Spatial Management of Reef Fisheries and Ecosystems Understanding the Importance of Movement

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Management of Reef Fisheries and Ecosystems Understanding the Importance of Movement FRDC FINAL REPORT SPATIAL MANAGEMENT OF REEF FISHERIES AND ECOSYSTEMS: UNDERSTANDING THE IMPORTANCE OF MOVEMENT Colin D. Buxton, Jayson M. Semmens, Edward Forbes, Jeremy M. Lyle, Neville S. Barrett and Michael J. Phelan May 2010 FRDC Project 2004/002 Buxton, C.D., Semmens, J.M., Forbes, E., Lyle, J.M., Barrett, N.S., Phelan, M.J. Spatial management of reef fisheries and ecosystems: Understanding the importance of movement. ISBN 978-1-86295-570-7 The Tasmanian Aquaculture and Fisheries Institute, University of Tasmania and Fisheries Research and Development Corporation 2010. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Information may not be stored electronically in any form whatsoever without such permission. Disclaimer The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstance. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the Tasmanian Aquaculture and Fisheries Institute or the University of Tasmania or the FRDC. Enquires should be directed to: Prof Colin Buxton Director Tasmanian Aquaculture and Fisheries Institute University of Tasmania Private Bag 49, Hobart, Tasmania 7001 The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry Reef fish movement TABLE OF CONTENTS NON-TECHNICAL SUMMARY................................................................................. 1 ACKNOWLEDGEMENTS .......................................................................................... 4 BACKGROUND ............................................................................................................ 5 CHAPTER 1: SPATIAL AND TEMPORAL USE OF AGGREGATION SITES BY THE TROPICAL SCIAENID PROTONIBEA DIACANTHUS.......................... 7 1.1 INTRODUCTION ............................................................................................. 8 1.2 MATERIALS AND METHODS .................................................................... 10 1.2.1 Study sites and acoustic receiver deployment ................................................................10 1.2.2 Receiver range testing ......................................................................................................14 1.2.3 Acoustic tags .....................................................................................................................14 1.2.4 Tagging trial .....................................................................................................................15 1.2.5 Tagging .............................................................................................................................15 1.2.6 Analysis .............................................................................................................................16 1.3 RESULTS ......................................................................................................... 17 1.3.1 Receiver range tests .........................................................................................................17 1.3.2 Acoustic monitoring .........................................................................................................21 1.3.3 Spectral analysis ...............................................................................................................23 1.4 DISCUSSION................................................................................................... 29 CHAPTER 2: SPATIAL AND TEMPORAL MOVEMENT PATTERNS, SITE FIDELITY AND RESIDENCY OF TWO VULNERABLE TEMPERATE ROCKY-REEF FISH, CHEILODACTYLUS SPECTABILIS AND LATRIDOPSIS FORSTERI .................................................................................................................... 33 2.1 INTRODUCTION ........................................................................................... 34 2.2 MATERIALS AND METHODS .................................................................... 36 2.2.1 Study site and acoustic receiver deployment .................................................................36 2.2.2 Study site bathymetry and habitat classification ...........................................................44 2.2.3 Acoustic transmitters .......................................................................................................45 2.2.4 VRAP positional error testing .........................................................................................45 2.2.5 VR2 range testing .............................................................................................................45 2.2.6 Tagging .............................................................................................................................47 2.2.7 Analysis .............................................................................................................................48 2.3 RESULTS ......................................................................................................... 53 2.3.1 VR2 Receiver range tests .................................................................................................53 2.3.2 VR2 acoustic monitoring .................................................................................................53 2.3.3 VRAP positional error .....................................................................................................72 2.3.4 VRAP tracking .................................................................................................................72 2.4 DISCUSSION................................................................................................... 77 BENEFITS AND ADOPTION ................................................................................... 80 FURTHER DEVELOPMENT.................................................................................... 80 i FRDC Project 2004/002 Reef fish movement PLANNED OUTCOMES ............................................................................................82 CONCLUSION.............................................................................................................82 LITERATURE CITED................................................................................................84 APPENDIX 1: INTELLECTUAL PROPERTY ......................................................91 APPENDIX 2: STAFF ................................................................................................91 FRDC Project 2004/002 ii Reef fish movement 2004/002 Evaluation of spatial management of reef fisheries and ecosystems: understanding the importance of movement PRINCIPAL INVESTIGATOR Professor Colin D. Buxton ADDRESS University of Tasmania Tasmanian Aquaculture and Fisheries Institute Private Bag 49 Hobart TAS 7001 Telephone: 03 6227 7277 Fax: 03 6227 8035 OBJECTIVES 1. To study the movement patterns of key reef associated fishes in Tasmania and the Northern Territory. 2. To link movement patterns with critical life history events and habitat utilisation. 3. To evaluate these results in the context of spatial management options for specific fisheries, including performance of closed areas. NON-TECHNICAL SUMMARY OUTCOMES ACHIEVED TO DATE In the Northern Territory, the primary outcome was an improved understanding of the temporal and spatial dynamics of Protonibea diacanthus aggregations. Most importantly, the study demonstrated that the aggregations are likely to be separate adult populations. This has significant implications for stock assessment and management of the resource as such populations are likely to be highly vulnerable to localised depletion. In Tasmania, the primary outcome was an improved understanding of the temporal and spatial movement patterns of Cheilodactylus spectabilis and Latridopsis forsteri . C spectabilis only moved to depth during the spawning season, suggesting that the deep water stocks that fishers believe act as a refuge population are in fact temporary residents during the spawning season, and the fishery may in fact target a major component of the stock. The result of C. spectabilis being highly site attached and occupying very small core areas of reef suggests that fishing has the potential to cause localised and serial depletion of this species. Despite being a mobile species, some L. forsteri individuals were site attached, suggesting that closed areas may be of some benefit for the sustainable management of this species. Movement information is essential to understanding many aspects of exploited populations such as replenishment of fished reefs (from local, adjacent or deep reefs), aggregation behaviour, critical habitat requirements and cyclic variation in catch rates. 1 FRDC Project 2004/002 Reef fish movement It is particularly important to the understanding and application
Recommended publications
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Digenea: Lecithasteridae) Recently Found in Australian Marine Fishes
    FOLIA PARASITOLOGICA 48: 109-114, 2001 Weketrema gen. n., a new genus for Weketrema hawaiiense (Yamaguti, 1970) comb. n. (Digenea: Lecithasteridae) recently found in Australian marine fishes Rodney A. Bray1 and Thomas H. Cribb2 1Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; 2Department of Microbiology and Parasitology, The University of Queensland, Brisbane, Queensland 4072, Australia Key words: Digenea, Lecithasteridae, Weketrema, Scolopsis, Plectorhinchus, Cheilodactylus, Latridopsis, Great Barrier Reef, Tasmania Abstract. A new genus, Weketrema, is erected in the family Lecithasteridae for the species hitherto known as Lecithophyllum hawaiiense. Weketrema hawaiiense (Yamaguti, 1970) comb. n. is redescribed from Scolopsis bilineatus (Bloch) (Perciformes: Nemipteridae) from Lizard Island and Heron Island, Queensland, Plectorhinchus gibbosus (Lacepède) (Perciformes: Haemulidae) from Heron Island and Cheilodactylus nigripes Richardson (Perciformes: Cheilodactylidae) and Latridopsis forsteri (Castelnau) (Perciformes: Latridae) from Stanley, northern Tasmania. The new genus is distinguished from related members of the family Lecithasteridae by its complete lack of a sinus-sac. Although placed in the subfamily Lecithasterinae pro tem, its true subfamily position is not entirely clear. Comment is made on its unusual distribution, both in terms of zoogeography and hosts. As more lecithasterid species are examined and Weketrema gen. n. emphasis is placed on the structure of the terminal genitalia, more unusual features are uncovered. This Diagnosis. Lecithasteridae: Lecithasterinae. Body paper is a report of a known species, Lecithophyllum small, elongate oval. Tegument unarmed. Pre-oral lobe hawaiiense Yamaguti, 1970, re-examined using newly distinct. Oral sucker subglobular, subterminal. Ventral collected Australian material, Differential Interference sucker oval, pre-equatorial. Prepharynx absent. Pharynx Contrast (DIC) microscopy and serial sections.
    [Show full text]
  • Molecular Genetics of Cirrhitoid Fishes (Perciformes: Cirrhitoidea
    Molecular genetics of c·irrhitoid fishes (Perciformes: Cirrhitoidea): phylogeny, taxonomy, biogeography, and stock structure Christopher Paul Burridge BSc(Hons) University of Tasmania Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, University of Tasmania October 2000 S1a~tements I declare that this thesis contains no material whicb has been accepted for the award of any otiler degree or diploma in any tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text. This thesis is to be made available for loan and limited copying in accordance with the Copyright Act 1968. October 2000 Summary The molecular phylogenetic relationships within three of the five cirrhitoid fish families were reconstructed from mitochondrial DNA cytochrome b, cytochrome oxidase I, and D-loop sequences. Analysis of the Cheilodactylidae provided evidence that much taxonomic revision is required. The molecular data suggest that this family should be restricted to the two South African Cheilodactylus, as they are highly divergent from the other cheilodactylids and one member is the type species. The remaining 25 cheilodactylids should be transferred to the Latridae. Nine of the non South African Cheilodactylus can be allocated to three new genera; Goniistius (elevated to generic rank), Zeodrius (resurrected), and Morwong (resurrected), while the placement of three species is uncertain. The three South African Chirodactylus should revert to Palunolepis, as they are distinct from the South American type species Chirodact_vlus variegatus. Acantholatris clusters within Nemadactylus, ar;d the former should be synonymised.
    [Show full text]
  • Reef Life Survey Assessment of Biodiversity in Northern New Zealand Marine Reserves and Associated Coastlines
    Reef Life Survey Assessment of Biodiversity in Northern New Zealand Marine Reserves and Associated Coastlines Report for New Zealand Department of Conservation Report authors: Graham Edgar, Rick Stuart-Smith, Russell Thomson, Debbie Freeman, Peter Southwood AQUENAL PTY LTD 1 www.aquenal.com.au Biodiversity Assessment of New Zealand marine reserves Reef Life Survey and Aquenal Pty Ltd PUBLICATION SUMMARY TITLE: Reef Life Survey assessment of biodiversity in northern New Zealand marine reserves and associated coastlines. CLIENT: New Zealand Department of Conservation COMPILATION: Reef Life Survey Foundation Inc. Battery Point, Tas 7004 Australia Website: www.reeflifesurvey.com AQUENAL PTY LTD ABN 74 151 011 157 244 Summerleas Road Kingston, Tasmania 7050 Phone +61 (0)3 6229 2334 E-mail: [email protected] Website: www.aquenal.com.au CONTRIBUTING AUTHORS: Graham Edgar, Rick Stuart-Smith, Russell Thomson, Debbie Freeman, Peter Southwood DOCUMENT SUBMITTED: 30 August 2013 ELECTRONIC FILE NAME: AQ13_1121 RLS_NZ DOC V2.0.doc JOB NUMBER 13/1121 REPORT CITATION: Edgar, G., Stuart-Smith, S., Thomson, R., Freeman, D. & Southwood, P. (2013) Reef Life Survey assessment of biodiversity in northern New Zealand marine reserves and associated coastlines. Report for New Zealand Department of Conservation. Aquenal Pty Ltd and Reef Life Survey Inc., Hobart. Cover images (top left to bottom right): RLS survey at Curtis Island in the Kermadecs; Evechinus chloroticus at Northland; Dougall Rock, Raoul Island at Kermadec MR; Arctides antipodarum at Northland; Jasus edwardsii at Bay of Islands, Sagmariasus verreauxi at Bay of Islands, Lessonia variegata at Northland. 1 Biodiversity Assessment of New Zealand marine reserves Reef Life Survey and Aquenal Pty Ltd Executive Summary This report summarises results of subtidal surveys of marine animals and macroalgae undertaken between September 2012 and January 2013 within northern New Zealand marine reserves and fished coastlines.
    [Show full text]
  • Digenea: Lepocreadiidae) from the Bastard Trumpeter Latridopsis Forster/(Perciformes: Latridae) Off the Coast of Northern Tasmania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 135, 2001 21 POSTLEPIDAPEDON QUINTUM N. SP. (DIGENEA: LEPOCREADIIDAE) FROM THE BASTARD TRUMPETER LATRIDOPSIS FORSTER/(PERCIFORMES: LATRIDAE) OFF THE COAST OF NORTHERN TASMANIA by Rodney A. Bray & Thomas H. Cribb (with one text figure) BRAY,R.A. & CRIBB, T.H., 2001 (31 :xii): Postlepidapedon quintum n. sp. (Digenea: Lepocreadiidae) from the bastard trumpeter Latridopsis forsteri (Perciformes: Latridae) off the coast of northern Tasmania. Pap. Proc. R. Soc. Tasm. 135: 21-23. https://doi.org/10.26749/rstpp.135.21 ISSN 0080-4703. Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK (RAB); Department ofMicrobiology and Parasitology, The University of Queensland, Brisbane, Queensland, Australia 4072 (THC). The new lepocreadiid species, Postlepidapedon quintum, is erected for worms recovered from the perciform fish Latridopsisforsteri off the coast of northern Tasmania. It is distinguished from its congeners by the vitelline extent and the shape and thickness of the wall of the internal seminal vesicle. A key to the genus Postlepidapedon is given. P. quintum is likely to be endemic to southern Australia and New Zealand, as is its host. Key Words: Posdepidapedon, Latridopsis, Digenea, Lepocreadiidae, Tasmania. INTRODUCTION Museum, London, UK; QM, Queensland Museum collection, Brisbane, Australia. Postlepidapedon Zdzitowiecki, 1993 was erected by Zdzitowiecki (1993) to accommodate his species Neolepidapedon opisthobifurcatus Zdzitowiecki, 1990 from RESULTS the gadiform fishMuraenolepis microps off South Georgia (Zdzitowiecki 1990). This species had an "Opechona-type" Family Lepocreadiidae Odhner, 1905 cirrus-sac (as definedby Bray& Gibson 1989), but with an Family Lepocreadiinae Odhner, 1905 elongate, rather than oval, internal seminal vesicle, and the Genus Postlepidapedon Zdzitowiecki, 1993 intestinal bifurcation displaced posteriorly at about the level of the posterior margin of the ventral sucker (Zdzitowiecki 1990; Zdzitowiecki & Cielecka 1997).
    [Show full text]
  • Mcmillan NZ Fishes Vol 2
    New Zealand Fishes Volume 2 A field guide to less common species caught by bottom and midwater fishing New Zealand Aquatic Environment and Biodiversity Report No. 78 ISSN 1176-9440 2011 Cover photos: Top – Naked snout rattail (Haplomacrourus nudirostris), Peter Marriott (NIWA) Centre – Red pigfish (Bodianus unimaculatus), Malcolm Francis. Bottom – Pink maomao (Caprodon longimanus), Malcolm Francis. New Zealand fishes. Volume 2: A field guide to less common species caught by bottom and midwater fishing P. J McMillan M. P. Francis L. J. Paul P. J. Marriott E. Mackay S.-J. Baird L. H. Griggs H. Sui F. Wei NIWA Private Bag 14901 Wellington 6241 New Zealand Aquatic Environment and Biodiversity Report No. 78 2011 Published by Ministry of Fisheries Wellington 2011 ISSN 1176-9440 © Ministry of Fisheries 2011 McMillan, P.J.; Francis, M.P.; Paul, L.J.; Marriott, P.J; Mackay, E.; Baird, S.-J.; Griggs, L.H.; Sui, H.; Wei, F. (2011). New Zealand fishes. Volume 2: A field guide to less common species caught by bottom and midwater fishing New Zealand Aquatic Environment and Biodiversity Report No.78. This series continues the Marine Biodiversity Biosecurity Report series which ended with MBBR No. 7 in February 2005. CONTENTS PAGE Purpose of the guide 4 Organisation of the guide 4 Methods used for the family and species guides 5 Data storage and retrieval 7 Acknowledgments 7 Section 1: External features of fishes and glossary 9 Section 2: Guide to families 15 Section 3: Guide to species 31 Section 4: References 155 Index 1 – Alphabetical list of family
    [Show full text]
  • Australian Fish on Fishbase
    Update and World-wide distribution of Australian fisheries resources information: AUSTRALIAN FISH ON FishBase <http://www.fishbase.org/search.cfm> A. Caton and P. Kailola Project No. 97/302 Bureau of Rural Sciences Table of Contents Page Table of Contents i Non-Technical Summary 1 Background 3 Need 3 Objectives 4 Methods 4 Results/Discussion 5 Benefits 6 Further Development 7 Conclusion 8 References 9 Appendix 1: 11 Intellectual property Appendix 2: 12 Staff engaged on the project Appendix 3: Information assembled on Australian Fisheries Resources species encompassed by the FishBase project, and a list of those species outside 13 its scope. Appendix 4: List of organisations and scientists approached for, or who volunteered, 37 update material. Appendix 5: 41 Poster for 1998 Conference of the Australian Society of Fish Biology. Appendix 6: 43 FishBase on the World Wide Web. Bureau of Rural Sciences Update and World-wide distribution of Australian fisheries resources information: AUSTRALIAN FISH ON FishBase <http://www.fishbase.org/search.cfm> Albert Caton and Patricia Kailola1 Bureau of Rural Sciences Agriculture, Fisheries and Forestry—Australia CANBERRA Objective: To provide a useful, up-to-date, carefully checked national and international database of species biology, ecology and management for the commercially important fish in Australia. Non Technical Summary FishBase is a large biological database containing key information (such as nomenclature, taxonomy, morphology, trophic ecology, population dynamics, physiology, pictures and maps) for more than 23 000 finfish species. It is maintained and distributed by the International Center for Living Aquatic Resources Management (ICLARM) in the Philippines. The FishBase encyclopedia has previously been distributed in the form of a 2-CD package using Windows software, but its primary information is now also accessible via a developing web site <http://www.fishbase.org/search.cfm> (ICLARM 1999).
    [Show full text]
  • Ecology and Taxonomy of Mysids (Mysidacea : Crustacea)
    ECOLOGY AND TAXONOMY OF MYSIDS (MYSIDACEA : CRUSTACEA) by Gwen Elizabeth Fenton, B.Sc.(Hons) submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy UNIVERSITY OF TASMANIA HOBART August 1985 Except as stated herein this thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and that, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by another person, except when due reference is made in the text of the thesis. /r1-4/071/ Gwen Fenton TABLE OF CONTENTS Page ABSTRACT ACKNOWLEDGEMENTS iii CHAPTER 1 GENERAL INTRODUCTION 1 PART A: TAXONOMY AND BIOGEOGRAPHY OF THE AUSTRALIAN MYSIDS 3 CHAPTER 2 TAXONOMY OF THE AUSTRALIAN MYSIDS 4 2.1 INTRODUCTION 4 2.1.1 BACKGROUND 4 2.1.2 HISTORICAL RECORD OF MYSID TAXONOMY IN AUSTRALIA 8 2.2 LIST OF THE AUSTRALIAN MYSID SPECIES 11 2.3 SYSTEMATICS 15 2.3.1 SUB-ORDER LOPHOGASTRIDA 15 2.3.1.1 Family LOPHOGASTRIDAE 16 i) Genus Gnathophausia 16 G.ingens 17 2.3.2 SUB-ORDER MYSIDA 17 KEY TO THE GENERA KNOWN FROM AUSTRALIA IN THE SUB-ORDER MYSIDA 19 2.3.2.1 Family PETALOPHTHALMIDAE 31 i) Genus Petalophthalmus 31 P.australis 32 2.3.2.2 Family MYSIDAE 32 2.3.2.2.1 Sub-Family BOREOMYSINAE 33 i) Genus Boreomysis 33 B.sibogae 33 2.3.2.2.2 Sub-Family SIRIELLINAE 34 i) Genus Hemisiriella 34 Key to the Australian Species of 34 Hemisiriella FILarl_La.
    [Show full text]
  • Regional Diversity and Biogeography of Coastal Fishes on the West Coast South Island of New Zealand
    Regional diversity and biogeography of coastal fishes on the West Coast South Island of New Zealand SCIENCE FOR CONSERVATION 250 C.D. Roberts, A.L. Stewart, C.D. Paulin, and D. Neale Published by Department of Conservation PO Box 10–420 Wellington, New Zealand Cover: Sampling rockpool fishes at low tide (station H20), point opposite Cape Foulwind, Buller, 13 February 2000. Photo: MNZTPT Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer http://www.doc.govt.nz under Publications, then Science and research. © Copyright April 2005, New Zealand Department of Conservation ISSN 1173–2946 ISBN 0–478–22675–6 This report was prepared for publication by Science & Technical Publishing Section; editing by Helen O’Leary and Ian Mackenzie, layout by Ian Mackenzie. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 1.1 West Coast marine environment 6 1.2 Historical summary 8 2. Objectives 10 3. Methods 11 3.1 Summary of survey methods 11 3.1.1 Rotenone ichthyocide 11 3.2 Field methods 11 3.2.1 Survey areas, dates and vessels 11 3.2.2 Diving and sample stations 14 3.2.3 Biological samples 17 3.3 Fish identification 18 4.
    [Show full text]
  • Link to Thesis
    Effects of macroalgal habitats on the community and population structure of temperate reef fishes by Alejandro Pérez Matus A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Marine Biology Victoria University of Wellington Te Whare Wānanga o te Ūpoko o te Ika a Māui 2010 This thesis was conducted under the supervision of: Dr. Jeffrey S. Shima (Primary Supervisor) Victoria University of Wellington, Wellington, New Zealand Dr. Russell Cole National Institute of Water and Atmospheric Research (NIWA), Nelson, New Zealand and Dr. Malcolm Francis National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand Notolabrus fucicola over Carpophyllum flexuosum, Kapiti Island, Wellington “Among the fishes, a remarkably wide range of biological adaptations to diverse habitat has evolved” Dr. T. Pitcher. Abstract Two families of brown macroalgae that occur in sympatry dominate temperate subtidal rocky coasts: the Laminareales, and the Fucales. Both of these families are habitat-forming species for a wide variety of invertebrates and fishes. Variation in the presence, density, and composition of brown macroalgae can have large influences on the evolution and ecology of associated organisms. Here, using a series of observational and experimental studies, I evaluated the effects of heterogeneity in the composition of brown macroalgal stands at the population and community levels for reef fishes. A central ecological challenge is the description of patterns that occur at local scales, and how these are manifested at larger ones. I conducted further sampling across a set of sites nested within locations over three regions, Juan Fernández Islands (Chile), Northern New Zealand, and Tasmania (Australia), to evaluate patterns of variation in the diversity and composition of fish assemblages.
    [Show full text]
  • Functional Biodiversity of New Zealand's Marine Fishes Versus Depth and Latitude
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Functional biodiversity of New Zealand’s marine fishes versus depth and latitude A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Statistics at Massey University, Auckland, New Zealand Elisabeth Miro Valerie Myers June 2020 i Thesis Abstract Understanding patterns and processes governing biodiversity along broad-scale environmental gradients requires an assessment of not only taxonomic richness, but also morphological and functional traits of organisms. The deep sea is the largest habitat on earth and provides many important ecosystem services. Decreases in light, temperature, and trophic resources, along with increases in pressure that occur with greater depth, renders the deep sea one of the most constraining environments for supporting life. However, little is known about how biodiversity, and especially functional biodiversity, changes along the depth gradient. This thesis aimed to fill this gap by using a combination of traits associated with food acquisition and locomotion to quantify and characterise patterns of functional diversity across large-scale depth and latitude gradients and to investigate potential mechanisms driving biodiversity. First, to identify the major selective forces acting on morphology, I documented patterns of variation in the traits of fishes at broad spatial scales. I found that with increasing depth, fishes, on average, became larger and more elongate, and had a larger oral gape and eye size.
    [Show full text]
  • Surveys of Intertidal and Subtidal Biota of the Derwent Estuary – 2010
    SURVEYS OF INTERTIDAL AND SUBTIDAL BIOTA OF THE DERWENT ESTUARY – 2010 NEVILLE BARRETT, GRAHAM EDGAR, CAROLINA J. ZAGAL, ELIZABETH OH AND DANE JONES Derwent Estuary Monitoring Summary This study examines patterns of diversity and abundance of fish, invertebrates and algae on intertidal to subtidal rocky reefs and their adjacent sediments within the Derwent Estuary. It is based on two quantitative survey methods that formed the basis of a detailed survey of the estuary, primarily undertaken between February-April 2010. The survey area ranged from Claremont Point to Tinderbox and encompassed up to 24 sites along this estuarine gradient, surveying the typical range of depths that rocky reefs and adjacent sediments occur in along that gradient. The primary aims of the study were: (1) to provide a substantial quantitative baseline of current biological assemblages in these habitats as a snapshot by which future change could be measured, spatial patterns could be recognised, and management issues identified; (2) to undertake a detailed search for the threatened seastar Marginaster littoralis, and other rare seastar species that could be resident in the Derwent estuary to better understand their conservation status; (3) to quantitatively describe the current distribution of introduced species within the estuary and better understand the threats they might provide to native species. The two survey methods utilised included (1) a standard belt transect methodology widely used by TAFI for biodiversity surveys in temperate Australia; (2) a 20 minute timed swim (and intertidal search) with multiple replicates at multiple depth bands, recording fishes, readily identifiable fishes, invertebrates and brown and green macroalgae. For method 1, fifty four species of fish, thirty five species of mobile macro- invertebrates, twenty one species of sessile invertebrates and seventy two species of brown, green and red algae were recorded along standard subtidal rocky reef surveys.
    [Show full text]