. V. 0. 1928. Die embryologie einiger Alismatazeen. Svensk botanisk Tidskrift 22: 1-17.

Dahlgren, K. V. 0. 1934. Die Embryosackentwicklung von Echinodorus macrophyllus und Sagittaria sagittifolia. Planta 21: 602-612.

Dahlgren, R. M. T. 1980. A revised system of classification of the angiosperms. Botanical Journal of the Linnean Society 80: 91-124.

Dahlgren, R. M. T., H. T. Clifford & P. F. Yeo. 1985. The Families of the . Berlin: Springer-Verlag.

Dallimore, W. & A. B. Jackson. 1948. Handbook of Coniferae, 3rd edition. London: Edward Arnold.

D'Amato, F. 1984. Role of polyploidy in reproductive organs and tissues. Pages 517-566, in B. M. Johri (ed.) Embryology of Angiosperms. Berlin: Springer-Verlag. 280

Davis, G. L. 1966. Systematic Embryology of the Angiosperms. New York: John Wiley.

Dawkins, R. 1976. The Selfish Gene. Oxford: Oxford University Press.

Dawkins, R. 1982. The Extended Phenotype. Oxford: Oxford University Press. de Laubenfels, D. J. 1959. Parasitic found in New Caledonia. Science 130: 97. de Silva, B. L. T. & M. S. Tambiah. 1952. A contribution to the life history of Cycas rumphii Miq. Ceylon Journal of Science 12: 223-244.

DiMichele, W. A., J. I. Davis & R. G. Olmstead. 1989. Origins of heterospory and the seed habit: the role of heterochrony. Taxon 38: 1-11.

Doak, C. C. 1932. Multiple male cells in Cupressus arizanica. Botanical Gazette 94: 168-182.

Doak, C. C. 1937. Morphology of Cupressus arizanica: gametophytes and embryogeny. Botanical Gazette 98: 808-815.

Doyle, J. & M. Brennan. 1971. Cleavage polyembryony in conifers and taxads — a survey. I. Podocarps, taxads and taxodioids. Scientific Proceedings of the Royal Dublin Society, Series A 4: 57-88.

Doyle, J. & M. Brennan. 1972. Cleavage polyembryony in conifers and taxads — a survey. II. Cupressaceae, Pinaceae and conclusions. Scientific Proceedings of the Royal Dublin Society, Series A 4: 137-158.

Doyle, J. A. 1978. Origin of angiosperms. Annual Review of Ecology and Systematics 9: 365-392.

Doyle, J. A. 1984. Evolutionary, geographic, and ecological aspects of the rise of angiosperms. Proceedings of the 27th International Geological Congress, Volume 2, pp. 23-33. Utrecht: VNU Science Press.

Doyle, J. A. & M. J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52: 321-431.

Duckett, J. G. 197 0. Sexual behavior of the genus Equisetum, subgenus Equisetum. Botanical Journal of the Linnean Society 63: 327-352.

Duckett, J. G. 1972. Sexual behavior of the genus Equisetum, subgenus Hippochaete. Botanical Journal of the Linnean Society 65: 87-108.

Duckett, J. G. 1977. Towards an understanding of sex determination in Equisetum. An analysis of regeneration in the gametophytes of the subgenus Equisetum. Botanical Journal of the Linnean Society 74: 215-242.

Duckett, J. G. 1979. Comparative morphology of the gametophytes of the genus Equisetum subgenus Hippochaete and the sexual behaviour of E. ramoissimum subsp. debile (Roxb.) Hauke. E. hymenale var. affine (Engelm.) A. A., and E. laevigatum A. Br. Botanical Journal of the Linnean Society 79: 179-203.

Duckett, J. G. & A. R. Duckett. 1980. Reproductive biology and population dynamics of wild gametophytes of Equisetum. Botanical Journal of the Linnean Society 80: 1-40.

Duckett, J. G. & W. C. Pang. 1984. The origins of heterospory: a comparative study of sexual behaviour in the fern Platyzoma microphyllum R.Br, and the horsetail Equisetum giganteum h. Botanical Journal of the Linnean Society 88: 11-34. 282

Dupler, A. W. 1917. The gametophytes of Taxus canadensis Marsh. Botanical Gazette 64: 115-136.

Eames, A. J. 1936. Morphology of Vascular Plants. Lower Groups. New York: McGraw-Hill.

Eberhard, W. G. 1980. Evolutionary consequences of intracellular organelle competition. Quarterly Review of Biology 55: 231-249.

Edwards, D. & J. Feehan. 1980. Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature 287: 41-42.

Ehlenfeldt, M. K. & R. E. Hanneman, Jr. 1988. Genetic control of Endosperm Balance Number (EBN): three additive loci in a threshold-like system. Theoretical and Applied Genetics 75: 825-832.

Ekdahl, I. 1941. Die Entwicklung von Embryosack und Embryo bei UIIWLS glabra Huds. Svensk botanisk Tidskrift 35: 143-156.

Ellner, S. 1985. ESS germination strategies in randomly varying environments. I. Logistic type models. Theoretical Population Biology 28: 50-79.

Ellner, S. 1986. Germination dimorphisms and parent-offspring conflict in seed germination. Journal of Theoretical Biology 123: 173-185.

Endress, P. K. & D. H. Lorence. 1981. Diversity and evolutionary trends in the structure of Tambourissa (Monimiaceae). Plant Systematics and Evolution 153: 53-81.

Engels, F. M. & M. Gianordoli. 1983. The basic autonomy of Metasequoia female gametophytes. Acta Botanica Neerlandica 32: 295-305.

Erdtman, G. 1965. Pollen and Spore Morphology/ Plant . 283

Gywnospermae, Bryophyta (text). (An Introduction to Palynology), Volume 3. Stockholm: Almgyist & Wiksell.

Erdtman, G. 1966. Pollen Morphology and Plant Taxonomy-- Angiosperms. (An Introduction to Palynology), volume 1 (corrected reprint). New York: Hafner.

Erdtman, G. & P. Sorsa. 1971. Pollen and Spore Morphology/ Plant Taxonomy- Pteridophyta (text and additional illustrations). (An Introduction to Palynology), Volume 4. Stockholm: Almqvist & Wiksell.

Fagerlind, F. 1938. Wo kommen tetrasporische durch drei Teilungsschritte vollentwickelte Embryosacke unter den Angiospermen vor? Botaniska Notiser 1938: 461-498.

Fagerlind, F. 1939a. Kritische und revidierende Untersuchungen iiber das Vorkommen des Adoxa ["Lilium") Typs. Acta Horti Bergiani 13: 1-49.

Fagerlind, F. 1939b. Drei Beispiele des Fritillaria-Typs. Svensk botanisk Tidskrift 33: 188-204.

Fagerlind, F. 1939c. Die Entwicklung des Embryosackes bei Peperomia pellucida. Arkiv for Botanik 29A (17): 1-15.

Fagerlind, F. 1944. Der tetrasporische Angiospermen-Embryosack und dessen Bedeutung fur das Verstandnis der Entwicklungsmechanik und Phylogenie des Embryosacks. Arkiv for Botanik 31A (11): 1-71.

Fagerstrom, T. 1988. Lotteries in communities of sessile organisms. Trends in Ecology and Evolution 3: 303-306.

Falconer, D. S. 1981. Introduction to Quantitative Genetics, 2nd Edition. London: Longman.

Farrar, D. R. 1978. Problems in the identity and origin of the Appalachian Vittaria gametophyte, a sporophyteless fern of the 284

eastern United States. American Journal of Botany 65: 1-12.

Favre-Duchartre, M. 1958. Ginkgo, an oviparous plant. Phytomorphology 8: 377-390.

Favre-Duchartre, M. 197 0. Des ovules aux graines. Paris: Masson et Cie.

Favre-Duchartre, M. 1984. Homologies and phylogeny. Pages 697- 734, in B. M. Johri (ed.) Embryology of Angiosperms. Berlin: Springer-Verlag.

Feeny, P. 1976. Plant apparency and chemical defence. Recent Advances in Phytochemistry 10: 1-40.

Ferguson, D. K. 1985. The origin of leaf-assemblages — new light on an old problem. Review of Palaeobotany and Palynology 46: 117-188.

Fernandez, G. W. & T. G. Whitham. 1989. Selective fruit abscission by Juniperus monosperma as an induced defense against predators. American Midland Naturalist 121: 389-392.

Fisher, G. C. 1914. Seed development in the genus Peperomia. Bulletin of the Torrey Botanical Club 41: 137-156, 221-241.

Foster, A. S. & E. M. Gifford. 1974. Comparative Morphology of Vascular Plants, 2nd edition. San Francisco: Freeman.

Foster, S. A. 1986. On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. Botanical Review 52: 261-299.

Foster, S. A. & C. H. Janson. 1985. The relationship between seed size and establishment conditions in tropical woody plants. Ecology 66: 773-780.

Fowler, D. P. 1964. Pre-germination selection against a 285 deleterious mutant in red pine. Forest Science 10: 335-336.

Fowler, D. P. & Y. S. Park. 1983. Population studies of white spruce. I. Effects of self-pollination. Canadian Journal of Forest Research 13: 1133-1138.

Franklin, E. C. 1970. Survey of mutant forms and inbreeding depression in species of the family Pinaceae. USDA Forest Service Research Paper SE-61.

Franklin, E. C. 1972. Genetic load in loblolly pine. American Naturalist 106: 262-265.

Friedman, W. E. 1987. Growth and development of the male gametophyte of Ginkgo biloba within the ovule (in vivo). American Journal of Botany 74: 1797-1815.

Friedman, W. E. & T. E. Goliber. 1986. Photosynthesis in the female gametophyte of Ginkgo biloba. American Journal of Botany 73: 1261-1266.

Friis, E. M., W. G. Chaloner & P. R. Crane. 1987. Introduction to angiosperms. Pages 1-15, in E. M. Friis, W. G. Chaloner & P. R. Crane (eds.) The origins of angiosperms and their biological consequences. Cambridge: Cambridge University Press.

Galtier, J. & N. P. Rowe. 1989. A primitive seed-like structure and its implications for early gymnosperm evolution. Nature 340: 225-227.

Ganders, F. R. 1972. Heterozygosity for recessive lethals in homosporous fern populations: Thelypteris palustris and Cnoclea sensibilis. Botanical Journal of the Linnean Society 65: 211-221.

Gastony, G. J. & L. D. Gottlieb. 1985. Genetic variation in the homosporous fern Pellaea andromedifolia. American Journal of Botany 72: 257-267. 286

Geiger, H. 1934. Untersuchungen an Selaginella (Makroprothailien, Befruchtung und Apomixis). Flora 129: 140-157.

Gemmrich, A. R. 1986a. Antheridiogenesis in the fern Pteris vittata. I. Photocontrol of antheridium formation. Plant Science 43: 135-140.

Gemmrich, A. R. 1986b. Antheridiogenesis in the fern Pteris vittata. II. Hormonal control of antheridium formation. Journal of Plant Physiology 125: 157-166.

Gillespie, J. H. 1977. Natural selection for variances in offspring numbers: a new evolutionary principle. American Naturalist 111: 1010-1014.

Gillespie, W. H., G. W. Rothwell & S. E. Scheckler. 1981. The earliest seeds. Nature 293: 462-464.

Goldman, D. A. & M. F. Willson. 1986. Sex allocation in functionally hermaphroditic plants: a review and critique. Botanical Review 52: 157-194.

Gottsberger, G. 1988. The reproductive biology of primitive angiosperms. Taxon 37: 630-643.

Grallert, B. & M. Sipiczki. 1989. Initiation of the second meiotic division in Schizosaccharowyces powbe shares common functions with that of mitosis. Current Genetics 15: 231-233.

Gray, A. 1887. The elements of botany, revised edition. New York: American Book Company.

Griffin, A. R. & D. Lindgren. Effect of inbreeding on production of filled seed in Pinus radiata — experimental results and a model of gene action. Theoretical and Applied Genetics 71: 334-343.

Grime, J. P., G. Mason, A. V. Curtis, J. Rodman, S. R. Band, M. 287

A. G. Mowforth, A. M. Neal & S. Shaw. 1981. A comparative study of germination characteristics in a local flora. Journal of Ecology 69: 1017-1059.

Hagman, M. 1975. Incompatibility in forest trees. Proceedings of the Royal Society of London, B 188: 313-326.

Haig, D. 1986. Conflicts among megaspores. Journal of Theoretical Biology 123: 471-480.

Haig, D. 1987. Kin conflict in seed plants. Trends in Ecology and Evolution 2: 337-340.

Haig, D. 1990a. Brood reduction and optimal parental investment when offspring differ in quality. American Naturalist in press.

Haig, D. 1990b. New perspectives on the angiosperm female gametophyte. Botanical Review in press.

Haig, D. & M. Westoby. 1988a. Sex expression in homosporous ferns: an evolutionary perspective. Evolutionary Trends in Plants 2: 111-119.

Haig, D. & M. Westoby. 1988b. A model for the origin of heterospory. Journal of Theoretical Biology 134: 257-272.

Haig, D. & M. Westoby. 1988c. Inclusive fitness, seed resources and maternal care. Pages 60-79, in J. Lovett Doust & L. Lovett Doust (eds.) Plant Reproductive Ecology. New York: Oxford University Press.

Haig, D. & M. Westoby. 1988d. On limits to seed production. American Naturalist 131: 757-759.

Haig, D. & M. Westoby. 1989a. Parent specific gene expression and the triploid endosperm. American Naturalist 134: 147-155.

Haig, D. & M. Westoby. 1989b. Evolutionary forces in the emergence of 288 the seed habit. Biological Journal of the Linnean Society in press.

Haines, R. J. 1983. Seed development in Araucaria Juss. Australian Journal of Botany 31: 255-267.

Haines, R. J., N. Prakash & D. G. Nikles. 1984. Pollination in Araucaria Juss. Australian Journal of Botany 32: 583-594.

Hamilton, W. D. 1964. The genetical evolution of social behavior. Journal of Theoret&ical Biology 7: 1-52.

Hamilton, W. D. & R. M. May. 1977. Dispersal in stable habitats. Nature 269: 578-581.

Hamrick, J. L. & M. J. Godt. (in press). In A. H. D. Brown, M. T. Clegg, A. L. Kohler & B. S. Weir (eds.), Population Genetics and Germplasm Resources in Crop Improvement. Sunderland, Massachusetts: Sinauer Press.

Haque, A. 1951. The embryo sac of Erythronium americanum. Botanical Gazette 112: 495-500.

Harland, W. B., A. V. Cox, P. G. Llewellyn, C. A. G. Pickton, A. G. Smith & R. Walters. 1982. A Geologic Time Scale. Cambridge: Cambridge University Press.

Harling, G. 1950. Embryological studies in the Compositae. I. Anthemideae-Anthemidinae. Acta Horti Bergiani 15: 135-168.

Harling, G. 1951a. Embryological studies in the Compositae. II. Anthemideae-Chrysantheminae. Acta Horti Bergiani 16: 1-56.

Harling, G. 1951b. Embryological studies in the Compositae. III. Astereae. Acta Horti Bergiani 16: 73-120.

Harper, J. L. 1977. Population Biology of Plants. London: Academic Press. 289

Harper, J. L., P. H. Lovell & K. G. Moore. 1970. The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1: 327-356.

Hart, J. A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269-307.

Haufler, C. H. 1987. Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. American Journal of Botany 74: 953-966.

Haufler, C. H. & G. J. Gastony. 1978. Antheridiogen and the breeding system in the fern genus Bommeria. Canadian Journal of Botany 56: 1594-1601.

Haufler, C. H. & T. H. Ranker. 1985. Differential antheridiogen response and evolutionary mechanisms in Cystopteris. American Journal of Botany 72: 659-665.

Haufler, C. H. & D. E. Soltis. 1984. Obligate outcrossing in a homosporous fern: field confirmation of a laboratory prediction. American Journal of Botany 71: 878-881.

Hauke, R. L. 1977. Experimental studies on growth and sexual determination in Equisetum gametophytes. American Fern Journal 67: 18-31.

Haupt, A. w. 1934. Ovule and embryo sac of Plumbago capensis. Botanical Gazette 95: 649-659.

Hedrick, P. W. 1987. Genetic load and the mating system in homosporous ferns. Evolution 41: 1282-1289.

Herd, Y. R., E. G. Cutter & I. Watanabe. 1986. An ultrastruetural study of postmeiotic development in the megasporocarp of Azolla microphylla. Canadian Journal of Botany 64: 822-833. 290

Herr, J. M., Jr. 1984. Embryology and taxonomy. Pages 645-696, in B. M. Johri (ed.) Embryology of Angiosperms. Berlin: Springer- Verlag.

Herrera, C. M. 1989. Seed dispersal by animals: a role in angiosperm diversification ? American Naturalist 133: 309-322.

Hickey, L. J. & J. A. Doyle. 1977. Early fossil evidence for angiosperm evolution. Botanical Review A3: 3-104.

Hickok, L. G. & R. M. Kiriluk. 1984. Effects of auxins on gametophyte development and in the fern Ceratopteris thalictroides (L.) Brongn. Botanical Gazette 145: 37-42.

Hickok, L. G. & 0. J. Schwarz. 1986. An in vitro whole plant selection system: paraguat tolerant mutants in the fern Ceratopteris. Theoretical and Applied Genetics 72: 302-306.

Hickok, L. G., T. R. Warne, & M. K. Slocum. 1987. Ceratopteris richardii: applications for experimental plant biology. American Journal of Botany 74: 1304-1316.

Hjelmqvist, H. & F. Grazi. 1965. Studies on variation in embryo sac development. Botaniska Notiser 118: 329-360.

Ho, R. H. 1985. Effect of repeated pollination upon filled seed in white spruce. Canadian Journal of Forest Research 15: 1195-1197.

Hodgson, J. G. & J. M. L. Mackey. 1986. The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance. New Phytologist 104: 497-515.

Hofmeister, W. 1851. quoted in Thomson (1927); my translation.

Hopf, F. A. & F. W. Hopf. 1985. The role of the Allee effect in 291 species packing. Theoretical Population Biology 27: 27-50.

Howe, T. D. 197 5. The female gametophyte of three species of Grindelia and of Prionopsis ciliata (Compositae). American Journal of Botany 62: 273-279.

Hurst, L. D. 1990. Parasite diversity and the evolution of diploidy and anisogamy. Journal of Theoretical Biology, in press.

Jeske, C. & H. Senger. 1978. Development of pigments and activity of the photosynthetic apparatus in some higher plants. Pages 475- 480, in G. Akoyunoglou & J. H. Argyroudi-Akoyunoglou (eds.), Chloroplast development. Proceedings of the International Symposium on Chloroplast Development. Elsevier/North-Holland.

Jeske, C. & H. Senger. 1981. The development of the photosynthetic apparatus of Gnetum: angiosperm or gymnosperm type? Pages 387-396, in G. Akoyunoglou (ed.), Photosynthesis V. Chloroplast development. Proceedings of the Fifth International Photosynthesis Conference. Philadelphia: Balaban international Science Services.

Johansen, D. A. 1940. Plant Microtechnique. New York and London: McGraw-Hill.

Johnson, D. M. 1985. New records for longevity of Marsilea sporocarps. American Fern Journal 75: 30-31.

Johnson, D. S. 1900. On the endosperm and embryo of Peperomia pellucida. Botanical Gazette 30: 1-11.

Johnson, D. S. 1902. On the development of certain Piperaceae. Botanical Gazette 34: 321-340.

Johnson, D. S. 1910. Studies in the development of the Piperaceae I. The suppression and extension of sporogenous tissue in the flower of Piper betel L. var. monoicum. C. DC. Journal of Experimental Zoology 9: 715-749. 292

Johnson, D. S. 1914. Studies of the development of the Piperaceae II. The structure and seed-development of Peperomia hispidula. American Journal of Botany 1: 323-339, 357-397.

Johnsson, H. 1976. Contributions to the genetics of empty grains in the seed of pine (Pinus silvestris). Silvae Genetica 25: 1-15.

Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin & R. E. Hanneman, Jr. 1980. The significance of genie balance to endosperm development in interspecific crosses. Theoretical and Applied Genetics 57: 5-9.

Johnstone, G. R. 1940. Further studies on polyembryony and germination of polyembryonic pine seeds. American Journal of Botany 27: 808-811.

Johri, B. M. 1935a. Studies in the family Alismaceae. I. Limnophyton obtusifolium. Miq. Journal of the Indian Botanical Society 14: 49-66.

Johri, B. M. 1935b. Studies in the family Alismaceae. II. Sagittaria sagittifolia h. Proceedings of the Indian Academy of Sciences B 1: 340-348.

Johri, B. M. 1935c. Studies in the family Alismaceae. III. Sagittaria guayanensis H.B.K. and S. latifolia Willd. Proceedings of the Indian Academy of Sciences B 2: 33-48.

Johri, B. M. 1936a. The life-history of Butomopsis lanceolata Kunth. Proceedings of the Indian Academy of Sciences B 4:139-162.

Johri, B. M. 1936b. Studies in the family Alismaceae. IV. Alisma plantago h.; Alisma plantago^aquatica L. and Sagittaria graminea Mich. Proceedings of the Indian Academy of Sciences B 4: 128-138.

Johri, B. M. 1938a. The embryo sac of Hydrocleis nymphoides Buchen. Beihefte botanisches Zentrahlatt 48A: 165-172. 293

Johri, B. M. 1938b. The embryo sac of Limnocharis emarginata L. New Phytologist 37: 279-285.

Johri, B. M. & D. Kak. 1954. The embryology of Tamarix Linn. Phytomorphology 4: 230-247.

Johri, B. M. & R. N. Kapil. 1953. Contribution to the morphology and life history of Acalypha indica L. Phytomorphology 3: 137-151.

Jones, D. F. 1918. Bearing of heterosis upon double fertilization. Botanical Gazette 65: 324-333.

Kanta, K. 1962. Morphology and embryology of Piper nigrum L. Phytomorphology 12: 207-221.

Kapil, R. N. 1960. Embryology of Acalypha Linn. Phytomorphology 10: 174-184.

Kapil, R. N. & A. K. Bhatnagar. 1981. Ultrastructure and biology of female gametophyte in flowering plants. International Review of Cytology 70: 291-341.

Kato, M. 1988. The phylogenetic relationship of Ophioglossaceae. Taxon 37: 381-386.

Kaur, D. & S. P. Bhatnagar. 1986. Studies in the family Araucariaceae: female cone development in Agathis robusta. Phytomorphology 36: 129-143.

Kennell, J. C. & H. T. Horner. 1985. Influence of the soybean male-sterile gene {ms.) on the development of the female gametophyte. Canadian Journal of Genetics and Cytology 21: 200-209.

Kermicle, J. L. 1969. Androgenesis conditioned by a mutation in maize. Science 166: 1422-1424. 294

Kermicle, J. L. 1970. Dependence of the i?-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66: 69-85.

Kermicle, J. L. 1971. Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. American Journal of Botany 58: 1-7. Kihara, H. & I. Nishiyama. 1932. The genetics and cytology of cereals. III. Different compatibility in reciprocal crosses of Avena, with special reference to tetraploid hybrids between hexaploid and diploid species. Japanese Journal of Botany 6: 245-305. Klekowski, E. J., Jr. 1969a. Reproductive biology of the Pteridophyta. II. Theoretical considerations. Botanical Journal of the Linnean Society 62: 347-359. Klekowski, E. J., Jr. 1969b. Reproductive biology of the Pteridophyta III. A study of the Blechnaceae. Botanical Journal of the Linnean Society 62: 361-377.

Klekowski, E. J., Jr. 1970a. Reproductive biology of the Pteridophyta. IV. An experimental study of mating systems in Ceratopteris thalictroides (L.) Brongn. Botanical Journal of the Linnean Society 63: 153-169.

Klekowski, E. J., Jr. 1970b. Population and genetic studies of a homosporous fern - Osnvnda regal is. American Journal of Botany 57: 1122-1138.

Klekowski, E. J., Jr. 1972. Evidence against genetic self- incompatibility in the homosporous fern Pteridium aquilinum. Evolution 26: 66-73.

Klekowski, E. J., Jr. 1976. Genetics of recessive lethality in the fern Osmunda regalis. Journal of Heredity 67: 146-148.

Klekowski, E. J., Jr. 1979. The genetics and reproductive biology of ferns. Pages 133-170, in A. F. Dyer (ed.) The Experimental 295

Biology of Ferns. New York: Academic Press.

Klekowski, E. J., Jr. 1982. Genetic load and soft selection in ferns. Heredity 49: 191-197.

Klekowski, E. J., Jr. 1984. Mutational load in clonal plants: a study of two fern species. Evolution 38: 417-426.

Knoll, A. H. 1986. Patterns of change in plant communities through geological time. Pages 126-141, in J. Diamond & T. J. Case (eds.) Coiawnity Ecology. New York: Harper & Rowe.

Knoll, A. H. & K. J. Niklas. 1987. Adaptation, plant evolution, and the fossil record. Review of Paleobotany and Palynology 50: 127-149.

Koch, C. F. 197 8. Bias in the published fossil record. Paleobiology A: 367-372.

Konar, R. N. & R. K. Kapoor. 1974. Embryology of Azolla pinnata. Phytomorphology 24: 228-261.

Konar, R. N. & Y. P. Oberoi. 1969. Studies on the morphology and embryology of Podocarpus gracilior Pilger. Beitrage zur Biologie der Pflanzen 45: 329-376.

Kormutak, A. 1984. Some cytological and biochemical aspects of interspecific incompatibility in pines {Pinus sp.). Acta Dendrobiologica, Bratislava: Veda.

Kosinski, G. 1986. Megagametogenesis, fertilization, and embryo development in Larix decidua. Canadian Journal of Forest Research 16: 1301-1309.

Koski, V. 197 3. On self-pollination, genetic load, and subsequent inbreeding in some conifers. Comwnicationes Instituti Forestalls Fenniae 78.10. 296

Kozlowski, J. & S. C. Stearns. 1989. Hypotheses for the production of excess zygotes: models of bet-hedging and selective abortion. Evolution 43: 1369-1377.

Krebs, J. R. & R. Dawkins. 1984. Animal signals: mind reading and manipulation. Pages 380-402, in J. R. Krebs & N. B. Davies (eds.) Behavioural Ecology. Oxford: Blackwell Scientific Publications.

Kremp, G. 0. W. 1967. Tetrad markings of pteridophytic spores and their evolutionary significance. Review of Palaeobotany and Palynology 3: 311-323.

Kubitzki, K. & 0. R. Gottlieb. 1984a. Micromolecular patterns and the evolution and major classification of angiosperms. Taxon 33: 375-391.

Kubitzki, K. & 0. R. Gottlieb. 1984b. Phytochemical aspects of angiosperm origin and evolution. Acta Botanica Neerlandica 33: 457-468.

Kuprianova, L. A. 1967. Apertures of pollen grains and their evolution in angiosperms. Review of Palaeobotany and Palynology 3: 73-80.

Lakshmanan, K. K. & K. B. Ambegaokar. 1984. Polyembryony. Pages 445-474, in B. M. Johri (ed.) Embryology of Angiosperms. Berlin: Springer-Verlag.

Land, W. J. G. 1907. Fertilization and embryogeny in Ephedra trifurca. Botanical Gazette 44: 273-292.

Lasser, H. 1924. Zur Entwicklungsgeschichte des Prothalliums und des Embryos bei Salvinia natans. Flora 117: 173-220.

Law, R. & C. Cannings. 1984. Genetic analysis of conflicts arising during development of seeds in the Angiospermophyta, Proceedings of the Royal Society of London, B 221: 53-70. 297

Lawson, A. A. 1907. The gametophytes and embryo of the Cupressineae with special reference to Libocedrus decurrens. Annals of Botany 21: 281-301.

Lawson, A. A. 1926. A contribution to the life history of Bowenia. Proceedings of the Royal Soceity of Edinburgh 54: 357-394.

Lee, C. L. 1955. Fertilization in Ginkgo biloba. Botanical Gazette 117: 79-100.

Lee, T. D. 1988. Patterns of fruit and seed production. Pages 179-202, in J. Lovett Doust & L. Lovett Doust, (eds.) Plant Reproductive Ecology. Oxford: Oxford University Press.

Leisman, G. A. & T. L. Phillips. 1979. Megasporangiate and microsporangiate cones of Achlamydocarpon varius from the Middle Pennsylvanian. Palaeontographica B 168: 100-128.

Levin, D. A. 1974. The oil content of seeds: an ecological perspective. American Naturalist 108: 193-206.

Levin, S. A., D. Cohen & A. Hastings. 1984. Dispersal strategies in patchy environments. Theoretical Population Biology 26: 165-191.

Lidgard, S. & P. R. Crane. 1988. Quantitative analyses of the early angiosperm radiation. .Nature 331: 344-346.

Lill, B. S. 1976. Ovule and seed development in Pinus radiata: postmeiotic development, fertilization, and embryogeny. Canadian Journal of Botany 54: 2141-2154.

Lin, B-Y. 1978. Structural modifications of the female gametophyte associated with the indeterminate gametophyte {ig) mutant in maize. Canadian Journal of Genetics and Cytology 20: 249-257. 298

Lin, B-Y. 1981. Megagametogenetic alterations associated with the indeterminate gametophyte mutation in maize. Rev. Brasil. Biol. 41: 557-563.

Lin, B-Y. 1982. Association of endosperm reduction with parental imprinting in maize. Genetics 100: 475-486.

Lin, B-Y. 1984. Ploidy barrier to endosperm development in maize. Genetics 107: 103-115.

Lloyd, D. G. 1980. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist 86: 69-79.

Lloyd, D. G. 1984. Variation strategies of plants in heterogenous environments. Biological Journal of the Linnean Soceity 23: 303-322.

Lloyd, D. G. 1985. Parallels between sexual strategies and other allocation strategies. Experientia 41: 1277-1285.

Lloyd, D. G. 1987. Selection of offspring size at independence and other size-versus-number strategies. American Naturalist 129: 800-817.

Lloyd, D. G. 1988. A general principle for the allocation of limited resources. Evolutionary Ecology 2: 175-187.

Lloyd, R. M. 1974a. Systematics of the genus Ceratopteris Brongn. (Parkeriaceae) II. Taxonomy. Brittonia 26: 139-160.

Lloyd, R. M. 1974b. Reproductive biology and evolution in the Pteridophyta. Annals of the Missouri Botanical Garden 61: 318-331.

Lloyd, R. M. & T. L. Gregg. 1975. Reproductive biology and gametophyte morphology of Acrostichum danaeifolium from Mexico. American Fern Journal 65: 105-120. ^f4c^ {x^je. 3C"5.

302

129-153.

Mehra, P. N. & R. S. Sanhu. 1976. Morphology of the fern Anograirme leptophylla. Phytomorphology 26: 60-76.

Melvin, J. F. & C. M. Stewart. 1969. The chemical'composition of the wood of Gnetvm gnewon. Holzforschung 23: 51-56.

Meyen, S. V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Botanical Review 50: 1-111.

Michaels, H. J., B. Benner, A. P. Hartgerink, T. D. Lee, S. Rice, M. F. Willson & R. I. Bertin. 1988. Seed size variation: magnitude, distribution, and ecological correlates. Evolutionary Ecology 2: 157-166.

Michell, A. J., H. D. Ingle & C. M. Stewart. 1969. Infrared spectra of some woods of taxonomic interest. Wood Science and. Technology 3: 93-99.

Michener, C. D. & D. A. Grimaldi. 1988. The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Acadeny of Science, U.S.A. 85: 6424-6426.

Midgley. J. J. & W. J. Bond. 1989. Evidence from Southern African Coniferales for the historical decline of the gymnosperms. Suid- Afrikaanse Tydskrif vir Wetenskap 85: 81-84.

Mikkola, L. 1969. Observations on interspecific sterility in Picea. Annales Botanici Fennici 6: 285-339.

Millay, M. A. & T. N. Taylor. 1976. Evolutionary trends in fossil gymnosperm pollen. Review of Palaeobotany and Palynology 21: 65-91.

Miller, C. N. 1985. A critical review of S. V. Meyen's "Basic 303

features of gymnosperm systematics and phylogeny as evidenced by the fossil record". Botanical Review 51: 295-318.

Miller, C. N. & J. T. Brown. 1973. A new voltzialean cone bearing seeds with embryos from the of Texas. American Journal of Botany 60: 561-569.

Miller, J. H. 1968. Fern gametophytes as experimental material. Botanical Review 34: 361-440.

Mishler, B. D. & S. P. Churchill. 1984. A cladistic approach to the phylogeny of the "bryophytes". Brittonia 36: 406-424.

Modilewski, J. 1908. Zur Embryobildung von Gunnera chilensis. Berichte deutschen botanischen Gesellschaft 26: 550-556.

Moseley, M. F. 1943. Contributions to the life history, morphology and phylogeny of Widdringtonia cupressoides. Lloydia 6: 109-132.

Motro, U. 1982a. Optimal rates of dispersal I. Haploid populations. Theoretical Population Biology 21: 394-411.

Motro, U. 1982b. Optimal rates of dispersal II. Diploid populations. Theoretical Population Biology 21: 412-429.

Muhammad, A. F. & R. Sattler. 1982. Vessel structure of Qietum and the origin of angiospenns. American Journal of Botany 69: 1004-1021.

Mukkada, A. J. 1964. An addition to the bisporic embryo sacs — the Dicraea type. New Phytologist 63: 289-292.

Mulcahy, D. L. 1979. The rise of the angiospenns: a genecological factor. Science 206: 20-23.

Naf, U. 1966. On dark-germination and antheridium formation in Anemia phyllitidis. Physiologia Plantarum 19: 1079-1088. 299

Looby, W. J. & J. Doyle. 1942. Formation of gynospore, female gametophyte, and archegonia in Sequoia. Scientific Proceedings of the Eoyal Dublin Society 23: 35-54.

Lovis, J. D. 1977. Evolutionary patterns and processes in ferns. Advances in Botanical Research 4: 229-415.

Lyon, F. 1901. A study of the sporangia and the gametophytes of Selaginella apus and Selaginella rupestris. Botanical Gazette 32: 124-141, 170-194.

Lyons, L. A. 1956. The seed production capacity and efficiency of red pine cones (Pinus resinosa Ait.). Canadian Journal of Botany 34: 27-36.

MacDuffie, R. C. 1921. Vessels of the Gnetalean type in angiosperms. Botanical Gazette 71: 438-445.

Machlis, L. & E. Rawitscher-Kunkel. 1967. The hydrated megaspore of Marsilea vestita. American Journal of Botany 54: 689-694.

Maheshwari, P. 1946a. The Fritillaria type of embryo sac: a critical review. Journal of the Indian Botanical Society (M. 0. P. Iyengar Ccmnemorative Volume): 101-119.

Maheshwari, P. 1946b. The Adoxa type of embryo sac: a critical review. Lloydia 9: 73-113.

Maheshwari, P. 1950. An Introduction to the Embryology of Angiosperms. New York: McGraw-Hill.

Maheshwari, P. & B. M. Johri. 1941. The embryo-sac of Acalypha indica L. Beihefte botanisches Zentralblatt 16: 125-136.

Maheshwari, P. & B. Singh. 1943. Studies in the family Alismaceae. V. The embryology of Machaerocarpus californicus (Torr.) Small. Proceedings of the Indian Academy of Sciences B 9: 311-322. 300

Maheshwari, P. & V. Vasil. 1961. Gnetum. New Delhi: Council of Scientific and Industrial Research.

Maheshwari, S. C. 1955. The occurrence of bisporic embryo sacs in angiosperms — a critical review. Phytomorphology 5: 67-99.

Mapes, G., G. W. Rothwell & M. T. Haworth. 1989. Evolution of seed dormancy. Nature 337: 645-646.

Marengo, N. P. 1949. A study of the cytoplasmic inclusions during sporogenesis in Qnoclea sensibilis. American Journal of Botany 36: 603-613.

Martens, P. 1966. Du megasporange cryptogamique a 1'ovule gymnospermique. Pages 155-169, in E. G. Cutter (ed.) Trends in Plant Morphogenesis. London: Longmans.

Martens, P. 1971. Les Gn&tophytes. Berlin: Borntraeger.

Martin, A. C. 1946. The comparative internal morphology of seeds. American Midland Naturalist 36: 513-660.

Martin, W., A. Gierl & H. Saedler. 1989. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46-48.

Martinoli, G. 0. 1939. Contributo all'embriologia delle Asteraceae. Nuovo G. bot. Ital. 46: 259-298.

Masuyama, S. 1986. Reproductive biology of the fern Phegopteris decursive-pinnata II. Genetic analyses of self-sterility in diploids. Botanical Magazine (Tokyo) 99: 107-121.

Matheson, A. C. 1980. Unexpectedly high frequencies of outcrossed seedlings among offspring from mixtures of self and cross pollen in Pinus radiata D. Don. Australian Forest Research 10: 21-27.

Mathur, K. & R. Khan. 1941. The development of the embryo sac in 301

Vogelia indica. Lamk. Proceedings of the Indian Academy of Sciences B 13: 360-368.

Mathur, N. 1956. The embryology of Limnanthes. Phytomorphology 6: 41-50.

Mauritzon, J. 1936. Zur Embryologie der Berberidaceen. Meddelanden, Goteborgs Botaniska Tradgard 11: 1-17.

Maynard Smith, J. 197 8. The Evolution of Sex. Cambridge: Cambridge University Press.

Mazer, S. J. 1989. Ecological, taxonomic, and life history correlates of seed mass among Indiana dune angiosperms. Ecological Monographs 59: 153-175.

McCauley, D. E., D. P. Whittier & L. M. Reilly. 1985. Inbreeding and the rate of self-fertilization in a grape fern Botrychium dissectum. American Journal of Botany 72: 197 8-1981.

McLean, R. C. & W. R. Ivimey-Cook. 1951. Textbook of Theoretical Botany, Volume 1. London: Longmans.

McGinley, M. A. & E. L. Charnov. 1988. Multiple resources and the optimal balance between size and number of offspring. Evolutionary Ecology 2: 77-84.

McGinley, M. A., D. H. Temme & M. A. Geber. 1987. Parental investment in offspring in variable environments: theoretical and empirical considerations. American Naturalist 130: 370-398.

Mcwilliam, J. R. 1959. Interspecific incompatibility in Pinus. American Journal of Botany 46: 425-433.

Mehra, P. N. & R. K. Malhotra. 1947. Stages in the embryology of Cupressus sempervirens Linn, with particular reference to the occurrence of multiple male cells in the male gametophyte. Proceedings of the National Academy of Sciences, , B 17: 304

Naf, U. 1979. Antheridiogens. and antheridial development. Pages 435-470, in A. F. Dyer (ed.) The Experimental Biology of Ferns. London: Academic Press.

Naf, U., J. Sullivan & M. Cummins. 1974. Fern antheridiogen: cancellation of a light-dependent block to antheridium formation. Developmental Biology 40: 355-365.

Nagendran, C. R. 1974. Is the embryo sac of Podostemaceae bisporic? Current Science 43: 259-261.

Nagendran, C. R., G. D. Arekal & K. Subramanyam. 1977. Embryo sac studies in three Indian species of Polypleurum (Podostemaceae). Plant Systematics and Evolution 128: 215-226

Nakanishi, K., M. Endo, U. Naf & L. F. Johnson. 1971. Structure of the antheridium-inducing factor of the fern Anemia phyllitidis. Journal of the American Chemical Society 93: 5579-5581.

Neale, D. B. & R. R. Sederoff. 1989. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theoretical and Applied Genetics 77: 212-216.

Nester, J. E. & M. D. Schledlbauer. 1982. Antheridiogen activity of Anemia mexicana. Canadian Journal of Botany 60: 1606-1610.

Nester, J. E., S. Veysey & R. C. Coolbaugh. 1987. Partial characterization of an antheridiogen of Anemia mexicana: Comparison with the antheridiogen of A. phyllitidis. Planta 170: 26-33.

Newcomb, W. 1973. The development of the embryo sac of sunflower Helianthus annuus before fertilization. Canadian Journal of Botany 51: 863-878.

Nichols, G. E. 1910. A morphological study of Juniperus communis 305

(var. depressa). Beihefte zum Botanischen Centralblatt 25: 201-241.

Nikiticheva, Z. I., M. S. Yakovlev & T. A. Plyushch. 1981. [The development of the ovule, embryo sac and endosperm in the species of Peperomia] . Botanicheskii Zhumal 66: 1388-1397. (in Russian).

Niklas, K. J. 1985. The aerodynamics of wind pollination. Botanical Review 51: 328-386.

Niklas, K. J., B. H. Tiffney & A. H. Knoll. 1980. Apparent changes in the diversity of fossil plants. Evolutionary Biology 12: 1-89.

Niklas, K. J., B. H. Tiffney & A. H. Knoll. 1983. Patterns in vascular land plant diversification. Nature 303: 614-616.

Nishiyama, I. & N. Inomata. 1966. Embryological studies on cross- incompatibility between 2x and 4x in Brassica. Japanese Journal of Genetics 41: 27-42.

Nishiyama, I. & T. Yabuno. 1978. Causal relationships between the polar nuclei in double fertilization and interspecific cross- incompatability in Arena. Cytologia 43: 453-466.

Nogler, G. A. 1984. Gametophytic apomixis. Pages 475-518, in B. M. Johri (ed.) Embryology of Angiosperms. Berlin: Springer- Verlag.

Norstog, K. 1975. The motility of spermatozoids in relation to structure and function. Biological Journal of the Linnean Soceity 7 (suppl. 1): 135-142.

Norstog, K. J. 1987. Cycads and the origin of insect pollination. American Scientist 75: 270-279.

Norstog, K. J., D. W. Stevenson & K. J. Niklas. 1986. The role of beetles in the pollination of Zamia furfuracea L. fil. 306

(Zamiaceae). Biotropica 18: 300-306.

Olmstead, R. G. 1989. The origin and function of self- incompatibility in flowering plants. Sexual Plant Reproduction 2: 127-136.

Osborn, T. G. B. 1960. Some observations on the life history of Podocarpus falcatus. Australian Journal of Botany 8: 243-255.

Owens, J. N. & M. Molder. 1977a. Seed-cone differentiation and sexual reproduction in western white pine {Pinus ncnticola). Canadian Journal of Botany 55: 2574-2590.

Owens, J. N. & M. Molder. 1977b. Sexual reproduction of Abies amabilis. Canadian Journal of Botany 55: 2653-2667.

Owens, J. N. & M. Molder. 1979a. Sexual reproduction of white spruce (Picea glauca) . Canadian Journal of Botany 57: 152-169.

Owens, J. N. & M. Molder. 1979b. Sexual reproduction of Larix occidentalis. Canadian Journal of Botany 57: 2673-2690.

Owens, J. N. & M. Molder. 1980. Sexual reproduction of Sitka spruce {Picea sitchensis). Canadian Journal of Botany 58: 886-901.

Owens, J. N., S. J. Simpson & G. E. Caron. 1987. The pollination mechanism of Engelmann spruce {Picea engelmannii). Canadian Journal of Botany 65: 1439-1450.

Owens, J. N., S. J. Simpson & M. Molder. 1981a. Sexual reproduction of Pinus contorta. I. Pollen development, the pollination mechanism, and early ovule development. Canadian Journal of Botany 59: 1828-1843.

Owens, J. N., S. J. Simpson & M. Molder. 1981b. The pollination mechanism and the optimal time of pollination in Douglas-fir {Pseudotsuga menziesii). Canadian Journal of Forest Research 11: 307

36-50.

Owens, J. N., S. J. Simpson & M. Molder. 1982. Sexual reproduction of Pinus contorta. II. Postdormancy ovule, embryo, and seed development. Canadian Journal of Botany 60: 2071-2083.

Palser, B. F. 1975. The bases of angiosperm phylogeny: embryology. Annals of the Missouri Botanical Garden 62: 621-646.

Park, Y. S. & D. P. Fowler. 1982. Effects of inbreeding and genetic variances in a natural population of tamarack [Larix laricina (Du Roi) K. Koch) in eastern Canada. Silvae Genetica 31: 21-26.

Park, Y. S. & D. P. Fowler. 1984. Inbreeding in black spruce {Picea mariana (Mill.)) B.S.P.: self-fertility, genetic load, and performance. Canadian Journal of Forest Research 14: 17-21.

Parker, G. A., R. R. Baker & V. G. F. Smith. 1972. The origin and evolution of gamete dimorphism and the male-female phenomenon. Journal of Theoretical Biology 36: 529-553.

Parker, G. A. & M. Begon. 1986. Optimal egg size and clutch size: effects of environment and maternal phenotype. American Naturalist 128: 573-592.

Parker, S. P. (ed.) 1982. Synopsis and Classification of Living Organisms. New York: McGraw-Hill.

Pearson, H. H. W. 1929. Ghetales. Cambridge: Cambridge University Press.

Pennell, R. I. & P. R. Bell. 1986. The development of the male gametophyte and spermatogenesis in Taxus baccata L. Proceedings of the Royal Society, London B 228: 85-96.

Pennell, R. I. & P. R. Bell. 1987. Megasporogenesis and the subsequent cell lineage within the ovule of Taxus baccata L. 308

Annals of Botany 59: 693-704.

Pennell, R. I. & P. R. Bell. 1988. Insemination of the archegonium and fertilization in Taxus baccata L. Journal of Cell Science 89: 551-559.

Pettitt, J. M. 1966a. A new interpretation of the structure of the megaspore membrane in some gymnospermous ovules. Journal of the Linnean Society (Botany) 59: 253-262.

Pettitt, J. M. 1966b. Exine structure in some fossil and recent spores and pollen as revealed by light and electron microscopy. Bulletin of the British Museum (Natural History) Geological series 13(4): 15-257.

Pettitt, J. M. 1969. Pteridophytic features in some Lower Carboniferous seed megaspores. Botanical Journal of the Linnean Society 62: 233-239.

Pettitt, J. M. 197 0. Heterospory and the origin of the seed habit. Biological Reviews 45: 401-415.

Pettitt, J. M. 1971. Developmental mechanisms in heterospory. I. Megasporocyte degeneration in Selaginella. Botanical Journal of the Linnean Society 64: 237-246.

Pettitt, J. M. 1977. The megaspore wall in gymnosperms: ultrastructure in some zooidogamous forms. Proceedings of the Royal Society of London B 195: 497-515.

Pettitt, J. M. & C. B. Beck. 1968. Archaeosperma arnoldii - a cupulate seed from the Upper Devonian of North America. Michigan university, Museum of Paleontology, Contributions 22: 139-154.

Philipson, W. R. 1987. The treatment of isolated genera. Botanical Journal of Linnean Society 95: 19-25.

Phillips, T. L. 1979. Reproduction of heterosporous arborescent 309 lycopods in the Mississippian-Pennsylvanian of Euramerica. Review of Palaeabotany and Palynology 27: 239-289.

Plym Forshell, C. 1974. Seed development after self-pollination and cross-pollination of Scots pine, Pinus sylvestris L. Studia Forestalia Suecica 118: 1-24.

Price, R. A. & J. M. Lowenstein. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141-149.

Queller, D. C. 1983. Kin selection and conflict in seed maturation. Journal of theoretical Biology 100: 153-172.

Queller, D. C. 1984. Models of kin selection on seed provisioning. Heredity 53: 151-165.

Queller, D. C. 1987. Sexual selection in flowering plants. Pages 165-179, in J. Bradbury & M. Andersson (eds.) Sexual selection: testing the alternatives. New York: John Wiley and Sons.

Queller, D. C. 1989. Inclusive fitness in a nut-shell. Oxford Surveys in Evolutionary Biology in press.

Ramanujam, C. 6. K. & W. N. Stewart. 1969. A Lepidocarpon cone tip from the Pennsylvanian of Illinois. Palaeontographica B 127: 159-167.

Rao, P. N. 1970. Euphorbiaceae. Bulletin of the Indian National Science Academy 41: 136-141.

Raven, P. H. 1977. A suggestion concerning the Cretaceous rise to dominance of the angiosperms. Evolution 31: 451-452.

Raven, P. H. & D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539-673. 310

Real, L. A. 1980. Fitness, uncertainty, and the role of diversification in evolution and behavior. American Naturalist 115: 623-638.

Regal, P. J. 1977. Ecology and evolution of dominance. Science 196: 622-629.

Regal, P. J. 1982. Pollination by wind and animals: ecology of geographic pat terns. Annual Review of Ecology and Systematics 13: 497-524.

Reik, W., A. Collick, M. L. Norris, S. C. Barton & M. A. Surani. 1987. Genomic imprinting determines the methylation of parental alleles in transgenic mice. Nature 328: 248-251.

Reynolds, L. G. 1924. The female gametophyte of Microcycas. Botanical Gazette 77: 391-403.

Rhoades, D. F. & R. G. Cates. 1976. A general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry 10: 168-213.

Rice, B. & M. Westoby. 1983. Species richness in vascular vegetation of the West Head, New South Wales. Australian Journal Of Ecology 8: 163-168.

Rockwood, L. L. 1985. Seed weight as a function of life form, elevation and life zone in Neotropical forests. Biotropica 17: 32-39.

Roper, R. B. 1952. The embryo sac of Butomus umbellatus L. Phytoworphology 2: 61-74.

Romanov, I. D. 1938. Eine neue Form des Embryosackes von Adoxa- typus bei Tulipa tetraphylla und T. ostrovskiana. Conptes Rendus (Doklady) Academie des Sciences de l'U.R.S.S. 19: 113-115.

Romanov, I. D. 1939. Two new forms of embryo-sack in the genus 311

Tulipa. Comptes Rendus (Doklady) Academie des Sciences de l'U.R.S.S. 22: 139-141.

Romanov, I. D. 1959. The embryo sac and pollen morphology in Tulipa (abstract). Proceedings, Ninth International Botanical Congress 23: 331-332.

Rothwell, G. W. 1972. Evidence of pollen tubes in Paleozoic pteridosperms. Science 175: 112-114.

Rothwell, G. W. 1977. Evidence for a pollination-drop mechanism in Paleozoic pteridosperms. Science 198: 1251-1252.

Rothwell, G. w. 1981. The Callistophytales (Pteridospermopsida): Reproductively sophisticated Paleozoic gymnosperms. Review of Palaeobotany and Palynology 32: 103-121.

Rothwell, G. W. 1985. The role of comparative morphology and anatomy in interpreting the systematics of fossil gymnosperms. Botanical Review 51: 319-327.

Rothwell, G. W., S. E. Scheckler & W. H. Gillespie. 1989. Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules. Botanical Gazette 150: 170-189.

Rubenstein, D. I. 1982. Risk, uncertainty and evolutionary strategies. Pages 91-111, in R. W. Wrangham, D. I. Rubenstein, R. I. M. Dunbar, B. C. R. Bertram & T. H. Clutton-Brock (eds.) Current Problems in Socidbiology. Cambridge: Cambridge University Press.

Rubin, G., D. S. Robson & D. J. Paolillo. 1984. The spontaneous formation of antheridia in Qnoclea is not blocked by light. Annals of Botany 54: 213-221.

Rubin, G., D. S. Robson & D. J. Paolillo. 1985. Effects of population density on sex expression in Qnoclea sensibilis. Annals of Botany 55: 205-215. 312

Rudin, D., 0. Muona & R. Yazdani. 1986. Comparison of the mating system of Pinus sylvestris in natural stands and seed orchards. Hereditas 104: 15-19.

Russell, S. D. 1979. Fine structure of megagametophyte development in Zea mays. Canadian Journal of Botany 57: 1093-1110.

Russell, S. D. 1982. Fertilization in Plumbago zeylanica: entry and discharge of the pollen tube in the embryo sac. Canadian Journal of Botany 60: 2219-2230.

Russell, S. D. & D. D. Cass. 1988. Fertilization in Plumbagella micrantha. American Journal of Botany 75: 778-781.

Rutishauser, A. 1935. Entwicklungsgeschichtliche und zytologische Untersuchungen an Korthalsella dacrydii (Ridl.) Dans. Berichte des schweizerische botanische Gesellscnaft 44: 389-436.

Rutishauser, A. 1969. Embryologie und Fortpflanzungsbiologie der Angiospermen. Vienna: Springer-Verlag.

Sahni, B. 1915. Foreign pollen in the ovules of Ginkgo and of fossil plants. New Phytologist 14: 149-151.

Salisbury, E. J. 1942. The Reproductive Capacity of Plants. London: G. Bell and Sons.

Sapienza, C, A. C. Peterson, J. Rossant & R. Balling. 1987. Degree of methylation of transgenes is dependent on gamete of origin. Nature 328: 251-254.

Samuels, J. A. 1912. Etudes sur le developpement du sac embryonnaire et sur la fecondation du Gunnera macrophylla Bl. Archiv fur Zellforschung 8: 52-120.

Sarkar, K. R. & E. H. Coe, Jr. 1966. A genetic analysis of the 313 origin of maternal haploids in maize. Genetics 54: 453-464.

Sarvas, R. 1962. Investigations on the flowering and seed crop of Pinus silvestris. Comnunicationes Instituti Forestalls Fenniae 53: 1-198.

Sarvas, R. 1968. Investigations on the flowering and seed crop of Picea abies. Connunicationes Instituti Forestalls Fenniae 67.5: 1-84.

Satina, S. & A. F. Blakeslee. 1935. Cytological effects of a gene in Datura which causes dyad formation in sporogenesis. Botanical Gazette 96: 521-532.

Saxton, W. T. 1909. Preliminary account of the ovule, gametophytes, and embryo of Widdringtonia cupressoides. Botanical Gazette 48: 161-178.

Saxton, W. T. 1913. Contributions to the life history of Actinostrobus pyrawidalis, Miq. Annals of Botany 27: 321-346.

Saxton, W. T. 1934. Notes on conifers. IX. The ovule and embryogeny of Widdringtonia.. Annals of Botany 48: 429-431.

Schabilion, J. T. & N. C. Brotzman. 1979. A tetrahedral megaspore arrangement in a seed fern ovule of Pennsylvanian age. American Journal of Botany 66: 744-745.

Schledlbauer, M. D. 1976. Fern gametophyte development: Controls of dimorphism in Ceratopteris thalictroides. American Journal of Botany 63: 1080-1087.

Schledlbauer, M. D. & E. J. Klekowski Jr. 1972. Antheridogen activity in the fern Ceratopteris thalictroides (L.) Brongn. Botanical Journal of the Linneah Society 65: 399-413.

Schnarf, K. 1929. Ervbryologie der Angiosperwen, Handbuch der Pflanzenanatomie Bd X/2. Berlin: Borntraeger. 314

Schnarf, K. 1933. Embryologie der Gymnosperwen. Berlin: Borntraeger.

Schneller, J. J. 1988. Spore bank, dark germination and gender determination in Athyrium and Dryopteris. Results and implications for population biology of Pteridophyta. Botanies Helvetica 98: 77-86.

Schoen, D. J. & D. G. Lloyd. 1984. The selection of cleistogamy and heteromorphic diaspores. Biological Journal of the Linnean Soceity 21: 357-385.

Schopf, J. M. 1938. Spores from the Herrin (No 6) coal bed in Illinois. Illinois State Geological Survey. Report of Investigations No. 50.

Schraudolf, H. 1967. Die Steuerung der Antheridienbildung in Polypodium crassifolium L. (Pessopteris crassifolia Underw. & Maxon) durch Licht. Planta 76: 37-46.

Schraudolf, H. 1985a. Action and phylogeny of antheridiogens. Proceedings of the Royal Soceity of Edinburgh 86B: 75-80.

Schraudolf, H. 1985b. Phytohormones and Filicinae: chemical signal triggering morphogenesis in Schizaeaceae. Pages 270-274, in M. Bopp (ed.) Plant Growth Substances. Berlin: Springer Verlag.

Scott, R. J. & L. G. Hickok. 1987. Genetic analysis of antheridiogen sensitivity in Ceratopteris richardii. American Journal of Botany 74: 1872-1877.

Seavey, S. R. & K. S. Bawa. 1986. Late-acting self- incompatibility in angiosperms. Botanical Review 52: 195-219.

Seger, J. & H. J. Brockmann. 1987. what is bet-hedging? Oxford Surveys in Evolutionary Biology 4: 182-211. 315

Shattuck, C. H. 1905. A morphological study of Ulnus americana. Botanical Gazette 40: 209-223.

Shattuck, C. H. 1910. The origin of heterospory in Marsilea. Botanical Gazette 49: 19-40.

Sheffield, E. & D. R. Farrar. 1988. Cryo SEM examination of gemma formation in Vittaria graminifolia. American Journal of Botany 75: 894-899.

Shio, T. & T. Higuchi. 1978. Studies on the lignins of Podocarpus, Gnetum, Drimys and Pseudowintera. Wood Research 63: 1-10.

Sievers, A. & B. Buchen. 1970. fiber den Feinbau der wachsenden Megaspore von Selaginella. Protoplasm 71: 267-279.

Silvertown, J. 1988. The demographic and evolutionary consequences of seed dormancy. Pages 205-219, in A. J. Davy, M. J. Hutchings & A. R. Watkinson (eds.), Plant Population Ecology. Oxford: Blackwell Scientific Publications.

Silvertown, J. 1989. The paradox of seed size and adaptation. Trends in Ecology and Evolution 4: 24-26.

Singh, H. 1978. Embryology of Gymnosperms. Berlin: Borntraeger.

Singh, H. & Y. P. Oberoi. 1962. A contribution to the life history of Biota orientalis. Phytomorphology 12: 373-393.

Sinnott, E. w. & K. S. Wilson. 1963. Botany: Principles and Problems, 6th edition. New York: McGraw-Hill.

Smith, C. C. & S. D. Fretwell. 1974. The optimal balance between size and number of offspring. American Naturalist 108: 499-506.

Smith, C. C, J. L. Hamrick & C. L. Kramer. The effects of stand 316 density on frequency of filled seeds and fecundity in lodgepole pine (Pinus contorta Dougl.). Canadian Journal of Forest Research 18: 453-460.

Smith, D. L. 1964. The evolution of the ovule. Biological Reviews 39: 137-159.

Smith, F. H. 1955. Megagametophyte development in five species of Erythronium. American Journal of Botany 42: 213-224.

Smith, G. M. 1955. Cryptogamic Botany, Volume 2. New York: McGraw-Hill.

Smith, R. W. 1911. The tetranucleate embryo sac of Clintonia. Botanical Gazette 52: 209-216.

Smoot, E. L. & T. N. Taylor. 1986. Evidence of simple polyembryony in Permian seeds from Antarctica. American Journal of Botany 73: 1079-1081.

Solter, D. 1988. Differential imprinting and expression of maternal and paternal genomes. Annual Review of Genetics 22: 127-146.

Soltis, D. E. & P. S. Soltis. 1987. Polyploidy and breeding systems in homosporous Pteridophyta: a reevaluation. American Naturalist 130: 219-232.

Sorensen, F. C. 1969. Embryonic genetic load in coastal Douglas fir, Pseudotsuga menziesii var. menziesii. American Naturalist 103: 389-398.

Sorensen, F. C. 1982. The roles of polyembryony and embryo viability in the genetic system of conifers. Evolution 36: 725-733.

Sporne, K. R. 1965. The Morphology of Gymnosperms. London: Hutchinson. 317

Sporne, K. R. 1975. The Morphology of Pteridophytes, 4th Edition. London: Hutchinson.

Stearns, S. C. 1987. The selection-arena hypothesis. Pages 337-380, in S. C. Stearns (ed.) The evolution of sex and its consequences. Basel: Birkhauser Verlag.

Stebbins, G. L. 1974. Flowering Plants: Evolution Above the Species Level. Cambridge, Massachusetts: Harvard University Press.

Stebbins, G. L. 1976. Seeds, seedlings, and the origin of angiosperms. Pages 300-311, in C. B. Beck (ed.) Origin and Early Evolution of Angiosperms. New York: Columbia University Press.

Stebbins, G. L. 1981. Why are there so many species of flowering plants? Bioscience 31: 573-577.

Stephens, E. L. 1909. The embryo-sac and embryo of certain Penaeaceae. Annals of Botany 23: 363-378.

Stephenson, A. G. 1979. An evolutionary examination of the floral display of Catalpa speciosa (Bignoniaceae). Evolution 33: 1200- 1209.

Stephenson, A. G. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systewatics 12: 253-280.

Stephenson, A. G. 1984. The regulation of maternal investment in an indeterminate flowering plant {Lotus corniculatus). Ecology 65: 113-121.

Stephenson, A. G. & R. I. Bertin. 1983. Male competition, female choice, and sexual selection in plants. Pages 110-151, in L. Real (ed.) Pollination Biology. New York: Academic Press. 318

Stephenson, A. G., R. S. Johnson & J. A. Winsor. 1988. Effects of competition on the growth of Lotus corniculatus L. seedlings produced by random and natural patterns of fruit abortion. American Midland Naturalist 120: 102-107.

Stewart, W. N. 1951. A New Pachytesta from the Berryville locality of southeastern Illinois. American Midland Naturalist 46: 717-742.

Stewart, w. N. 1983. Paleobotany and the evolution of plants. Cambridge: Cambridge University Press.

Stidd, B. M. & K. Cosentino. 1976. Nucellangium: Gametophytic structure and relationship to cordaites. Botanical Gazette 137: 242-249.

Subba Rao, A. M. 1940. Studies in the Malpighiaceae. I. Embryo sac development and embryogeny in the genera Hiptage. Banisteria and Stigmatophyllum. Journal of the Indian Botanical Society 18: 145-156.

Subramanyam, K. 1967. Some aspects of the embryology of Sedum chrysanthum (Boissier) Raymond-Hamlet with a discussion of its systematic position. Phytomorphology 17: 240-247.

Surani, M. A. H. 1987. Evidences and consequences of differences between maternal and paternal genomes during embryogenesis in the mouse. Pages 401-435, in J. Rossant & R. A. Pedersen (eds.) Experimental Approaches to Mamnalian Embryonic Development. Cambridge: Cambridge University Press.

Sussex, I. M. 1966. The origin and development of heterospory in vascular plants. Pages 140-152, in E. G. Cutter (ed.) Trends in Plant Morphogenesis. London: Longmans.

Sutherland, S. 1986. Patterns of fruit-set: what controls fruit- flower ratios in plants? Evolution 40: 117-128. 319

Sutherland, S. & L. F. Delph. 1984. On the importance of male fitness in plants: patterns of fruit-set. Ecology 65: 1093-1104.

Swamy, B. G. L. 1974. On the presumed ancestry of the angiosperm embryo sac. Phytomorphology 24: 102-106.

Swain, J. L., T. A. Stewart & P. Leder. 1987. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50: 719-727.

Sweet, G. B. 1973. Shedding of reproductive structures in forest trees. Pages 341-382, in T. T. Kozlowski (ed.) Shedding of Plant Parts, Volume 2. New York: Academic Press.

Sweet, G. B. & I. J. Thulin. 1967. The abortion of conelets in Pinus radiata. New Zealand Journal of Forestry 14: 59-67.

Takhtajan, A. 1976. Neoteny and the origin of flowering plants. Pages 207-219, in C. B. Beck (ed.) Origin and Early Evolution of Angiosperms. New York: Columbia University Press.

Takhtajan, A. 1987. Flowering plant origin and dispersal: the cradle of angiosperms revisited. Pages 26-31, in T. C Whitmore (ed.), Biogeographical Evolution of the Malay Archipelago. Oxford: Oxford University Press.

Tang, W. 1987a. Insect pollination in the cycad Zamia pumila (Zamiaceae). American Journal of Botany 74: 90-99.

Tang, W. 1987b. Heat production in cycad cones. Botanical Gazette 148: 165-174.

Taylor, T. N. 1981. Paleobotany: An Introduction to Fossil Plant Biology. New York: McGraw-Hill.

Taylor, T. N. 1988. The origin of land plants: some answers, more questions. Taxon 37: 805-833. 320

Taylor, T. N. & S. Archangelsky. 1985. The Cretaceous pteridosperms Ruflorinia and Ktalenia and implications on cupule and carpel evolution. American Journal of Botany 72: 1842-1853.

Taylor, T. N. & M. A. Millay. 1979. Pollination biology and reproduction in early seed plants. Review of Palaeobotany and Palynology 27: 329-355.

Taylor, T. N. & M. A. Millay. 1981. Morphological variability of Pennsylvanian lyginopterid seed ferns. Review of Palaeobotany and Palynology 32: 27-62.

Temme, D. H. 1986. Seed size variability: a consequence of variable genetic quality among offspring? Evolution 40: 414-417.

Thathachar, T. 1952. Morphological studies in the Euphorbiaceae: I. Acalypha lanceolata Willd. Phytowornhology 2: 197-201.

Thomas, B. A. 1978. Carboniferous Lepidodendraceae and Lepidocarpaceae. Botanical Review 44: 321-364.

Thomas, B. A. 1981. Structural adaptations shown by the Lepidocarpaceae. Review of Palaeobotany and Palynology 32: 377- 388.

Thompson, W. P. 1918. Independent evolution of vessels in Gnetales and angiosperms. Botanical Gazette 65: 83-90.

Thomson, R. B. 1927. Evolution of the seed habit in plants. Transactions of the Royal Society of Canada (Section V, Series 3) 20: 229-272.

Tiffney, B. H. 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Annals of the Missouri Botanical Garden 71:551-576.

Tiffney, B. H. 1986. Evolution of seed dispersal syndromes according to the fossil record. Pages 273-305, in D. R. Murray 321

(ed.) Seed Dispersal. Sydney: Academic Press Australia.

Tiffney, B. H. & K. J. Niklas. 1985. Clonal growth in land plants: a paleobotanical perspective. Pages 35-66, in J. B. C. Jackson, L. W. Buss & R. E. Cook (eds.) Population Biology and Evolution of Clonal Organisms. New Haven: Yale University Press.

Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton: Princeton University Press.

Tobe, H. & P. H. Raven. 1984. The embryology and relationships of Penaeaceae (Myrtales). Plant Systematics and Evolution 146: 181-195

Trivers, R. L. 1974. Parent-offspring conflict. American Zoologist 14: 249-264.

Truswell, E. M, A. P. Kershaw & I. R. Sluiter. 1987. The Australian—south-east Asian connection: evidence from the palaeobotanical record. Pages 32-49, in T. C Whitmore (ed.), Biogeographical Evolution of the Malay Archipelago. Oxford: Oxford University Press.

Tryon, A. F. 1964. Platyzoma — a Queensland fern with incipient heterospory. American Journal of Botany 51: 939-942.

Tryon, A. F. 1986. Stasis, diversity and function in spores based on an electron microscope survey of the Pteridophyta. Pages 233-249, in S. Blackmore & I. K. Ferguson (eds.) Pollen and Spores: Form and Function. London: Academic Press.

Turnau, E. & J. Karczewska. 1987. Size distribution in some Middle Devonian dispersed spores and its bearing on the problem of the evolution of heterospory. Review of Palaeobotany and Palynology 52: 403-416.

Udovic, D. 1981. Determinants of fruit set in Yucca whipplei: reproductive expenditure vs. pollinator availability. Oecologia 322

48: 389-399.

Vasil, V. 1959. Morphology and embryology of Gnetum ula Brongn. Phytonorphology 9: 167-215.

Venable, D. L. 1985. The evolutionary ecology of seed heteromorphism. American Naturalist 126: 577-595.

Venable, D. L. & L. Lawlor. 1980. Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46: 272-282. von Aderkas, P. 1983. Studies of gametophytes of Matteuccia struthiopteris (ostrich fern) in nature and in culture. Canadian Journal of Botany 61: 3267-3270.

Wagner, W. H., Jr, F. S. Wagner, & J. M. Beitel. 1985. Evidence for interspecific hybridisation in pteridophytes with subterranean mycoparasitic gametophytes. Proceedings of the Royal Soceity of Edinburgh, B 86: 273-281.

Walker, J. W. & A. G. Walker. 1986. Ultrastrueture of Early Cretaceous angiosperm pollen and its evolutionary implications. Pages 203-217, in S. Blackmore & I. K. Ferguson (eds.) Pollen and Spores: Form and Function. London: Academic Press.

Walker, R. I. 1950. Megasporogenesis and development of megagametophyte in Ulnus. American Journal of Botany 37: 47-52.

Walton, J. 1953. The evolution of the ovule in the pteridosperms. Advancement of Science 10: 223-230.

Warne, T. R., L. G. Hickok & R. J. Scott. 1988. Characterization and genetic analysis of antheridiogen-insensitive mutants in the fern Ceratopteris. Botanical Journal of the Linnean Society 96: 371-379.

Watson, M. A. & B. B. Casper. 1984. Morphogenetic constraints on 323 patterns of carbon distribution in plants. Annual Review of Ecology and Systematics 15: 233-258.

Westoby, M. & B. Rice. 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution 36: 713-724.

Whatley, J. M. 1982. Ultrastructure of plastid inheritance: green algae to angiosperms. Biological Reviews 57: 527-569.

White, T. L., H. G. Harris & R. C. Kellison. 1977. Conelet abortion in longleaf pine. Canadian Journal of Forest Research 7: 378-382.

Whitehouse, H. L. K. 1950. Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. Annals of Botany 14: 199-216.

Whitmore, T. C. 1988. Phytogeography of the eastern end of Tethys. Pages 307-311, in M. G. Audley-Charles & A. Hallam (eds.), Gondwana and Tethys, Geological Society Special Publication No. 37.

Wiens, D. 1984. Ovule survivorship, brood size, life history, breeding systems, and reproductive success in plants. Oecologia 64: 47-53.

Wiens, D., C. L. Calvin, C. A. Wilson, C. I. Davern, D. Frank & S. R. Seavey. 1987. Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71: 501-509.

Wiens, D., D. L. Nickrent, C. I. Davern, C. L. Calvin & N. J. Vivrette. 1989. Developmental failure and loss of reproductive capacity in the rare palaeoendemic shrub Dedeckera eurekensis. Nature 338: 65-67.

Willemse, M. T. M. & J. L. van Went. 1984. The female gametophyte. Pages 159-196, in B. M. Johri (ed.) Entoryology of 324

Angiosperms. Berlin: Springer-Verlag.

Willson, M. F. 1981. Sex expression in fern gametophytes: some evolutionary possibilities. Journal of Theoretical Biology 93: 403-409. willson, M. F. & N. Burley. 1983. Mate Choice in Plants. Princeton: Princeton University Press.

Wilson, D. S. & E. Sober. 1989. Reviving the superorganism. Journal of Theoretical Biology 136: 337-356.

Wilson, E. 0. 1975. Sociobiology: the New Synthesis. Cambridge, Massachusetts: Harvard University Press.

Wolfe, K. H., M. Guoy, Y.-W. Yang, P. M. Sharp & W.-H. Li. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proceedings of the National Academy of Sciences, U.S.A. 86: 6201-6205.

Wright, S. 1969. Evolution and the Genetics of Populations, Volume 2. Chicago: University of Chicago Press.

Yamane, H., K. Nohara, N. Takahashi & H. Schraudolf. 1987. Identification of antheridic acid as an antheridiogen in Anemia rotundifolia and Anemia flexuosa. Plant and Cell Physiology 28: 1203-1207.

Yamane, H., N. Takahashi, K. Takeno & M. Furuya. 1979. Identification of A_ methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta 147: 251-256.

Zavada, M. S. & T. N. Taylor. 1986. The role of self- incompatibility and sexual selection in the gymnosperm-angiosperm transition: a hypothesis. American Naturalist 128: 538-550.