Mid-Atlantic Berry Guide Is Intended to Provide Information for Com- Bryan R

Total Page:16

File Type:pdf, Size:1020Kb

Mid-Atlantic Berry Guide Is Intended to Provide Information for Com- Bryan R TheThe Mid-AtlanticMid-Atlantic BerryBerry GuideGuide for Commercial Growers 2013–2014 Produced by The Pennsylvania State University in cooperation with The University of Delaware Rutgers University, the University of Delaware, the University of Gordon C. Johnson, Extension Vegetable and Fruit Specialist and Assistant Maryland, Virginia Tech, and West Virginia University. Professor, Department of Plant and Soil Sciences, Carvel Research and Education Center ACKNOWLEDGMENts The University of Maryland The Mid-Atlantic Berry Guide is intended to provide information for com- Bryan R. Butler, Senior Agent, University of Maryland Extension in Carroll mercial berry growers within the region. Homeowners may use this publica- County tion for background information; however, many of the recommendations Joseph A. Fiola, Professor and Specialist in Viticulture and Small Fruit, Univer- contained in this guide assume that the production is on a large scale and sity of Maryland Extension that producers have a commercial pesticide applicator’s license. Willie Lantz, Senior Agent, University of Maryland Extension in Garrett Uses of pesticides listed in this publication were current as of July 1, County 2012. However, changes in registration status may occur at any time, so please consult the label before use—the label is the law. If there are differ- USDA-ARS, Beltsville, Maryland ences in use patterns between the pesticide label in your possession and Mark Ehlenfeldt, Research Geneticist, Genetic Improvement of Fruits and those listed in this guide, follow the instructions on the label. If in doubt, Vegetables Laboratory consult your cooperative extension educator. Virginia Tech Jeffrey F. Derr, Professor, Hampton Roads Agricultural Research and Exten- COORDINatOR sion Center Kathleen Demchak, Senior Extension Associate, Department of Horticulture, Charles Johnson, Professor and Extension Plant Pathologist, Southern Pied- Penn State mont Agricultural Research and Extension Center CONTRIBUTORS Douglas G. Pfeiffer, Professor, Department of Entomology R. Allen Straw, Area Specialist, Southwest Virginia Agricultural Research and Penn State Extension Center Kathleen Demchak, Senior Extension Associate, Department of Horticulture Keith S. Yoder, Professor of Plant Pathology, Alson H. Smith Jr. Agricultural Timothy E. Elkner, Senior Extension Educator, Penn State Cooperative Exten- Research and Extension Center sion in Lancaster County C. John Esslinger, Extension Educator, Penn State Cooperative Extension, West Virginia University Northeast Region Alan R. Biggs, Professor of Plant Pathology and Extension Specialist, Kear- Maryann Frazier, Senior Extension Associate, Department of Entomology neysville Tree Fruit Research and Education Center Scott D. Guiser, Senior Extension Educator, Penn State Cooperative Exten- John W. Jett, Extension Specialist, West Virginia University Extension Service sion in Bucks County Lewis W. Jett, Extension Specialist, West Virginia University Extension Service John M. Halbrendt, Associate Professor of Plant Pathology, Department of Additional Contributors Plant Pathology Ed Mashburn, Northumberland, Pennsylvania, former President of The Inter- Jayson K. Harper, Professor of Agricultural Economics, Department of Agri- national Ribes Association cultural Economics and Rural Sociology Harry Swartz, Five Aces Breeding, LLC Grzegorz Krawczyk, Senior Research Associate, Department of Entomology Kerry M. Richards, Director, Pesticide Management Information Center Past Contributors This guide includes material from authors whose work appeared in earlier Rutgers University, New Jersey Agricultural Experiment Station extension publications in the region or in earlier editions of this guide. These Joseph R. Heckman, Extension Specialist, Department of Plant Biology and authors include John Baniecki, Ed Beste, Barbara Bowling, Tony Bratsch, Pathology Margaret Brittingham-Brant, Dewey Caron, Anne DeMarsay, Henry Hogmire, Bradley A. Majek, Extension Specialist, Department of Plant Biology and Win Hock, Ed Kee, Henry Ngugi, Jeremy Pattison, Sridhar Polavarapu, Pete Pathology Probasco, Ed Rajotte, Bob Rouse, Jo Rytter, Elsa Sánchez, Gary San Julian, Peter Nitzsche, County Agent, Rutgers Cooperative Extension of Morris Pete Shearer, Mike Stanghellini, Paul Steiner, Jim Travis, and Richard Zim- County merman. Their contributions and work, which laid the groundwork for this Peter V. Oudemans, Associate Professor, Department of Plant Biology and version, are gratefully acknowledged. Pathology Gary Pavlis, County Agent, Rutgers Cooperative Extension of Atlantic County Editor Dean Polk, Statewide Fruit IPM Agent, Department of Agricultural and Amanda Kirsten, Ag Communications and Marketing, Penn State Resource Management Agents Designer Cesar Rodriguez-Saona, Assistant Extension Specialist, Department of Nora Serotkin, Ag Communications and Marketing, Penn State Entomology Illustrations and Photos William J. Sciarappa, County Agent, Rutgers Cooperative Extension of Illustrations, except Figure 7.2, by Ellen Lovelidge, Penn State. Figure 7.2 Monmouth County courtesy of Virginia Tech. Daniel L. Ward, Assistant Extension Specialist, Department of Plant Biology Blackberry flower and strawberry photos: Kathleen Demchak and Pathology Others: istockphoto.com The Mid-Atlantic Berry Guide CONTENTS List of Tables and Figures ................................................................................................................ii Chapter 1: Preplant Considerations ......................................................................................1 Chapter 2: Soil Management and Nutrition for Berry Crops ........................................7 Chapter 3: Pesticides, Pesticide Safety, and Chemical Fumigation ......................... 15 Chapter 4: Weed Management ............................................................................................ 31 Chapter 5: Wildlife Damage Control in Commercial Plantings ................................. 41 Chapter 6: Strawberries .......................................................................................................... 49 Chapter 7: Blueberries ...........................................................................................................115 Chapter 8: Brambles ...............................................................................................................171 Chapter 9: Gooseberries and Currants ............................................................................225 Appendix A: Expanded Special Topics ................................................................................239 Appendix B: Diagnostic Services...........................................................................................247 Appendix C: Nursery Sources of Berry Plants ...................................................................259 Appendix D: Production Supplies and Services ...............................................................263 Appendix E: Additional Sources of Information ..............................................................269 TABLES AND FIGURES Chapter 2—Soil Management and Nutrition for Berry Crops ...........................7 Table 2.1. Pounds of lime with a CCE (calcium carbonate equivalent) of 100 needed per acre to maintain or raise the soil pH to 6.5. ........................ 8 Table 2.2. Green manure crops categorized by use, life cycle, and season. .......13 Chapter 3—Pesticides, Pesticide Safety, and Chemical Fumigation .............15 Table 3.1. Toxicity of pesticides to birds, fish, honey bees, and beneficial predators. .................................................................................................................16 Table 3.2. General and restricted-use pesticides labeled for use on strawberries, brambles, blueberries, gooseberries, and currants .................................23 Table 3.3. Fumigants and spectrums of activity. ...........................................................27 Chapter 4—Weed Management ........................................................................31 Table 4.1. Weed susceptibility to herbicides. ..................................................................34 Table 4.2. Herbicide water solubility and soil adsorption characteristics. ...........38 Chapter 6—Strawberries ....................................................................................49 Table 6.1. Number of strawberry plants per acre for different in-row and between-row spacings .......................................................................................52 Table 6.2. Recommended fertilizer amounts for June-bearing matted-row strawberry plantings ...........................................................................................53 Table 6.3. June-bearing matted-row strawberry cultivars. ........................................54 Table 6.4. Recommended nutrients for annual plasticulture strawberry plantings ..................................................................................................................58 Table 6.5. June-bearing strawberry cultivars for plasticulture production. ........61 Table 6.6. Day-neutral strawberry cultivars .....................................................................65 Table 6.7. Summary of estimated costs per acre, 2011: year of land preparation for strawberries ......................................................................................................70 Table 6.8. Summary of estimated costs per acre, 2011:
Recommended publications
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Porcelain Berry Are Aggressive , Growing Quickly to PORCELAIN Form Large Mats Over Existing Vegetation
    The vines of porcelain berry are aggressive , growing quickly to PORCELAIN form large mats over existing vegetation. It easily climbs up and around BERRY trees, shading out shrubs and seedlings of native plants . (Ampelopsis brevipedunculata) CHARACTERISTICS WHERE FROM WHERE FOUND Y Porcelain berry is a woody, Native to Japan and China, Porcelain berry can be F perennial vine which can this plant was brought to found in southern New I grow up to 20 feet or more, North America in 1870 as England, the Mid-Atlantic T and closely resembles native an ornamental and land - and parts of the South and grapevine. The center, or scaping plant. Midwest. It can be found N pith, is white. Its bark has in varying conditions, from lenticels (light colored dots) dry to moist areas, along E and will not peel, unlike forest edges and streams, grape bark which does not as well as areas receiving PORCELAIN BERRY FOLIAGE D Karan A. Rawlins, University of Georgia, have lenticels and will full sunlight to partial shade. Bugwood.org I y peel or shred. It uses non- c Porcelain berry is not n a adhesive tendrils to climb. v tolerant of fully shaded sites r e s n Leaves are alternate and or wet soils. o C broadly ovate with a heart- e n i w shaped base. Leaves have y d n 3–5 lobes and toothed a r B PORCELAIN BERRY FRUITS margins. Porcelain berry | James H. Miller, USDA Forest Service, Bugwood.org Y produces small, hard berries R R E varying in color from pale B N I violet to green, to a bright A L E blue.
    [Show full text]
  • Porcelain Berry
    FACT SHEET: PORCELAIN-BERRY Porcelain-berry Ampelopsis brevipedunculata (Maxim.) Trautv. Grape family (Vitaceae) NATIVE RANGE Northeast Asia - China, Korea, Japan, and Russian Far East DESCRIPTION Porcelain-berry is a deciduous, woody, perennial vine. It twines with the help of non-adhesive tendrils that occur opposite the leaves and closely resembles native grapes in the genus Vitis. The stem pith of porcelain-berry is white (grape is brown) and continuous across the nodes (grape is not), the bark has lenticels (grape does not), and the bark does not peel (grape bark peels or shreds). The Ieaves are alternate, broadly ovate with a heart-shaped base, palmately 3-5 lobed or more deeply dissected, and have coarsely toothed margins. The inconspicuous, greenish-white flowers with "free" petals occur in cymes opposite the leaves from June through August (in contrast to grape species that have flowers with petals that touch at tips and occur in panicles. The fruits appear in September-October and are colorful, changing from pale lilac, to green, to a bright blue. Porcelain-berry is often confused with species of grape (Vitis) and may be confused with several native species of Ampelopsis -- Ampelopsis arborea and Ampelopsis cordata. ECOLOGICAL THREAT Porcelain-berry is a vigorous invader of open and wooded habitats. It grows and spreads quickly in areas with high to moderate light. As it spreads, it climbs over shrubs and other vegetation, shading out native plants and consuming habitat. DISTRIBUTION IN THE UNITED STATES Porcelain-berry is found from New England to North Carolina and west to Michigan (USDA Plants) and is reported to be invasive in twelve states in the Northeast: Connecticut, Delaware, Massachusetts, Maryland, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, Washington D.C., West Virginia, and Wisconsin.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Chapter 1 Definitions and Classifications for Fruit and Vegetables
    Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding
    [Show full text]
  • Alaska Non-Timber Forest Products Harvest Manual for Commercial Harvest on State-Owned Lands
    Alaska Non-Timber Forest Products Harvest Manual For Commercial Harvest on State-Owned Lands State of Alaska Department of Natural Resources Division of Mining, Land and Water April 2, 2008 - 1 - State of Alaska Non-Timber Forest Product Commercial Harvest Manual, April 2, 2008 Table of Contents Introduction 3 Special notices, clarifications, and general rules 4 Procedure for revision 5 Products and species descriptions 6 Bark birch 7 cedar 8 various species 9 Berries and berry-like fruits 10 Branches and stems of deciduous woody species 11 Buds and tips 12 Burls and galls 13 Cones 14 Conks 15 Cuttings – willow, dogwood & poplar 16 Diamond willow 17 Evergreen boughs 18 Floral greenery 19 Leaves and flowers of woody plants 20 Lichens ground-growing 21 tree-growing 22 Mosses and liverworts 23 Mushrooms 24 Non-woody perennial plants tender edible shoots, stems, leaves, and/or flowers 25 mature stems, leaves and flowers 26 Roots edible or medicinal 27 for fiber 28 Seed heads 29 Seeds 30 Transplants plugs 31 shrubby perennial with root ball 32 sprigs 33 tree sapling with root ball 34 Appendix I: Plants never allowed for harvest 35 Appendix II: Guidelines for non over-the-counter permit products 36 Glossary 38 Selected references 39 - 2 - State of Alaska Non-Timber Forest Product Commercial Harvest Manual, April 2, 2008 Introduction Non-timber forest products are generally defined as products derived from biological resources. Examples of non-timber forest products may include mushrooms, conks, boughs, cones, leaves, burls, landscaping transplants, roots, flowers, fruits, and berries. Not included are minerals, rocks, soil, water, animals, and animal parts.
    [Show full text]
  • Applying Landscape Ecology to Improve Strawberry Sap Beetle
    Applying Landscape The lack of effective con- trol measures for straw- Ecology to Improve berry sap beetle is a problem at many farms. Strawberry Sap Beetle The beetles appear in strawberry fi elds as the Management berries ripen. The adult beetle feeds on the un- Rebecca Loughner and Gregory Loeb derside of berries creat- Department of Entomology ing holes, and the larvae Cornell University, NYSAES, Geneva, NY contaminate harvestable he strawberry sap beetle (SSB), fi eld sanitation, and renovating promptly fruit leading to consumer Stelidota geminata, is a significant after harvest. Keeping fi elds suffi ciently complaints and the need T insect pest in strawberry in much of clean of ripe and overripe fruit is nearly the Northeast. The small, brown adults impossible, especially for U-pick op- to prematurely close (Figure 1) are approximately 1/16 inch in erations, and the effectiveness of the two length and appear in strawberry fi elds as labeled pyrethroids in the fi eld is highly fi elds at great cost to the the berries ripen. The adult beetle feeds variable. Both Brigade [bifenthrin] and grower. Our research has on the underside of berries creating holes. Danitol [fenpropathrin] have not provided Beetles prefer to feed on over-ripe fruit but suffi cient control in New York and since shown that the beetles do will also damage marketable berries. Of they are broad spectrum insecticides they not overwinter in straw- more signifi cant concern, larvae contami- can potentially disrupt predatory mite nate harvestable fruit leading to consumer populations that provide spider mite con- berry fi elds.
    [Show full text]
  • INCIDENCE and CHARACTERIZATION of MAJOR FUNGAL PATHOGENS of STRAWBERRY DISEASES NASIR MEHMOOD 06-Arid-109
    INCIDENCE AND CHARACTERIZATION OF MAJOR FUNGAL PATHOGENS OF STRAWBERRY DISEASES NASIR MEHMOOD 06-arid-109 Department of Plant Pathology Faculty of Crop and Food Sciences Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan 2018 INCIDENCE AND CHARACTERIZATION OF MAJOR FUNGAL PATHOGENS OF STRAWBERRY DISEASES by NASIR MEHMOOD (06-arid-109) A thesis submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Pathology Department of Plant Pathology Faculty of Crop and Food Sciences Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan 2018 ivi v vi vii viiiii “IN THE NAME OF ALLAH, THE MOST BENEFICENT AND MERCIFUL” DEDICATION This Humble Effort Is Dedicated To “My Affectionate and Loving Parents” Who always Sacrifice For Me In Every Moment Of Their Life My Loving & Friendly “Brothers, Sister, Nephews and Nieces” Who Are Always A Source Of Happiness, Supports And Backup For Me to achieve my goals. “May Their Hands Ever Praying for Me These Hands may never fall down” iv CONTENTS List of Tables v List of Figures vi List of Abbreviations viii Acknowledgements x ABSTRACT 1 1. INTRODUCTION 3 2. REVIEW OF LITERATURE 10 2.1 STRAWBERRY HISTROY AND IMPORTANCE 10 2.2 MAJOR STRAWBERRY FUNGAL PATHOGENS 11 2.3 Botrytis cinerea (BOTRYTIS FRUIT ROT) 11 2.4 Colletotrichum acutatum AND C. gloeosporioides 15 (ANTHRACNOSE FRUIT ROT) 2.5 Alternaria alternata (ALTERNARIA LEAF SPOT) 19 2.6 Fusarium solani (FUSARIUM FRUIT ROT) 22 2.7 MOLECULAR TOOLS 25 3. MATERIALS AND METHODS 28 3.1 DISEASE SURVEY
    [Show full text]
  • A Pest Management Strategic Plan for the Michigan Blueberry Industry
    A PEST MANAGEMENT STRATEGIC PLAN FOR THE MICHIGAN BLUEBERRY INDUSTRY June 6-7, 2001 1 INVITED WORKSHOP PARTICIPANTS Claudia Arkestyn Consultant, Wilbur-Ellis Randy Beaudry Department of Horticulture, Michigan State University, [email protected] Tom Benner Michigan Department of Agriculture George Bird Department of Entomology, Michigan State University, [email protected] Larry Bodtke Grower, Grand Junction Wilfred Burr USDA, Office of Pest Management Policy Mike DeGrandchamp Grower, South Haven Beverlee DeJonge United Blueberry Producers Todd DeKryger Gerber Charlie Edson Small Fruit Integrator, Michigan State University Bill Fritz Grower, Bloomingdale Karlis Galens Grower, Covert Al Gaus Michigan State University Extension Jeff Groenhof Grower, Holland Eric Hanson Department of Horticulture (Weed Sci), Michigan State University, [email protected] Chris Hodgman Grower, Grand Junction Rufus Isaacs Department of Entomology, Michigan State University, [email protected] Lynnae Jess North Central Pest Management Center, Michigan State University, [email protected] Wayne Kiel Grower, Holland Dick Ledebuhr Department of Agriculture Engineering, Michigan State University, [email protected] Oscar Liburd Department of Entomology, Michigan State University Mark Longstroth Michigan State University Extension, [email protected] Satoru Miyazaki Michigan State University Extension IR-4, [email protected] Doug Murray Independent Consultant Ken Nye Michigan Farm Bureau Larry Olsen North Central Pest Management Center, Michigan State University, [email protected] Steve Paul Grower, Fruitport Earl Peterson Processor Annemiek Schilder Department of Plant Pathology, Michigan State University, [email protected] Dave Trinka MBG Marketing, [email protected] Bob Tritten Michigan State University Extension Gary VanEe Department of Agriculture Engineering, Michigan State University Barbara VanTil Region 5 Environmental Protection Agency Don Windemuller Grower, Holland John Wise Michigan State University Extension 2 TOP PRIORITIES OF MICHIGAN BLUEBERRY PRODUCTION Research: 1.
    [Show full text]
  • Weekly Berry Call – June 05, 2012
    Weekly Berry Call – June 05, 2012 Participants: Cathy Heidenreich (Cornell, Geneva, NY), Frank Caruso (UMass, East Wareham, MA), David Handley (UMaine, ), Laura McDermott (CCE, Eastern NY/Upper Hudson/Lower Adirondack), Mike Fargione (CCE Hudson Valley, Highland), Marvin Pritts (Cornell, Ithaca, NY) Dale Ila Riggs (Stephentown, NY), Pam Fisher (OMAFRA, Ontario, Canada), Kevin Schooley (NASGA, Ontario, Canada), Mary Conklin (UConn, Storrs, CT), Kathy Demchak, (Pennsylvania State University, University Park), Kerik Cox (Cornell/Geneva, NY). Growing degree day summaries: (courtesy Scaffolds Fruit Journal, Vol. 21, No. 13, June 4, 2012) Geneva readings are for western NY; Highand Lab is in the Hudson Valley of NYS. Week ending June 4, 2012: 43°F 50°F Current DD accumulations (Geneva 1/1–6/4/12): 1072 655 (Geneva 1/1–5/21/2011): 835 499 (Geneva "Normal"): 767 430 (Geneva 1/1–6/11 predicted): 1210 747 (Highland 1/1–6/4/12): 1243 745 (Highland 1/1–6/4/11): 964 573 NY NASS WEATHER, Week ending June 4, 2012 WEATHER: Rainfall for the week averaged well above normal for most of the state with one to two inches of rain occurring at most reporting sites. A strong frontal boundary produced widespread strong to severe thunderstorms on Tuesday with many locations getting over an inch of rain. Another frontal boundary produced widespread light to moderate rain from late Friday afternoon through Saturday. There were wide swings in temperatures during the week. The week began with temperatures averaging around 10 to almost 20 degrees above normal Sunday through Tuesday. Temperatures were near to a little above normal Wednesday and Thursday and normal to a little below normal Friday and Saturday.
    [Show full text]
  • Future Fungal Distributions COMPLETE
    Chaloner et al. Crop disease burdens Supplementary Material Supplementary Figures (Fig. S1 – S15) Supplementary Tables (Table S1 – S6) 1 Chaloner et al. Crop disease burdens Maize Rice 3 4 2 1 2 0 0 −1 −2 −2 −4 −3 Soybean Wheat 4 3 2 2 1 0 0 −1 −2 −2 −3 −4 Cassava Millet 1.5 2 1.0 1 0.5 0 0.0 −1 −0.5 −2 −1.0 −1.5 Peanut Pea 4 1.5 1.0 2 0.5 0 0.0 −0.5 −2 −1.0 −4 −1.5 Rapeseed Sugarbeet 1.5 6 1.0 4 0.5 2 0.0 0 −0.5 −2 −4 −1.0 −6 −1.5 Sugarcane Sunflower 10 1.5 1.0 5 0.5 0 0.0 −0.5 −5 −1.0 −10 −1.5 Fig. S1. Projected yield differences (2020 – 2070), LPJmL crop model. Values are difference between 2061 – 2080 mean and 2011 – 2030 mean (t ha-1), averaged over four climate models (GFDL-ESM2M, HADGEM2- ES, IPSL-CM5A-LR, MIROC5). 2 Chaloner et al. Crop disease burdens Maize Rice 1.5 1.0 1.0 0.5 0.5 0.0 0.0 −0.5 −0.5 −1.0 −1.0 −1.5 Soybean Wheat 0.6 1.0 0.4 0.2 0.5 0.0 0.0 −0.2 −0.5 −0.4 −0.6 −1.0 Fig. S2. Projected yield differences (2020 – 2070), GEPIC crop model. Values are difference between 2061 – 2080 mean and 2011 – 2030 mean (t ha-1), averaged over four climate models (GFDL-ESM2M, HADGEM2- ES, IPSL-CM5A-LR, MIROC5).
    [Show full text]
  • Epidemiology and Strain Identification of Blueberry Scorch Virus on Highbush Blueberry in British Columbia
    EPIDEMIOLOGY AND STRAIN IDENTIFICATION OF BLUEBERRY SCORCH VIRUS ON HIGHBUSH BLUEBERRY IN BRITISH COLUMBIA Lisa A. Wegener B.Sc., University of New Brunswick, 1999 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Biological Science O Lisa A. Wegener 2006 SIMON FRASER UNIVERSITY Summer 2006 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Lisa Andreen Wegener Degree: Master of Science Title of Thesis: Epidemiology and strain identification of Blueberry scorch virus on highbush blueberry in British Columbia Examining Committee: Chair: Dr. D.B. Lank, University Research Associate and Adjunct Professor Dr. Z. Punja, Professor, Senior Supervisor Department of Biological Sciences, S.F.U. Dr. R. Martin, Research Plant Pathologist USDA-ARS Dr. J. Rahe, Professor Emeritus Department of Biological Sciences, S.F.U. Ms. L. MacDonald, Manager Plant Health Unit, B.C. Ministry of Agriculture and Lands Dr. H. Sanfa~on,Research Scientist Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada Public Examiner 11 July 2006 Date Approved SIMON FRASER &&&QJJ UNlVERSlTYl ibra ry DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.
    [Show full text]