2017 Report on the Haleakalā High Altitude Observatory Site
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. -
RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M. -
Redescription and Generic Placement of Neopamera
Zootaxa 3430: 61–68 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) Redescription and generic placement of Neopamera mumfordi (Van Duzee, 1935) and Remaudiereana castanea (Van Duzee, 1935) (Hemiptera: Heteroptera: Lygaeoidea: Rhyparochromidae) PABLO M. DELLAPÉ (1)(2) & M. B. MALIPATIL (3)(4) (1) División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina. E-mail: [email protected] (2) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) (3) Department of Primary Industries, Knoxfield Centre, Private Bag 15, Ferntree Gully Delivery Centre, Vic. 3156, Australia. E-mail: [email protected] (4) La Trobe University, Bundoora, Vic. 3086, Australia. Abstract A new genus, Neocnemodus gen. nov., is erected to accommodate Neopamera mumfordi (Van Duzee) from the Marquesas Islands; the species is redescribed and illustrated, and its relationships with the genera Cnemodus Herrich-Schaeffer and Andercnemodus Brailovsky & Cervantes-Peredo are analysed. Another Marquesas Island myodochine species, Remaudiereana castanea (Van Duzee), is redescribed, illustrated, and its generic placement discussed. Key words: Myodochini, Marquesas, new genus, generic placement Introduction The worldwide distributed Myodochini is among the most diverse of the 14 tribes of Rhyparochromidae (Dellapé & Henry 2010). The tribe is more diverse in -
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Managing Insect Contaminants in Processed Leafy Vegetables: a Best Practice Guide
Managing insect contaminants in processed leafy vegetables: A best practice guide Introduction Insects are potential contaminants of processed leafy vegetables. Pest and beneficial species, in both the juvenile and adult stages of their life cycles can become unwanted contaminants if they make their way from the field into the final packaged product and to the end consumer. This best practice guide summarises the key findings of a project conducted by Applied Horticultural Research and Harvest Fresh Cuts. The focus of this project was to find ways to control contaminants and assess their impact in processed leafy vegetable products. To determine which insect groups were of most relevance, and how to reduce insect contamination of packaged produce, the project started at the customer level and Figure 1. Soldier beetle worked back through the supply chain, examining where information was lacking, and where commercial in the field. Large scale commercial washing and improvements could be made. processing lines have the capacity to remove the majority of insect contaminants. Which insects get the most complaints? Wanted – Dead or alive Reviews into historical commercial data from customer complaints about manufactured leafy vegetable mixes In the factory found that moths and soldier beetles were the most reported insect contaminant. Insects referred to as moths The project investigated whether the moths in customer in the data included Diamondback Moth (Plutella sp.), complaints were reported as being dead or alive. Most Heliothis (Helicoverpa sp.), Cabbage White Butterfly moth complaints were from consumers reporting the (Pieris rapae) and Beet Webworm (Spoladea mimetica.) presence of live moths, even though factory product Other insect groups were represented in the data at lower inspection reports showed that both live and dead moths levels. -
Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘I
Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘i Action BoardApril 2019 Prepared for: Sustainable Resources Group Intn’l, Inc. Prepared by: Matthew J Medeiros, PhD [email protected] mattjmedeiros.comFor All photographs in this report are copyrighted by Matthew J Medeiros. TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................................ 1 1.1 Caltech Submillimeter Observatory Decommissioning ................................................................ 1 1.2 Physical Setting ............................................................................................................................. 1 2 METHODS ........................................................................................................................................... 3 2.1 Permit and Personnel .................................................................................................................... 3 2.2 Schedule ........................................................................................................................................ 3 2.3 Nomenclature ................................................................................................................................ 3 2.4 Methodology for Inventorying Plants, Lichens, Non-arthropod Animals, and Abiotic Features . 3 2.4.1 Transects: Floral and Abiotic Features ................................................................................ -
Conservation Biology of the Endangered St. Helena Plover Charadrius Sanctaehelenae
Conservation biology of the endangered St. Helena Plover Charadrius sanctaehelenae Volume 1 of 1 Fiona Ewing Burns A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry June 2011 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. 1 Contents Acknowledgements...........................................................................................................3 Abstract .............................................................................................................................5 Introduction.......................................................................................................................6 Chapter 1: Leg flags versus colour rings: a comparison of marking methods using a small shorebird, the St Helena Plover.............................................................................20 Chapter 2: The impact of introduced predators on an island endemic, the St. Helena Plover Charadrius sanctaehelenae .................................................................................33 -
Terry Whitworth 3707 96Th ST E, Tacoma, WA 98446
Terry Whitworth 3707 96th ST E, Tacoma, WA 98446 Washington State University E-mail: [email protected] or [email protected] Published in Proceedings of the Entomological Society of Washington Vol. 108 (3), 2006, pp 689–725 Websites blowflies.net and birdblowfly.com KEYS TO THE GENERA AND SPECIES OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) OF AMERICA, NORTH OF MEXICO UPDATES AND EDITS AS OF SPRING 2017 Table of Contents Abstract .......................................................................................................................... 3 Introduction .................................................................................................................... 3 Materials and Methods ................................................................................................... 5 Separating families ....................................................................................................... 10 Key to subfamilies and genera of Calliphoridae ........................................................... 13 See Table 1 for page number for each species Table 1. Species in order they are discussed and comparison of names used in the current paper with names used by Hall (1948). Whitworth (2006) Hall (1948) Page Number Calliphorinae (18 species) .......................................................................................... 16 Bellardia bayeri Onesia townsendi ................................................... 18 Bellardia vulgaris Onesia bisetosa ..................................................... -
Testing the Accuracy of Vegetation-Based Ecoregions for Predicting the Species Composition of Blow Flies (Diptera: Calliphoridae)
Journal of Insect Science, (2021) 21(1): 6; 1–9 doi: 10.1093/jisesa/ieaa144 Research Testing the Accuracy of Vegetation-Based Ecoregions for Predicting the Species Composition of Blow Flies (Diptera: Calliphoridae) K. Ketzaly Munguía-Ortega,1 Eulogio López-Reyes,1 and F. Sara Ceccarelli2,3, 1Museo de Artrópodos, Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico, 2Museo de Artrópodos, Departamento de Biología de la Conservación, CONACYT- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico, and 3Corresponding author, e-mail: [email protected] Subject Editor: Philippe Usseglio-Polatera Received 25 June 2020; Editorial decision 5 December 2020 Abstract To properly define ecoregions, specific criteria such as geology, climate, or species composition (e.g., the presence of endemic species) must be taken into account to understand distribution patterns and resolve ecological biogeography questions. Since the studies on insects in Baja California are scarce, and no fine-scale ecoregions based on the region’s entomofauna is available, this study was designed to test whether the ecoregions based on vegetation can be used for insects, such as Calliphoridae. Nine collecting sites distributed along five ecoregions were selected, between latitudes 29.6° and 32.0°N. In each site, three baited traps were used to collect blow flies from August 2017 to June 2019 during summer, winter, and spring. A total of 30,307 individuals of blow flies distributed in six genera and 13 species were collected. The most abundant species were Cochliomyia macellaria (Fabricius), Phormia regina (Meigen), and Chrysomya rufifacies (Macquart). -
Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome. -
Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron
plants Article Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species Luis Cruces 1,2,*, Eduardo de la Peña 2,3 and Patrick De Clercq 2 1 Department of Entomology, Faculty of Agronomy, Universidad Nacional Agraria La Molina, Lima 12-056, Peru 2 Department of Plants & Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; [email protected] (E.d.l.P.); [email protected] (P.D.C.) 3 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Malaga, Spain * Correspondence: [email protected]; Tel.: +051-999-448427 Abstract: During the last few years, quinoa, a traditional Andean crop, has been cultivated at low elevations where pest pressure is high and farmers resort to intensive use of insecticides. This field study investigated the impact of four insecticides (cypermethrin, imidacloprid, teflubenzuron and emamectin benzoate) on insect pests of quinoa and their side effects on the arthropod community at the coastal level of Peru, by analysing the species composition, species diversity and population density. The arthropod community was examined with pitfall traps (for ground dwelling species), Citation: Cruces, L.; de la Peña, E.; plant samplings (for pests and their natural enemies that inhabit the crop), and yellow pan traps (to De Clercq, P. Field Evaluation of catch flying insects). The results demonstrated that Macrosiphum euphorbiae, Frankliniella occidentalis Cypermethrin, Imidacloprid, and Spoladea recurvalis were efficiently controlled by cypermethrin and imidacloprid; the latter Teflubenzuron and Emamectin compound also showed long-term effects on Nysius simulans. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4