Consequences of Insect Flight Loss for Molecular Evolutionary Rates and Diversification

Total Page:16

File Type:pdf, Size:1020Kb

Consequences of Insect Flight Loss for Molecular Evolutionary Rates and Diversification Consequences of Insect Flight Loss for Molecular Evolutionary Rates and Diversification by T. Fatima Mitterboeck A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © T. Fatima Mitterboeck, May 2012 ABSTRACT CONSEQUENCES OF INSECT FLIGHT LOSS FOR MOLECULAR EVOLUTIONARY RATES AND DIVERSIFICATION T. Fatima Mitterboeck Advisor: University of Guelph, 2012 Dr. Sarah J. Adamowicz Advisory committee members: Dr. Teresa Crease Dr. Jinzhong Fu Dr. Ryan Gregory This thesis investigates the molecular evolutionary and macroevolutionary consequences of flight loss in insects. Chapter 2 tests the hypothesis that flightless groups have smaller effective population sizes than related flighted groups, expected to result in a consistent pattern of increased non-synonymous to synonymous ratios in flightless lineages due to the greater effect of genetic drift in smaller populations. Chapter 3 tests the hypothesis that reduced dispersal and species-level traits such as range size associated with flightlessness increase extinction rates, which over the long term will counteract increased speciation rates in flightless lineages, leading to lower net diversification. The wide-spread loss of flight in insects has led to increased molecular evolutionary rates and is associated with decreased long-term net diversification. I demonstrate that the fundamental trait of dispersal ability has shaped two forms of diversity—molecular and species—in the largest group of animals, and that microevolutionary and macroevolutionary patterns do not necessarily mirror each other. Acknowledgements This research was supported by an NSERC Canada Graduate Scholarship and an Ontario Graduate Scholarship to T. Fatima Mitterboeck and by an NSERC Discovery Grant to Dr. Sarah J. Adamowicz. This thesis would not be possible without the previous contributions of other researchers in providing knowledge and sequence data. Thank you for your efforts and for making such a project possible. I would like to thank the members of my advisory committee (Dr. Teresa Crease, Dr. Jinzhong Fu, and Dr. Ryan Gregory) for their time and guidance throughout my degree. I would like to thank the members of my defence committee (Dr. Sarah Adamowicz, Dr. Elizabeth Boulding, Dr. Stephen Crawford, Dr. Ryan Gregory) for valuable comments and critique on the thesis. I would like to thank Dr. Jonathan Witt for providing me with my first opportunity to conduct research and for his continued support. I am deeply grateful to my advisor Dr. Sarah Adamowicz for her encouragement, support, insight, and enthusiasm, throughout my degree, as well as interest in my personal growth in the research field. Thank you for providing and encouraging opportunities above what was necessary, and for your trust in me as your first Master’s student. I would like to thank my mom (Tasmeen Shah) and dads (Herbert Mitterboeck and Peter Probst) for their selfless love and support. Finally, I would especially like to thank Brad Hall for his continuous love, support, and encouragement. Thank you! iii TABLE OF CONTENTS LIST OF TABLES ………………………………………………………………………vii LIST OF FIGURES ……………………………………………………………………...x LIST OF APPENDICES ……………………………………………………………….xiv CHAPTER 1: Review of variation in molecular evolutionary rates and species richness related to transitions in evolution …………………………………………..…1 Introduction to molecular and species diversity…………………………………………..1 Molecular rate variation across taxa and theories…………………………………………2 Latitude effects on molecular rates ………………………………………………..6 Population size effects on molecular rates ………………………………………..7 Gene type effects: gene specific vs. genome wide ……………………………..…12 Molecular rates summary ………………………………………………………..13 Distribution of species diversity…………………………………………………………13 Distribution of insect diversity ……………………………………………….......14 Species richness correlates summary ………………………………………….…16 Species richness measures and influences ……………………………………….16 The link between species diversity and molecular rates…………………………………18 Background on insect flight and flight loss…………………………………………...…20 Dispersal effects on microevolution and macroevolution……………………………..…23 Comparative method in evolutionary biology – detecting species richness and molecular rate correlates…………………………………………………………………………….27 Objectives of thesis………………………………………………………………………28 CHAPTER 2: Flight loss and molecular evolutionary rates in insects ……………...31 Abstract…………………………………………………………………………………..32 Introduction………………………………………………………………………………33 Methods…………………………………………………………………………………..39 Source of sequence data and phylogenetic relationships ………………………...39 Molecular rates analysis: whole-tree approach …………………………………40 iv Molecular rates analysis: sister-clade comparisons – overall substitution rate analysis …………………………………………………………………………..41 Molecular rates analysis: sister-clade comparisons – dN/dS ratio analysis ………………………………………………………………………………........42 Mitochondrial vs. nuclear FL/F dN/dS results …………………………………..44 Sensitivity analysis: Examination of variability inclusion criterion and comparison of whole-tree and sister-clade results …………………………….....44 Results…………………………………………………………………………………....46 Whole-tree results ………………………………………………………………..46 Sister-clade results – overall substitution rates ………………………………….49 Sister-clade results – dN/dS ratios ……………………………………………….52 Sensitivity testing of inclusion criteria and whole-tree methods………………...55 Discussion………………………………………………………………………………..58 List of Appendices for Chapter 2………………………………………………………...64 CHAPTER 3: Flight loss and species diversity patterns across insect orders ……...66 Abstract…………………………………………………………………………………..67 Introduction………………………………………………………………………………68 Methods…………………………………………………………………………………..72 Overview …………………………………………………………………………72 Data used in analyses ……………………………………………………………74 (1) Regression Analysis ………………………………………………………..…75 (2) Sister-group analysis …………………………………………………………78 (3) Shifts in diversification rate and flightless groups …………………………...79 (4) Comparative analysis using independent contrasts ………………………….82 Results……………………………………………………………………………………85 (1) Regression Analysis …………………………………………………………..85 (2) Sister-group analysis …………………………………………………………90 (3) Shifts in diversification rate and flightless groups …………………………...94 (4) Comparative analysis using independent contrasts ………………………….97 Discussion………………………………………………………………………………..99 v Flightlessness is associated with lower net diversification across pterygote orders …………………………………………………………………………….99 Possible explanation of the observed pattern and support from other studies ....100 Comparison of methods and additional considerations ……………………..…102 Reduction in dispersal ability is often a “tippy” trait across taxa …………..…104 Insights into the evolutionary consequences of flight gain ……………………..106 Future work and concluding remarks …………………………………………..107 List of Appendices for Chapter 3……………………………………………………….109 CHAPTER 4: General Conclusions ………………………………………………….110 General findings and hypotheses……………………………………………………….110 Link between microevolutionary and macroevolutionary patterns……………………..111 Limitations and future directions…………………………………………………….…112 Macroevolutionary patterns – flight loss parallels with other traits…………………….114 Conclusion………………………………………………………………………………116 REFERENCES ………………………………………………………………………...117 APPENDIX S1 …………………………………………………………………………136 APPENDIX S2 …………………………………………………………………………165 APPENDIX S3 …………………………………………………………………………189 APPENDIX S4 …………………………………………………………………………201 APPENDIX S5 …………………………………………………………………………231 APPENDIX S6 …………………………………………………………………………242 APPENDIX S7 …………………………………………………………………………262 APPENDIX S8 …………………………………………………………………………270 APPENDIX S9 …………………………………………………………………………278 vi LIST OF TABLES CHAPTER 1 Table 1.1: Summary of previous comparative studies on molecular rates of different taxa………………………………………………………………………5 Table 1.2: Summary of key previous comparative studies on latitudinal differences in molecular rates……………………………………………………..7 Table 1.3: Summary of the main previous comparative studies on population size effects (hypothesized) on molecular rates………………………………………..11 Table 1.4: Simple summary of effect of three factors on two types of molecular evolution, as they relate to differences between groups…………………………13 Table 1.5: Summary of previous studies on species richness correlates in animals and plants (insects excluded) with various potential correlates examined………14 Table 1.6: Key previous studies on species richness correlates in insects……....16 Table 1.7: Key studies examining species richness-molecular link……………..19 Table 1.8: Studies providing evidence of relationships between dispersal, range size, population size, and extinction risk………………………………………...26 CHAPTER 2 Table 2.1: Summary of phylogenetic studies used in analysis, including the 48 independent transitions in flight state……………………………………….…...36 CHAPTER 3 Table 3.1: Combined data used in analyses ……………………….…………….76 Table 3.2: Results of comparative analysis using independent contrasts………..97 APPENDIX S1 Table S1.1: Source studies details, individuals/species used, including flight states and references, reference figures, GenBank accession numbers………...137 APPENDIX S2 Table S2.1: The settings selected for program PAML baseml …………………185 vii Table S2.2: The settings selected for program PAML codeml …………………186 APPENDIX S3 Table S3.1: Overall substitution rate results for whole-tree analysis……….….190 Table
Recommended publications
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Effectiveness of Using River Insect Larvae As an Index of Cu, Zn and As Contaminations in Rivers, Japan
    International Journal of GEOMATE, May, 2017, Vol. 12, Issue 33, pp. 153-159 Geotec., Const. Mat. & Env., ISSN:2186-2990, Japan, DOI: http://dx.doi.org/10.21660/2017.33.2619 EFFECTIVENESS OF USING RIVER INSECT LARVAE AS AN INDEX OF CU, ZN AND AS CONTAMINATIONS IN RIVERS, JAPAN *Hiroyuki Ii1 and Akio Nishida2 1Faculty of Systems Engineering, Wakayama University, Japan; 2 Kyoei High School, Japan *Corresponding Author, Received: 16 June 2016, Revised: 18 July 2016, Accepted: 16 Jan. 2017 ABSTRACT: Analysis of Dobsonfly (a kind of Megaloptera, Protohermes grandis) larvae for concentrations of Cu and Zn was found to be an effective method of determining levels of Cu and Zn contamination of rivers in metal mine areas and non-metal mine catchments. Metal concentration in Dobsonfly larvae was used as an index of metal contamination because the amount of metal concentration in Dobsonfly larvae decreased with the dry weight of the larvae and also on the degree of metal present in the river water. Dobsonfly makes an excellent tool for contamination evaluation because of their easy classification, wide distribution and commonness. Furthermore, due to their relatively lengthy 2-3 year lifespan, river contamination assessment over a long term could be performed. In this study, Cu, Zn and As concentrations in river insect larvae in metal mine areas were found to be higher than those in non-mine catchments. Keywords: Mine waste, Dobsonfly, ecotoxicology, heavy metal, insect larvae 1. INTRODUCTION term. In Japan, metal concentrations in Caddisfly were measured and this metal concentration was Many papers concerning metal concentration in used as an indicator of environmental pollution [8], river insect larvae and the high concentration [9].
    [Show full text]
  • Acari, Parasitidae) and Its Phoretic Carriers in the Iberian Peninsula Marta I
    First record of Poecilochirus mrciaki Mašán, 1999 (Acari, Parasitidae) and its phoretic carriers in the Iberian peninsula Marta I. Saloña Bordas, M. Alejandra Perotti To cite this version: Marta I. Saloña Bordas, M. Alejandra Perotti. First record of Poecilochirus mrciaki Mašán, 1999 (Acari, Parasitidae) and its phoretic carriers in the Iberian peninsula. Acarologia, Acarologia, 2019, 59 (2), pp.242-252. 10.24349/acarologia/20194328. hal-02177500 HAL Id: hal-02177500 https://hal.archives-ouvertes.fr/hal-02177500 Submitted on 9 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending
    [Show full text]
  • 1996 No. 4 December
    TROPICAL LEPIDOPTERA NEWS December 1996 No.4 LEPIDOPTERORUM CATALOGUS (New Series) The new world catalog of Lepidoptera renews the series title The new series (as edited by J. B. Heppner) began already in first begun in 1911. The original catalog series was published by 1989 with publication of the catalog of Noctuidae, by R. Poole. W. Junk Publishers of Berlin, Germany (later The Hague, E. J. Brill Publishers, of Leiden, Netherlands, published this first Netherlands), continuing until 1939 when the incomplete series fascicle in 3 volumes, covering already about a third of all known was deactivated due to World War II. The original series Lepidoptera. Since ATL took over the series, several families completed a large number of families between 1911 and 1939, have been readied for publication. Already this month, Fascicle totalling about 3 shelf-feet of text. Most Microlepidoptera, 48, on Epermeniidae, was published (authored by R. Gaedike, of however, were not covered, as also several macro families like the Deutsches Entomologisches Institut, Eberswalde, Germany). Noctuidae, and several families are incomplete (e.g., Geometridae In 1997, several other smaller families are expected, including and Pyralidae). Even for what was treated, the older catalogs are Acanthopteroctetidae (Davis), Acrolepiidae (Gaedike), Cecidosi­ now greatly out of date, due to the description of many new dae (Davis), Cercophanidae (Becker), Glyphipterigidae (Heppner), species and many changes in nomenclature over the last 5 to 8 Neotheoridae (Kristensen), Ochsenheimeriidae (Davis), Opostegi­ decades. dae (Davis), and Oxytenidae (Becker). Much of the publication The new series resembles the old series in some ways but it schedule depends on the cooperation of various specialists who will also have features not found in the old work.
    [Show full text]
  • 2017 Report on the Haleakalā High Altitude Observatory Site
    Haleakalā High Altitude Observatory Site Management Plan 2017 Annual Report Introduction to Management of the Haleakalā High Altitude Observatory Site The Haleakalā High Altitude Observatory Site (HO) Management Plan (MP) was approved by the Board of Land and Natural Resources (BLNR) on December 1, 2010. Condition #2 states: “Beginning in November 2012 the University will submit to DLNR an annual report summarizing any construction activities occurring at HO; Habitat Conservation Plans; Monitoring Plans for Invertebrates, Flora, and Fauna; Programmatic Agreements on Cultural Resources; Invasive Species Control Plans and other related plans, The Report should be brief but thorough. This report should also be presented to the Board of Land and Natural Resources for the first year, and every five years thereafter.” Therefore, this report summarizes activities that occurred under the MP from December 1, 2016 to November 30, 2017. The land use described in this report, on activities under the HO MP, qualifies as an identified use in the General Subzone and is consistent with the objectives of the General Subzone of the land. The objectives of the General Subzone (HAR 13-5-14) are to designate open space where specific conservation uses may not be defined, but where urban uses would be premature. The land use is consistent with astronomical research facilities for advanced studies of astronomy and atmospheric sciences. HO is located within a General Subzone of the State of Hawai’i Conservation District that has been set aside for observatory site purposes only. Identified applicable land uses in the General Subzone, include R-3 Astronomy Facilities and (D-1) Astronomy facilities under an approved management plan (HAR 13-5-25).
    [Show full text]
  • NEWSLETTER• of the MICHIGAN ENTOMOLOGICAL SOCIETY
    NEWSLETTER• of the MICHIGAN ENTOMOLOGICAL SOCIETY Volume 38, Numbers 4 December, 1993 Impacts ofBt on Non-Target Lepidoptera John W. Peacock, David L. Wagner, and Dale F. Schweitzer USDA Forest Service, Hamden, CT; University of Connecticut, Storrs, CT; and The Nature Conservancy, Port Norris, NT, respectively Introduction gypsy moth in Oregon. Sample et a1. ing attempts bycertain birds. In another (1 993) have likewise reported a signifi­ study, Bellocq et al. (1992) showed that Bacillus thuringiensis Berliner var. cant reduction inspecies abundance and the use of Btk increased immigration kurstaki (Btk) is one of the pesticides richness in non-target Lepidoptera in rates andcaused d ietary shifts inshrews. most commonly employed against lepi­ field studies in eastern West Virginia. We report here a summary of our dopteran forest pests. In the eastern U.S., James et al. (1993) haveshown thatBtk is studies aimed at determining the effect where millionsofhectares of deciduous toxic to late, but not early, instar larvae of Btko n non-target Lepidoptera inboth forest have been defoliated by the ''Eu­ of the beneficial cinnabar moth, Tyria laboratoryand field studies. Laboratory ropean" gypsy moth, Lymantria dispar jacobaeae (L.). bioassays were conducted on larvae in (L.), Btk has been used extenSively to In addition to its direct effects on seven families of native eastern U.S. slow the spread of this pest and to re­ native Lepidoptera, Btk can indirectly Macrolepidoptera. Field studies were duce defoliation. In 1992 alone, over affect other animals that rely on lepi­ carried out in Rockbridge County, Vir­ 300,000 ha were treated with Btk, in­ dopterous larvae as a primary source of ginia, and were the first to evaluate non­ cluding gypsy moth suppression activi­ food.
    [Show full text]
  • Catalogue of Type Specimens of Beetles (Coleoptera) Deposited in the National Museum, Prague, Czech Republic*
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2009 Volume 49(1), pp. 297–332 ISSN 0374-1036 Catalogue of type specimens of beetles (Coleoptera) deposited in the National Museum, Prague, Czech Republic* Scarabaeoidea: Bolboceratidae, Geotrupidae, Glaphyridae, Hybosoridae, Ochodaeidae and Trogidae Aleš BEZDĚK1) and Jiří HÁJEK2) 1) Biology Centre ASCR, Institute of Entomology, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; e-mail: [email protected] 2) Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic; e-mail: [email protected] Abstract. Type specimens from the collection of beetles (Coleoptera) deposited in the Department of Entomology, National Museum, Prague, are currently being catalogued. Here we present precise information about species-group types of the following scarabaeoid families: three taxa of the family Bolboceratidae, 83 taxa of Geotrupidae, 18 taxa of Glaphyridae, fi ve taxa of Hybosoridae, two taxa of Ochodaeidae and 12 taxa of Trogidae. The rediscovery of the original syntypes of Geotrupes hoffmannseggi Fairmaire, 1856 and Bolboceras excavatum R. A. Philippi, 1859 set already designated neotypes for both species aside. Key words. Catalogue, type specimens, National Museum, Bolboceratidae, Geo- trupidae, Glaphyridae, Hybosoridae, Ochodaeidae, Trogidae Introduction The number of species-group type specimens of Coleoptera in the Department of Ento- mology of the National Museum, Prague (NMP; NMPC when referring to the collection) is estimated to several tens of thousands but the presence of some of them in the collection is still largely unknown. Although the International Code of Zoological Nomenclature encourages institutions to catalogue and access the type material in their care (ICZN 1999: Recommen- dation 72F), no such catalogue exists for NMPC.
    [Show full text]
  • Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
    Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm).
    [Show full text]
  • Effect of Different Mowing Regimes on Butterflies and Diurnal Moths on Road Verges A
    Animal Biodiversity and Conservation 29.2 (2006) 133 Effect of different mowing regimes on butterflies and diurnal moths on road verges A. Valtonen, K. Saarinen & J. Jantunen Valtonen, A., Saarinen, K. & Jantunen, J., 2006. Effect of different mowing regimes on butterflies and diurnal moths on road verges. Animal Biodiversity and Conservation, 29.2: 133–148. Abstract Effect of different mowing regimes on butterflies and diurnal moths on road verges.— In northern and central Europe road verges offer alternative habitats for declining plant and invertebrate species of semi– natural grasslands. The quality of road verges as habitats depends on several factors, of which the mowing regime is one of the easiest to modify. In this study we compared the Lepidoptera communities on road verges that underwent three different mowing regimes regarding the timing and intensity of mowing; mowing in mid–summer, mowing in late summer, and partial mowing (a narrow strip next to the road). A total of 12,174 individuals and 107 species of Lepidoptera were recorded. The mid–summer mown verges had lower species richness and abundance of butterflies and lower species richness and diversity of diurnal moths compared to the late summer and partially mown verges. By delaying the annual mowing until late summer or promoting mosaic–like mowing regimes, such as partial mowing, the quality of road verges as habitats for butterflies and diurnal moths can be improved. Key words: Mowing management, Road verge, Butterfly, Diurnal moth, Alternative habitat, Mowing intensity. Resumen Efecto de los distintos regímenes de siega de los márgenes de las carreteras sobre las polillas diurnas y las mariposas.— En Europa central y septentrional los márgenes de las carreteras constituyen hábitats alternativos para especies de invertebrados y plantas de los prados semi–naturales cuyas poblaciones se están reduciendo.
    [Show full text]
  • Check-List of Butterflies and Moths of the Notigale
    NAUJOS IR RETOS LIETUVOS VABZDŽI Ų R ŪŠYS. 22 tomas 91 CHECK-LIST OF BUTTERFLIES AND MOTHS OF THE NOTIGAL Ė BOG (NORTHERN LITHUANIA) DALIUS DAPKUS Department of Zoology, Vilnius Pedagogical University, Student ų 39, LT-08106 Vilnius, Lithuania. E-mail: [email protected] Introduction The Notigal ė telmological preserve (1391 ha) is located in Kupiškis administrative district (Northern Lithuania). It is protected since 1974 (State Service for Protected Areas…, 2008). The raised bog occupies approximately 552 ha of the whole territory. The efforts to study the entomofauna of the preserve were rather sporadic. The first faunistic data on Lepidoptera occurring in the Notigal ė bog were published by A. Palionis (1932). He recorded 14 species of butterflies and moths ( Papilio machaon, Plebeius argus , Thalera fimbrialis, Eulithis testata, E. populata, Macrothylacia rubi, Euthrix potatoria, Saturnia pavonia, Orgyia recens, O. antiqua, O. antiquoides, Diacrisia sannio, Amphipoea lucens, and Coenophila subrosea ). Later, some additional studies were carried out by A. Manikas (Kazlauskas, 1984, 2008; Ivinskis et al., 1990), and G. Švitra (unpublished data). More detailed studies on the composition of nocturnal moths occurring in the Notigal ė bog were carried out in 2000. The newly retrieved faunistic data were analysed and compared with the data obtained from the other bogs of Lithuania, showing some environmental similarities (Dapkus, 2003, 2004a, 2004b, 2004c), but the entire list of species is not yet published. The aim of this paper is to provide supplementary data on the species composition of nocturnal and day-active Lepidoptera recorded in the Notigal ė raised bog. Material and Methods The study on the butterflies and moths of the Notigal ė raised bog was carried out mainly in 2000.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]