Relation of the Composition to the Properties of Clays

Total Page:16

File Type:pdf, Size:1020Kb

Relation of the Composition to the Properties of Clays .tttfltlBffilt* »HH knlwtt HHi'JgRKfHUt rVI IIBtHfiW1MJ • t Mi FuH ! m.;....'. RttUj ililH iiii »B mmMWmmmmi '• i raoBRHB ••.•..••...'. L0GICAL ftSSft HlftyK m f,? SURVEY 3 3051 00004 306 STATE OF ILLINOIS HENRY HORNER. Governor DEPARTMENT OF REGISTRATION AND EDUCATION JOHN J. HALLIHAN, Director DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA CIRCULAR NO. 45 Relation of the Composition to the Properties of Clays By Ralph E. Grim Reprinted from Jour. Amer. Ceratn. Soc, 22 [5] 141-51 (1939). PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA. ILLINOIS 1939 [Reprinted from the Journal of the American Ceramic Society, Vol. 22, No. 5. May, 1939.) RELATION OF THE COMPOSITION TO THE PROPERTIES OF CLAYS* By Ralph E. Grim Abstract Most clays are composed essentially of minute particles of one or more of the clay minerals of which the kaolinite, montmorillonite, and illite groups are most important. The clay minerals occur in flake-shaped particles, possess base-exchange capacity, and exist in or are reducible to extremely small grain sizes on working with water. Different clay minerals possess these properties in varying degrees. The clay mineral component is the chief factor determining the properties of a clay. In general, plasticity and bond strength caused by the clay minerals decrease in the following order: montmorillonite, illite, and kaolinite. In many clays, the plasticity and bond strength mainly result from the presence of the montmorillonite minerals or some members of the illite group, although these constituents may compose only minor amounts of the clay. The influence of the clay minerals on other properties is con- sidered. The green properties of clays are also related to the character of the exchangeable bases carried by the clay minerals. The fundamental reasons for the differences in properties resulting from different mineral constituents and various exchangeable bases are considered. The properties of clays are related further to the effective size-grade distribution developed in actual use which frequently differs from the size-grade obtained by mechanical analyses. I. Introduction (1) Kaolinite The concept that most clays are essentially aggre- The chief member of this group is the mineral, kaolin- gates of very minute particles of one or more of a few ite, with the composition (OBQsAL^Oio. Dickite and minerals, known as the clay minerals, has been well nacrite with similar compositions but different crystallo- established in recent years. Because the clay miner- graphic forms are rare in sediments. Another member, als are crystalline, it follows that clays are composed anauxite, which differs from kaolinite by having a of material which is crystalline rather than amorphous. higher silicon and a lower aluminum content, is not a In addition to the clay minerals, some clays also con- common mineral. tain, usually in minor amounts, such constituents as quartz, limonite (ferric-iron hydroxide), and organic (2) Montmorillonite material. The so-called colloid content of a clay is the This group takes its name from the mineral, mont- percentage of these constituents, particularly the clay morillonite, with the composition (OH^AliSisC^o-x H 20. it smaller minerals, which contains in particles than a Although not normally written in the formula, mont- certain size. morillonite usually contains magnesium. Beidellite, in a few laboratories have lately yielded Researches reported to have a lower silicon and higher aluminum information the structure and certain proper- much on content, and nontronite, in which the aluminum has ties of the clay minerals. It is proposed here to con- been replaced by ferric iron, are usually placed in sider this information and to attempt to derive there- this group. Recent work has suggested that saponite picture of the of clays which will pro- from a make-up can be classed as a montmorillonite in which the alumi- understanding of such properties as vide a satisfactory num has been replaced completely by magnesium. plasticity, green strength, and shrinkage. It is pro- posed also to analyze the influence of specific clay (3) Illite minerals and specific exchangeable bases on certain This group includes the abundant and widely dis- properties of clay. Other factors, not considered herein tributed clay minerals which are similar but not identi- because they are of minor importance for most clays, cal with muscovite. So-called "hydromica" and "seri- also exert an influence on the properties of clay. cite-like" material belong in this group. The general formula of members of the group may be written II. Clay Minerals (OH)4K„(Ai4-Fe4 -Mg4-Mg6) (Si 8 -yAl„)O 20 . When y Mineralogical analyses of a large number of clays equals 2 and magnesium and iron are not present, this is have shown that there are three important groups of the formula for muscovite. In all illites which have been clay minerals. Clays, therefore, generally are composed studied, only a small amount of iron replaces the alumi- of a member or members of the three groups. num, and y is considerably less than 2, varying from * Presented at the Fortieth Annual Meeting, American about 1 to 1.5. After future work has indicated the Ceramic Society, New Orleans, La., March 29, 1938 (Gen- range of variation of composition within the illite eral Session on "Constitution of Clay"). Received August group, it may be desirable to give specific names to 1, 1938. Published with the permission of the Chief, Illinois State members. Geological Survey. Other clay minerals, such as halloysite, are known, 141 142 Journal of the American Ceramic Society, 1939—Grim but they will not be considered in the present paper be- Montmorillonite consists of structural units of one cause, in general, they are not important constituents of gibbsite sheet between two sheets of tetrahedral silica clays. groups (Fig. 1) stacked one above another in the direc- tion of the c-axis. The structural units are loosely held together with water present between them. The c A Si dimension varies with the H 2 content, and the mineral 60 is said to have an expanding lattice. Analytical data suggest that the A1+++ of the gibbsite layer may be + +++ ++ 9.6 -2I.4A xH2 replaced by Fe or Mg , in the former case yield- ing nontronite. The beidellite member of the mont- morillonite group, reported to have a lower silica-to- alumina molecular ratio, might suggest the possibility of a small amount of replacement of Si ++++ by Al +++ 4 + 2 (OH) in the silica tetrahedral sheets. The implications of the unbalanced character of the lattice resulting from some of these replacements will be discussed presently. C-AXIS Q'' 4 +2 (OH) CAS V CA£ 4-y Si y Al 60 4 Si ¥v¥\ To "SoS/MSj 6 O 10. OA b- AXIS- MONTMORILLONITE (0H) Al Si -xH 4 4 a 20 2 a(0H)+ 40 Fig. 1.—Schematic presentation of crystal structure of montmorillonite (modified after Hofmann, et at., Z. Krist., AI4 Fe4' Mg4- Mgfe 86 [5-6] 340-48(1933)). C-AXIS III. Properties of Clay Minerals Only those properties of clay minerals that affect the physical properties of clays will be considered in the following discussion. (1 ) Lattice Structure The general structural features of the clay minerals ILLITE COH^UKy fAI 4 F«4- Mg4- Mg«XSi _ • Al^, ) Oj. have been well established by work in several labora- 6 y tories following generalizations made by Pauling 1 in Fig. 2.—Schematic presentation of crystal structure of 1930. Two units are involved in these structures. illite. One is the alumina or aluminum hydroxide unit which consists of sheets of closely packed oxygens or hy- two The structure of illite (Fig. 2) is similar to that of droxyls between which aluminum atoms are embedded montmorillonite. It also consists of units of one gibb- position equidistant in such a that they are from six site sheet between two sheets of tetrahedral silica or hydroxyls. two-thirds of the oxygens Actually only groups. In the illite structure, however, considerable possible aluminum positions are occupied in this unit, +++ ++++ Al replaces Si , and the excess charge is bal- which is the gibbsite structure. The mineral, brucite, + anced chiefly by K . The same situation prevails possesses similar structure all possible a except that in muscovite in which one fourth of the Si ++++ is re- aluminum positions are occupied by magnesium. +++ + placed by Al , with K balancing the excess charge. unit consists sheet of tetrahedral silica The second of a In illite, there is less than one fourth of the Si ++++ (Si0.j) groups linked to form a hexagonal network of the +++ replaced by Al . The c dimension of the illite composition S14O10 when repeated indefinitely. This unit cell does not change with varying water content. unit may be viewed as a sheet of loosely packed oxygen Illites, which have been studied to date, indicate that atoms with each oxygen linked to two silicon atoms some magnesium and iron may replace aluminum in the directly beneath. silicon are in tetrahedral The atoms gibbsite layer. Both illite and montmorillonite may positions, three valencies being satisfied by linkage to carry some Mg ++ in the possible Al +++ positions not three oxygens in the overlying sheet. The fourth sili- ++ occupied in gibbsite, i.e., in brucite positions. Ca is satisfied that con valency below by an atom such probably does not replace Al +++ because the atom is silicon valency is analogous to the group common (OH) too large to fit. gibbsite. of The kaolinite structure (Fig. 3) is composed of units of one gibbsite sheet with a single sheet of tetrahedral 1 See reference 103 in Bibliography, p. 151. silica groups. The lattice structure does not expand Relation of Composition to Properties of Clays 143 with varying water content, and no replacements by proper conditions are exchangeable for other bases.
Recommended publications
  • Clay Minerals Soils to Engineering Technology to Cat Litter
    Clay Minerals Soils to Engineering Technology to Cat Litter USC Mineralogy Geol 215a (Anderson) Clay Minerals Clay minerals likely are the most utilized minerals … not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint, and … yes, cat litter! Bentonite workings, WY Clay Minerals There are three main groups of clay minerals: Kaolinite - also includes dickite and nacrite; formed by the decomposition of orthoclase feldspar (e.g. in granite); kaolin is the principal constituent in china clay. Illite - also includes glauconite (a green clay sand) and are the commonest clay minerals; formed by the decomposition of some micas and feldspars; predominant in marine clays and shales. Smectites or montmorillonites - also includes bentonite and vermiculite; formed by the alteration of mafic igneous rocks rich in Ca and Mg; weak linkage by cations (e.g. Na+, Ca++) results in high swelling/shrinking potential Clay Minerals are Phyllosilicates All have layers of Si tetrahedra SEM view of clay and layers of Al, Fe, Mg octahedra, similar to gibbsite or brucite Clay Minerals The kaolinite clays are 1:1 phyllosilicates The montmorillonite and illite clays are 2:1 phyllosilicates 1:1 and 2:1 Clay Minerals Marine Clays Clays mostly form on land but are often transported to the oceans, covering vast regions. Kaolinite Al2Si2O5(OH)2 Kaolinite clays have long been used in the ceramic industry, especially in fine porcelains, because they can be easily molded, have a fine texture, and are white when fired.
    [Show full text]
  • Removal of Iron-Bearing Minerals from Gibbsitic Bauxite by Direct Froth Flotation
    a Original Article http://dx.doi.org/10.4322/2176-1523.0924 REMOVAL OF IRON-BEARING MINERALS FROM GIBBSITIC BAUXITE BY DIRECT FROTH FLOTATION Felipe de Melo Barbosa 1 Maurício Guimarães Bergerman 2 Daniela Gomes Horta 3 Abstract The refractory bauxite needs to present less than 2.5% of Fe2O3 to be applied in the ceramics industry. The depletion of high Al2O3 grade deposits has stimulated the improvement of bauxite concentration methods in order to remove iron-bearing minerals. The objective of this study was to evaluate the influence of collector dosage, pH and milling time on the gibbsite flotation performance. Firstly, the sample mineralogical composition was determined by means of X-ray diffraction (XRD) and binocular loupe analysis. X-ray fluorescence (XRF) analysis was used to determine the sample chemical composition. Flotation was then accomplished by using hydroxamate as gibbsite collector, sodium silicate as silicate depressant and starch as iron-bearing minerals depressant. The bauxite Fe2O3 content was reduced from 7.66% to 4.81-5.03%. In addition, the flotation performance decreased by diminishing the pH from 9.5 to 8.5 or increasing the pH to 10.5. The milling time influence on the flotation indicates that the presence of slime can significantly affect the gibbsite concentration. Keywords: Bauxite; Gibbsite; Direct flotation; Hydroxamate. REMOÇÃO DE MINERAIS PORTADORES DE FERRO DE BAUXITA GIBSÍTICA POR FLOTAÇÃO DIRETA Resumo As bauxitas refratárias precisam apresentar teores de ferro menores que 2,5% para serem utilizadas na indústria de cerâmica. A exaustão dos depósitos com altos teores de Al2O3 tem estimulado a pesquisa por métodos de concentração de bauxita de forma a remover os minerais portadores de ferro.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • 9/16 Weathering Notes
    EAS 3030 9/16/08 LAD Weathering reactions We can consider many weathering reactions as acid-base reactions. Acidity in soils can be generated from several sources. The main ones are: • Hydration of CO2 (yields carbonic acid): CO2 + H2O H2CO3 • Organic decomposition to yield organic acids (R-COOH R-COO- + H+) • Sulfide oxidation to yield sulfuric acid (2FeS2+4H2O+7.5O2 4H2SO4+Fe2O3) • Atmospheric deposition of mineral acids such as H2SO4 and HNO3. The hydrogen ion released by these acids can react with carbonate minerals (e.g. CaCO3) or alumino-silicate minerals (feldspars, micas, clays ….). Carbonate and silicate weathering reactions can be considered separately: For carbonates, we can write: ++ - 1) CaCO3 + H2 CO3 Ca + 2HCO3 In this reaction carbonic acid (from CO2 and water) and calcium carbonate react to form bicarbonate ion and calcium ion. The net reaction yields no H+, so the carbonic acid has been neutralized by reaction with carbonate. It also yields no solid phases – the carbonate mineral undergoes complete dissolution. This sort of reaction is know as “congruent” dissolution. An example silicate reaction would be the reaction of potassium feldspar (a primary mineral) to form kaolinite, a secondary mineral . The reaction of a primary mineral to form a secondary mineral plus solutes is called “incongruent” dissolution. + + 2) 2KAlSi3O8(Kspar) + 2H + 9H2O Al2Si2O5(OH)4(kaol) + 4H4SiO4(aq) +2K If the source of acidity is CO2, we can write equivalently: + - 3) 2KAlSi3O8(Kspar) + 2CO2 + 11H2O Al2Si2O5(OH)4(kaol) + 4H4SiO4(aq) +2K + 2HCO3 In the breakdown of K-feldspar, acidity is consumed. We can see that H+ is used up and K+ is released to solution, a kind of “ion exchange” reaction.
    [Show full text]
  • Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products † ‡ † † § Xin Zhang,*, Patricia L
    Article Cite This: ACS Appl. Nano Mater. 2018, 1, 7115−7128 www.acsanm.org Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products † ‡ † † § Xin Zhang,*, Patricia L. Huestis, Carolyn I. Pearce, Jian Zhi Hu, Katharine Page, § ∥ † † Lawrence M. Anovitz, Alexandr B. Aleksandrov, Micah P. Prange, Sebastien Kerisit, † † † † ⊥ Mark E. Bowden, Wenwen Cui, Zheming Wang, Nicholas R. Jaegers, Trent R. Graham, † § § Mateusz Dembowski, Hsiu-Wen Wang, Jue Liu, Alpha T. N’Diaye,% Markus Bleuel,& ∥ † ‡ † # David F. R. Mildner,& Thomas M. Orlando, Greg A. Kimmel, Jay A. La Verne, Sue B. Clark, , † and Kevin M. Rosso*, † Pacific Northwest National Laboratory, Richland, Washington 99354, United States ‡ Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States § Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States ∥ School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States ⊥ # The Voiland School of Chemical and Biological Engineering and Department of Chemistry, Washington State University, Pullman, Washington 45177, United States %Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States &National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States *S Supporting Information ABSTRACT: Boehmite (γ-AlOOH) and gibbsite (α-Al- (OH)3) are important archetype (oxy)hydroxides of alumi- num in nature that also play diverse roles across
    [Show full text]
  • Compression Studies of Gibbsite and Its High-Pressure Polymorph
    Phys Chem Minerals (1999) 26: 576±583 Ó Springer-Verlag 1999 ORIGINAL PAPER E. Huang á J.-F. Lin á J. Xu á T. Huang Y.-C. Jean á H.-S. Sheu Compression studies of gibbsite and its high-pressure polymorph Received: 28 September 1998 / Revised, accepted: 22 December 1998 Abstract Various X-ray diraction methods have been Introduction applied to study the compression behavior of gibbsite, Al(OH) , in diamond cells at room temperature. A phase 3 The water reservoir in the Earth's mantle may be do- transformation was found to take place above 3 GPa minately hosted in the hydrous minerals (e.g., Akimoto where gibbsite started to convert to its high-pressure and Akaogi 1984). Therefore, the study of hydrous polymorph. The high-pressure (HP) phase is quenchable minerals at high-pressure and temperature is crucial for and coexists with gibbsite at the ambient conditions after understanding the dynamic processes of water circula- being unloaded. This HP phase was identi®ed as nor- tion in the mantle. Examples such as triggering deep dstrandite based on the diraction patterns obtained at focus earthquakes (Kirby 1987; Meade and Jeanloz room pressure by angle dispersive and energy dispersive 1991) and regulating the water budget have been docu- methods. On the basis of this structural interpretation, mented in hydrous minerals under mantle environments. the bulk modulus of the two polymorphs, i.e., gibbsite In the past few years, some hydrous minerals with and nordstrandite, could be determined as 85 5 and trioctahedral layer structure such as brucite (Mg(OH) ) 70 5 GPa, respectively, by ®tting a Birch-Murnaghan 2 (e.g., Duy et al.
    [Show full text]
  • Reaction of Aluminum with Water to Produce Hydrogen
    Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 CONTENTS EXECUTIVE SUMMARY ……………………………………………………………….. 3 INTRODUCTION ………………………………………………………………………… 5 BACKGROUND ………………………………………………………………………….. 5 REACTION-PROMOTING APPROACHES ………………………………………….. 6 Hydroxide Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten Aluminum Alloys PROPERTIES OF THE ALUMINUM-WATER REACTIONS RELATIVE ……….. 14 TO ON-BOARD SYSTEM PROPERTIES Hydrogen Capacities Kinetic Properties System Considerations REGENERATION OF ALUMINUM-WATER REACTION PRODUCTS …………. 17 SUMMARY ………………………………………………………………………………. 19 REFERENCES …………………………………………………………………………… 20 APPENDIX I – THERMODYNAMICS OF ALUMINUM-WATER REACTIONS … 23 APPENDIX II – ORGANIZATIONS PRESENTLY INVOLVED WITH ………….. 26 HYDROGEN GENERATION FROM ALUMINUM-WATER REACTIONS 2 Reaction of Aluminum with Water to Produce Hydrogen 1 2 John Petrovic and George Thomas Consultants to the DOE Hydrogen Program 1 Los Alamos National Laboratory (retired) 2 Sandia National Laboratories (retired) Executive Summary: The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles. In the vicinity of room temperature, the reaction between aluminum metal and water to form aluminum hydroxide and hydrogen is the following: 2Al + 6H2O = 2Al(OH)3 + 3H2.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Appendix I Glossary of Mining and Related Terms Relevant to Mine Water
    APPENDIX I GLOSSARY OF MINING AND RELATED TERMS RELEVANT TO MINE WATER SCIENCE AND ENGINEERING The glossary which follows is drawn from the experience of the authors, and represents terminology which was current in the English-speaking mining world at the start of the 21st Century. The glossary is restricted to mining and geological terms likely to be heard in the context of mine water management. We do not provide a general geochemical or hydrological glossary. Neither is this a thoroughly exhaustive glossary of mining engi- neering. The reader seeking a general mining glossary is referred to works such as Greenwell (1888), Orchard (1991) or Rieuwerts (1998). The glossary is not intended to cover geological and chemical terminology, with the exception of a few terms restricted largely to mining applications of these sciences. In the definitions which follow, words are underlined where they are themselves defined elsewhere in this glossary. Acid mine drainage Water which became acidic during its passage through pyrite- bearing mined strata. Synonym: “acid rock drainage”. Acid rock drainage See “acid mine drainage”. The term “acid rock drainage” is used predominantly in Canada, with the implication that the acidity problem is due to the rocks rather than the process of mining. There are at least two reasons why this usage is objectionable: (i) “Acid rocks” sensu stricto are a group of igneous rocks which are not noted for giving rise to problematic drainage. (ii) It is somewhat disingenuous to attempt to exonerate mining in this manner, as acidic drainage is relatively rare in unmined sulphidic strata, but is common where mining has increased the rock mass permeability and allowed oxygen to access previously reduced strata.
    [Show full text]
  • Minerals of Rockbridge County, Virginia
    VOL. 40 FEBRUARYJMAY 1994 NO. 1 &2 MINERALS OF ROCKBRIDGE COUNTY, VIRGINIA D. Allen Penick, Jr. INTRODUCTION RockbridgeCountyhas agreatdiversityofrocksandminerals.Rocks withinthecountyrangeingeologic agehmPmxnbrianthroughDevonian (01desttoyoungest)covexingatimespanofatleast 1OOOmilIion years. The county liesmostlywithintheVdeyandRiagePhysi~hich~~ 1). Thisprovinceis underlainbysedimentaryrochcomposedof dolostone, limestone, sandstone, andshale. TheexlMlceastempartofRockbridge County is withintheBlueRidge PhysiowhicPro. This areaisrepre sentedbyallthreemajorrocktypes: sedirnentary,igneous, andmetarnorphic. Theseinclu&Qlostone,qdta,inta~s~neandshale,granite, pmdiorite, andunakite. Ingeneral, theol&strocksarefoundin theeastem portion with youngerrocks outcropping in the westernpart of thecounty o%w2). Mininghasplaydan~tpaainthehistoryofRockbridgeCounty. Indians probably were thefirstco1lectorsof localqu~andquartzitefrom which they shapedprojectilepoints. Important deposits of ironore were mined in the 1800s near the towns of Buena Vista, Goshen, Vesuvius, and in Amoldvalley. Other early minesin thecounty -&manganese, waver- tine-marl, tin, niter (saltpeter), lithographiclimestone, silicasand, andcave orryx Thecounty has been prospected for barite, gibbsite (alumina), gold, silver, limonik(ocher),beryl, Ghalerite (zinc), andilmeniteandmtile(tita- nium), but no production has beenreported for t.Quarriesare still producing dolostone.lirnestone, andquartzitefor constructionaggregate andshale forbrickmanufacture. This report describes 102mineralsandnativeelements
    [Show full text]
  • Relative Stabilities of Soil Minerals
    552.12:553.08:631.416.4/. MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 80-16(1980) RELATIVE STABILITIES OF SOIL MINERALS (with a summary in English) E. L. MEIJER and L. VAN DER PLAS Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands (Received 5-IX-1980) H. VEENMAN & ZONEN B.V. - WAGENINGEN - 1980 RELATIVE STABILITIES OF SOIL MINERALS INTRODUCTION The stability of soil minerals is frequently considered in the geochemical literature (WILDMAN et al., 1971; KITTRICK, 1971a, 1971b; RAIan d LINDSAY, 1975; CURTIS, 1976; WEAVER et al., 1976; REESMAN, 1978). In most cases the possible composition of the aqueous solution coexisting with acertai n mineral is discussed in detail, thecompositio n being given in terms of activities ofth e relevant species in solution. The Gibbs free-energy change ofsuc h a reversible dissolution equilibrium is zero ifa n infinitely small amount ofth e mineral dissolves ((AG)R = 0). There­ fore, the mineral isonl y stable if for any other possible mineral made of com­ ponents present inth e system (AG)R ^ 0. It is quite understandable that the second part of this statement is rather difficult to investigate. The present paper will consider the importance ofthi s aspect. The Gibbs free-energy of formation of a mineral from itscomponent s ina well - defined system, e.g.,a n actual aqueous solution at 25° Can d 1bar , isindicate d by AG°el inthi s text. AG°el canb euse d to quantitatively describe the relative stability of a mineral. In doing so, three aspects have tob econsidere d : 1. The proper choice of molecular formula units enablinga compariso n of AG°el- values of minerals.
    [Show full text]
  • Clay Minerals
    CLAY MINERALS CD. Barton United States Department of Agriculture Forest Service, Aiken, South Carolina, U.S.A. A.D. Karathanasis University of Kentucky, Lexington, Kentucky, U.S.A. INTRODUCTION of soil minerals is understandable. Notwithstanding, the prevalence of silicon and oxygen in the phyllosilicate structure is logical. The SiC>4 tetrahedron is the foundation Clay minerals refers to a group of hydrous aluminosili- 2 of all silicate structures. It consists of four O ~~ ions at the cates that predominate the clay-sized (<2 |xm) fraction of apices of a regular tetrahedron coordinated to one Si4+ at soils. These minerals are similar in chemical and structural the center (Fig. 1). An interlocking array of these composition to the primary minerals that originate from tetrahedral connected at three corners in the same plane the Earth's crust; however, transformations in the by shared oxygen anions forms a hexagonal network geometric arrangement of atoms and ions within their called the tetrahedral sheet (2). When external ions bond to structures occur due to weathering. Primary minerals form the tetrahedral sheet they are coordinated to one hydroxyl at elevated temperatures and pressures, and are usually and two oxygen anion groups. An aluminum, magnesium, derived from igneous or metamorphic rocks. Inside the or iron ion typically serves as the coordinating cation and Earth these minerals are relatively stable, but transform- is surrounded by six oxygen atoms or hydroxyl groups ations may occur once exposed to the ambient conditions resulting in an eight-sided building block termed an of the Earth's surface. Although some of the most resistant octohedron (Fig.
    [Show full text]