Electroweak Radiative B-Decays As a Test of the Standard Model and Beyond Andrey Tayduganov

Total Page:16

File Type:pdf, Size:1020Kb

Electroweak Radiative B-Decays As a Test of the Standard Model and Beyond Andrey Tayduganov Electroweak radiative B-decays as a test of the Standard Model and beyond Andrey Tayduganov To cite this version: Andrey Tayduganov. Electroweak radiative B-decays as a test of the Standard Model and beyond. Other [cond-mat.other]. Université Paris Sud - Paris XI, 2011. English. NNT : 2011PA112195. tel-00648217 HAL Id: tel-00648217 https://tel.archives-ouvertes.fr/tel-00648217 Submitted on 5 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LAL 11-181 LPT 11-69 THESE` DE DOCTORAT Pr´esent´eepour obtenir le grade de Docteur `esSciences de l’Universit´eParis-Sud 11 Sp´ecialit´e:PHYSIQUE THEORIQUE´ par Andrey Tayduganov D´esint´egrationsradiatives faibles de m´esons B comme un test du Mod`eleStandard et au-del`a Electroweak radiative B-decays as a test of the Standard Model and beyond Soutenue le 5 octobre 2011 devant le jury compos´ede: Dr. J. Charles Examinateur Prof. A. Deandrea Rapporteur Prof. U. Ellwanger Pr´esident du jury Prof. S. Fajfer Examinateur Prof. T. Gershon Rapporteur Dr. E. Kou Directeur de th`ese Dr. A. Le Yaouanc Directeur de th`ese Dr. M.-H. Schune Examinateur Contents R´esum´e 7 Abstract 9 Introduction 11 1 Flavour physics in the Standard Model and beyond 13 1.1 The Standard Model .............................. 13 1.2 Motivation for New Physics beyond the Standard Model . 17 1.3 b sγ in the SM ................................ 19 → 1.3.1 Photon polarization of the quark level b sγ process in the SM . 20 → 1.3.2 Possible contamination of “wrong” chirality contribution due to the term ................................. 25 O2 1.4 Photon polarization with new physics ..................... 27 1.4.1 Extra source of flavour violation in MSSM . 28 1.4.2 Mass Insertion Approximation ..................... 29 2 The B K γ (Kππ)γ decay and polarization measurement 31 → 1 → 2.1 How to measure the polarization: basic idea . 31 2.2 Photon polarization determination with B K γ decay . 32 → 1 2.3 Master formula for B K γ (Kππ)γ decays . 35 → 1 → 2.3.1 Master formula ............................. 35 2.3.2 Derivation of the master formula ................... 37 2.3.3 Hadronic parameters .......................... 41 2.4 Determination of λγ in the DDLR method . 43 2.4.1 The previous method of Gronau et al. 43 2.4.2 Application of the DDLR method for the λγ determination . 44 3 Strong interaction decays of the K1-mesons 49 3.1 Overview of the previous K1-decay studies . 49 3.1.1 Experimental overview ......................... 49 3.1.2 Theoretical overview .......................... 50 3.2 Theoretical model ................................ 52 3.2.1 The mixing of the kaon resonances . 53 4 CONTENTS 3 3.2.2 P0 Quark-Pair-Creation Model .................... 54 3.2.3 The issue of the damping factor .................... 58 3.3 How to compare the theoretical model computation with the experimental data? ....................................... 59 3.3.1 The K-matrix formalism ........................ 60 3.3.2 Observed problems in the K-matrix analysis . 63 3.4 Numerical results ................................ 68 3.4.1 Fit of parameters γ and θK1 ...................... 69 3.4.2 Model predictions for partial widths . 71 3.4.3 Prediction of signs of decay amplitudes and the “off-set” phase issue 73 3.4.4 The issue of the κπ channel ...................... 78 4 Sensitivity studies of the polarization measurement with B K1(1270)γ in the DDLR method → 81 4.1 Statistical error on the polarization parameter . 81 4.2 Theoretical uncertainties of the hadronic model and error on the polariza- tion parameter ................................. 85 4.2.1 Theoretical uncertainty due to the K1 mixing angle . 86 4.2.2 Theoretical uncertainty due to the “off-set” phase δρ . 87 4.3 Discussion on the importance of the D-waves and the cut-off . 90 5 Future prospects of the photon polarization measurement 93 5.1 Comparison to the other methods ....................... 93 5.1.1 Up-down asymmetry of GGPR .................... 93 + 5.1.2 The angular analysis of B K∗ℓ ℓ− . 93 → 5.1.3 Methods invoking CP -asymmetries . 97 5.2 New physics constraints combining various methods of the polarization determination .................................. 98 6 Conclusions 103 6.1 The general method of Gronau et al.: a critical view . 103 6.2 Improvement of statistical errors by the DDLR method . 105 6.3 The treatment of the full system of the K1-decays . 105 6.3.1 Critical view of the experimental analyses of the K1-system of strong decays ..................................105 6.3.2 A semi-theoretical treatment of the K1-system of strong decays . 106 6.4 Theoretical errors on the polarisation measurement . 106 6.5 The need for improvements of our experimental knowledge and some future prospects ....................................106 A Renormalization and running of the Wilson coefficients 109 A.1 Renormalization and operator mixing . 109 A.2 b sγ at Leading Logarithmic Approximation . 110 → CONTENTS 5 B Watson’s theorem 115 C K-matrix formalism 117 C.1 General formalism for the overlapping resonances . 117 C.2 Relation of the couplings in the K-matrix method and the quark model . 120 C.3 Watson’s theorem: another view . 123 C.4 Re-interpreting the ACCMOR result . 124 D QPCM 129 D.1 Spacial integrals in QPCM . 129 D.2 Fixing the relative signs for tree-body decay . 130 D.2.1 Clebsch-Gordan coefficients . 130 D.2.2 Determination of the relative sign of gK∗Kπ and gρππ . 131 D.3 Partial Wave Amplitudes ............................132 D.4 Phase space convention .............................133 E Some notes on statistics 135 E.1 Maximum likelihood method . 135 E.2 General DDLR method .............................136 Bibliography 141 Acknowledgements 147 6 CONTENTS R´esum´e La d´esint´egration radiative du m´eson B en m´eson´etrangeaxiale, B K (1270)γ, a ´et´e → 1 observ´eer´ecemment avec un rapport d’embranchement assez grand que B K∗γ. Ce → processus est particuli`erement int´eressant car la d´esint´egrationdu K1 dans un ´etatfinal `atrois corps nous permet de d´eterminerla polarisation du photon, qui est surtout gauche (droit) pour B(B) dans le Mod`eleStandard tandis que des mod`elesdivers de nouvelle physique pr´edisent une composante droite (gauche) suppl´ementaire. Dans cette th`ese,une nouvelle m´ethode est propos´ee pour d´eterminer la polarisation, en exploitant la distribu- tion totale du Dalitz plot, qui semble r´eduireconsid´erablement les erreurs statistiques de la mesure du param`etrede la polarisation λγ. Cependant, cette mesure de la polarisation n´ecessiteune connaissance d´etaill´eede la d´esint´egration forte K1 Kππ : c’est-`a-direl’ensemble complexe des diff´erentes ampli- tudes d’ondes partielles→ en plusieurs canaux en quasi-deux-corps ainsi que leurs phases relatives. Un certain nombre d’exp´eriencesont ´et´efaites pour extraire ces informations bien qu’il reste divers probl`emes dans ces ´etudes.Dans cette th`ese,nous ´etudionsen d´etail 3 ces probl`emesen nous aidant d’un mod`eleth´eorique.Nous utilisons ainsi le mod`ele P0 de cr´eationd’une paire de quarks pour am´eliorernotre compr´ehensiondes d´esint´egrations fortes du K1. A partir de ce mod`elenous estimons les incertitudes th´eoriques: en particulier, celle venant de l’incertitude de l’angle de m´elangedu K1, et celle due `al’effet d’une phase “off-set” dans les d´esint´egrationsfortes en ondes-S. Selon nos estimations, les erreurs th syst´ematiquesse trouvent ˆetrede l’ordre de σλγ . 20%. D’autre part nous discutons de la sensibilit´edes exp´eriencesfutures, notamment les usines SuperB et LHCb, pour λγ. En estimant na¨ıvement les taux annuels d’´evenements, nous trouvons que l’erreur statistique stat de la nouvelle m´ethode est σλγ . 10%, ce qui est deux fois plus petit qu’en utilisant seulement les distributions angulaires simples. Nous discutons ´egalement de la comparaison avec les autres m´ethodes de mesure de + la polarisation en utilisant les processus tels que B K∗e e−, Bd K∗γ et Bs φγ, → eff →eff → pour la d´eterminationdu rapport des coefficients de Wilson C7′γ /C7γ . Nous montrons eff eff un exemple de contraintes possibles sur C7′γ /C7γ dans plusieurs sc´enariosde mod`eles supersym´etriques. Mots cl´es: Mod`eleStandard, au-del`adu Mod`eleStandard, interaction faible, physique du B, d´esint´egrationradiative de meson-B, polarisation de photon, propri´et´esde meson- K1, mod`eledes quarks, matrice-K, asym´etrie CP , supersym´etrie. 8 R´esum´e Abstract Recently the radiative B-decay to strange axial-vector mesons, B K1(1270)γ, was observed with a rather large branching ratio. This process is particularly→ interesting as the subsequent K1-decay into its three-body final state allows us to determine the polarization of the photon, which is mostly left(right)-handed for B(B) in the Standard Model while various new physics models predict additional right(left)-handed components. In this thesis, a new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors on the polarization parameter λγ measurement. This polarization measurement requires, however a detailed knowledge of the K1 Kππ strong interaction decays, namely, the complex pattern of various partial wave am-→ plitudes into the several possible quasi-two-body channels as well as their relative phases.
Recommended publications
  • The Pev-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability
    The PeV-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability Waqas Ahmed ? 1, Adeel Mansha ? 2, Tianjun Li ? ~ 3, Shabbar Raza ∗ 4, Joydeep Roy ? 5, Fang-Zhou Xu ? 6, ? CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China ~School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China ∗ Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan Institute of Modern Physics, Tsinghua University, Beijing 100084, China Abstract The null results of the LHC searches have put strong bounds on new physics scenario such as supersymmetry (SUSY). With the latest values of top quark mass and strong coupling, we study the upper bounds on the sfermion masses in Split-SUSY from the observed Higgs boson mass and electroweak (EW) vacuum stability. To be consistent with the observed Higgs mass, we find that the largest value of supersymmetry breaking 3 1:5 scales MS for tan β = 2 and tan β = 4 are O(10 TeV) and O(10 TeV) respectively, thus putting an upper bound on the sfermion masses around 103 TeV. In addition, the Higgs quartic coupling becomes negative at much lower scale than the Standard Model (SM), and we extract the upper bound of O(104 TeV) on the sfermion masses from EW vacuum stability. Therefore, we obtain the PeV-Scale Split-SUSY. The key point is the extra contributions to the Renormalization Group Equation (RGE) running from arXiv:1901.05278v1 [hep-ph] 16 Jan 2019 the couplings among Higgs boson, Higgsinos, and gauginos.
    [Show full text]
  • Measuring the Spin of SUSY Particles SUSY: • Every SM Fermion (Spin 1/2
    Measuring the spin of SUSY particles SUSY: • every SM fermion (spin 1/2) ↔ SUSY scalar (spin 0) • every SM boson (spin 1 or 0) ↔ SUSY fermion (spin 1/2) Want to check experimentally that (e.g.) eL,R are really spin 0 and Ce1,2 are really spin 1/2. 2 preserve the 5th dimensional momentum (KK number). The corresponding coupling constants among KK modes Model with a 500 GeV-size extra are simply equal to the SM couplings (up to normaliza- tion factors such as √2). The Feynman rules for the KK dimension could give a rather SUSY- modes can easily be derived (e.g., see Ref. [8, 9]). like spectrum! In contrast, the coefficients of the boundary terms are not fixed by Standard Model couplings and correspond to new free parameters. In fact, they are renormalized by the bulk interactions and hence are scale dependent [10, 11]. One might worry that this implies that all pre- dictive power is lost. However, since the wave functions of Standard Model fields and KK modes are spread out over the extra dimension and the new couplings only exist on the boundaries, their effects are volume sup- pressed. We can get an estimate for the size of these volume suppressed corrections with naive dimensional analysis by assuming strong coupling at the cut-off. The FIG. 1: One-loop corrected mass spectrum of the first KK −1 result is that the mass shifts to KK modes from bound- level in MUEDs for R = 500 GeV, ΛR = 20 and mh = 120 ary terms are numerically equal to corrections from loops GeV.
    [Show full text]
  • The Minimal Supersymmetric Standard Model: Group Summary Report
    PM/98–45 December 1998 The Minimal Supersymmetric Standard Model: Group Summary Report Conveners: A. Djouadi1, S. Rosier-Lees2 Working Group: M. Bezouh1, M.-A. Bizouard3,C.Boehm1, F. Borzumati1;4,C.Briot2, J. Carr5,M.B.Causse6, F. Charles7,X.Chereau2,P.Colas8, L. Duflot3, A. Dupperin9, A. Ealet5, H. El-Mamouni9, N. Ghodbane9, F. Gieres9, B. Gonzalez-Pineiro10, S. Gourmelen9, G. Grenier9, Ph. Gris8, J.-F. Grivaz3,C.Hebrard6,B.Ille9, J.-L. Kneur1, N. Kostantinidis5, J. Layssac1,P.Lebrun9,R.Ledu11, M.-C. Lemaire8, Ch. LeMouel1, L. Lugnier9 Y. Mambrini1, J.P. Martin9,G.Montarou6,G.Moultaka1, S. Muanza9,E.Nuss1, E. Perez8,F.M.Renard1, D. Reynaud1,L.Serin3, C. Thevenet9, A. Trabelsi8,F.Zach9,and D. Zerwas3. 1 LPMT, Universit´e Montpellier II, F{34095 Montpellier Cedex 5. 2 LAPP, BP 110, F{74941 Annecy le Vieux Cedex. 3 LAL, Universit´e de Paris{Sud, Bat{200, F{91405 Orsay Cedex 4 CERN, Theory Division, CH{1211, Geneva, Switzerland. 5 CPPM, Universit´e de Marseille-Luminy, Case 907, F-13288 Marseille Cedex 9. 6 LPC Clermont, Universit´e Blaise Pascal, F{63177 Aubiere Cedex. 7 GRPHE, Universit´e de Haute Alsace, Mulhouse 8 SPP, CEA{Saclay, F{91191 Cedex 9 IPNL, Universit´e Claude Bernard de Lyon, F{69622 Villeurbanne Cedex. 10 LPNHE, Universit´es Paris VI et VII, Paris Cedex. 11 CPT, Universit´e de Marseille-Luminy, Case 907, F-13288 Marseille Cedex 9. Report of the MSSM working group for the Workshop \GDR{Supersym´etrie". 1 CONTENTS 1. Synopsis 4 2. The MSSM Spectrum 9 2.1 The MSSM: Definitions and Properties 2.1.1 The uMSSM: unconstrained MSSM 2.1.2 The pMSSM: “phenomenological” MSSM 2.1.3 mSUGRA: the constrained MSSM 2.1.4 The MSSMi: the intermediate MSSMs 2.2 Electroweak Symmetry Breaking 2.2.1 General features 2.2.2 EWSB and model–independent tanβ bounds 2.3 Renormalization Group Evolution 2.3.1 The one–loop RGEs 2.3.2 Exact solutions for the Yukawa coupling RGEs 3.
    [Show full text]
  • The Magnetic Dipole Moment of the Muon in Different SUSY Models
    The magnetic dipole moment of the muon in different SUSY models Bachelor-Arbeit zur Erlangung des Hochschulgrades Bachelor of Science im Bachelor-Studiengang Physik vorgelegt von Jobst Ziebell geboren am 05.11.1992 in Herrljunga Institut für Kern- und Teilchenphysik Fachrichtung Physik Fakultät Mathematik und Naturwissenschaften Technische Universität Dresden 2015 Eingereicht am 1. Juli 2015 1. Gutachter: Prof. Dr. Dominik Stöckinger 2. Gutachter: Prof. Dr. Kai Zuber Abstract The magnetic dipole moment of the muon is one of the most precisely measured quantities in modern physics. Theory however predicts values that disagree with measurement by several standard deviations [1, Abstract]. Because this may hint at physics beyond the standard model, it is a great opportunity to ex- amine the magnetic dipole moment in different supersymmetric models. It is then possible to calculate dependences of the dipole moment on various model parameters as well as to find constraints for their particular values. The purpose of this paper is to describe how the magnetic dipole moment is obtained in su- persymmetric extensions of the standard model and to document the implementation of its calculation in FlexibleSUSY, a spectrum generator for supersymmetric models [2, Abstract]. Contents 1 Introduction 1 2 The gyromagnetic ratio 2 2.1 In classical mechanics . .2 2.2 In quantum mechanics . .3 2.3 In quantum field theory . .4 3 The implementation in FlexibleSUSY 7 3.1 The C++ part . .7 3.2 The Mathematica part . 11 3.3 The FlexibleSUSY part . 12 4 Results 13 Appendices 17 A The Loop functions . 17 B The VertexFunction template . 17 C The DiagramEvaluator<...>::value() functions .
    [Show full text]
  • Supersymmetric Particle Searches
    Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) Supersymmetric Particle Searches A REVIEW GOES HERE – Check our WWW List of Reviews A REVIEW GOES HERE – Check our WWW List of Reviews SUPERSYMMETRIC MODEL ASSUMPTIONS The exclusion of particle masses within a mass range (m1, m2) will be denoted with the notation “none m m ” in the VALUE column of the 1− 2 following Listings. The latest unpublished results are described in the “Supersymmetry: Experiment” review. A REVIEW GOES HERE – Check our WWW List of Reviews CONTENTS: χ0 (Lightest Neutralino) Mass Limit 1 e Accelerator limits for stable χ0 − 1 Bounds on χ0 from dark mattere searches − 1 χ0-p elastice cross section − 1 eSpin-dependent interactions Spin-independent interactions Other bounds on χ0 from astrophysics and cosmology − 1 Unstable χ0 (Lighteste Neutralino) Mass Limit − 1 χ0, χ0, χ0 (Neutralinos)e Mass Limits 2 3 4 χe ,eχ e(Charginos) Mass Limits 1± 2± Long-livede e χ± (Chargino) Mass Limits ν (Sneutrino)e Mass Limit Chargede Sleptons e (Selectron) Mass Limit − µ (Smuon) Mass Limit − e τ (Stau) Mass Limit − e Degenerate Charged Sleptons − e ℓ (Slepton) Mass Limit − q (Squark)e Mass Limit Long-livede q (Squark) Mass Limit b (Sbottom)e Mass Limit te (Stop) Mass Limit eHeavy g (Gluino) Mass Limit Long-lived/lighte g (Gluino) Mass Limit Light G (Gravitino)e Mass Limits from Collider Experiments Supersymmetrye Miscellaneous Results HTTP://PDG.LBL.GOV Page1 Created: 8/21/2014 12:57 Citation: K.A. Olive et al.
    [Show full text]
  • R-Parity Violation and Light Neutralinos at Ship and the LHC
    BONN-TH-2015-12 R-Parity Violation and Light Neutralinos at SHiP and the LHC Jordy de Vries,1, ∗ Herbi K. Dreiner,2, y and Daniel Schmeier2, z 1Institute for Advanced Simulation, Institut f¨urKernphysik, J¨ulichCenter for Hadron Physics, Forschungszentrum J¨ulich, D-52425 J¨ulich, Germany 2Physikalisches Institut der Universit¨atBonn, Bethe Center for Theoretical Physics, Nußallee 12, 53115 Bonn, Germany We study the sensitivity of the proposed SHiP experiment to the LQD operator in R-Parity vi- olating supersymmetric theories. We focus on single neutralino production via rare meson decays and the observation of downstream neutralino decays into charged mesons inside the SHiP decay chamber. We provide a generic list of effective operators and decay width formulae for any λ0 cou- pling and show the resulting expected SHiP sensitivity for a widespread list of benchmark scenarios via numerical simulations. We compare this sensitivity to expected limits from testing the same decay topology at the LHC with ATLAS. I. INTRODUCTION method to search for a light neutralino, is via the pro- duction of mesons. The rate for the latter is so high, Supersymmetry [1{3] is the unique extension of the ex- that the subsequent rare decay of the meson to the light ternal symmetries of the Standard Model of elementary neutralino via (an) R-parity violating operator(s) can be particle physics (SM) with fermionic generators [4]. Su- searched for [26{28]. This is analogous to the production persymmetry is necessarily broken, in order to comply of neutrinos via π or K-mesons. with the bounds from experimental searches.
    [Show full text]
  • Explaining Muon G − 2 Data in the Μνssm Arxiv:1912.04163V3 [Hep-Ph]
    Explaining muon g 2 data in the µνSSM − Essodjolo Kpatcha∗a,b, Iñaki Lara†c, Daniel E. López-Fogliani‡d,e, Carlos Muñoz§a,b, and Natsumi Nagata¶f aDepartamento de Física Teórica, Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, 28049 Madrid, Spain bInstituto de Física Teórica (IFT) UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain cFaculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland dInstituto de Física de Buenos Aires UBA & CONICET, Departamento de Física, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina e Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina fDepartment of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract We analyze the anomalous magnetic moment of the muon g 2 in the µνSSM. − This R-parity violating model solves the µ problem reproducing simultaneously neu- trino data, only with the addition of right-handed neutrinos. In the framework of the µνSSM, light left muon-sneutrino and wino masses can be naturally obtained driven by neutrino physics. This produces an increase of the dominant chargino-sneutrino loop contribution to muon g 2, solving the gap between the theoretical computation − and the experimental data. To analyze the parameter space, we sample the µνSSM using a likelihood data-driven method, paying special attention to reproduce the cur- rent experimental data on neutrino and Higgs physics, as well as flavor observables such as B and µ decays. We then apply the constraints from LHC searches for events with multi-leptons + MET on the viable regions found. They can probe these regions through chargino-chargino, chargino-neutralino and neutralino-neutralino pair pro- duction.
    [Show full text]
  • Precise MSSM Prediction for (G-2) of the Muon
    CoEPP–MN–15–10 DESY 15-193 FTUV–15–6502 IFIC–15–76 GM2Calc: Precise MSSM prediction for (g − 2) of the muon Peter Athrona, Markus Bachb, Helvecio G. Fargnolic, Christoph Gnendigerb, Robert Greifenhagenb, Jae-hyeon Parkd, Sebastian Paßehre, Dominik Stockinger¨ b, Hyejung Stockinger-Kim¨ b, Alexander Voigte aARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Monash University, Victoria 3800 bInstitut f¨ur Kern- und Teilchenphysik, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany cDepartamento de Ciˆencias Exatas, Universidade Federal de Lavras, 37200-000, Lavras, Brazil dDepartament de F´ısica Te`orica and IFIC, Universitat de Val`encia-CSIC, 46100, Burjassot, Spain eDeutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany Abstract We present GM2Calc, a public C++ program for the calculation of MSSM contributions to the anomalous magnetic moment of the muon, (g 2) . The code computes (g 2) precisely, by taking into account − µ − µ the latest two-loop corrections and by performing the calculation in a physical on-shell renormalization scheme. In particular the program includes a tan β resummation so that it is valid for arbitrarily high values of tan β, as well as fermion/sfermion-loop corrections which lead to non-decoupling effects from heavy squarks. GM2Calc can be run with a standard SLHA input file, internally converting the input into on- shell parameters. Alternatively, input parameters may be specified directly in this on-shell scheme. In both cases the input file allows one to switch on/off individual contributions to study their relative impact. This paper also provides typical usage examples not only in conjunction with spectrum generators and plotting programs but also as C++ subroutines linked to other programs.
    [Show full text]
  • Experimental Constraint on Quark Electric Dipole Moments
    Experimental constraint on quark electric dipole moments Tianbo Liu,1, 2, ∗ Zhiwen Zhao,1 and Haiyan Gao1, 2 1Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA 2Duke Kunshan University, Kunshan, Jiangsu 215316, China The electric dipole moments (EDMs) of nucleons are sensitive probes of additional CP violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to CP violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1:27×10−24 e·cm for the up quark and 1:17×10−24 e·cm for the down quark at the scale of 4 GeV2. We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about three orders of magnitude leading to a much more sensitive probe of new physics models. I. INTRODUCTION one can derive it from nucleon EDM measurements. A bridge that relates the quark EDM and the nucleon EDM Symmetries play a central role in physics. Discrete is the tensor charge, which is a fundamental QCD quan- symmetries, charge conjugate (C), parity (P), and time- tity defined by the matrix element of the tensor cur- reversal (T ), were believed to be conserved until the dis- rent.
    [Show full text]
  • Bino Variations: Effective Field Theory Methods for Dark Matter Direct Detection
    PHYSICAL REVIEW D 93, 095008 (2016) Bino variations: Effective field theory methods for dark matter direct detection Asher Berlin,1 Denis S. Robertson,2,3,4 Mikhail P. Solon,2,3 and Kathryn M. Zurek2,3 1Department of Physics, Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA 2Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94709, USA 3Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94709, USA 4Instituto de Física, Universidade de São, Paulo R. do Matão, 187, São Paulo, São 05508-900, Brazil (Received 7 December 2015; published 10 May 2016) We apply effective field theory methods to compute bino-nucleon scattering, in the case where tree-level interactions are suppressed and the leading contribution is at loop order via heavy flavor squarks or sleptons. We find that leading log corrections to fixed-order calculations can increase the bino mass reach of direct detection experiments by a factor of 2 in some models. These effects are particularly large for the bino-sbottom coannihilation region, where bino dark matter as heavy as 5–10 TeV may be detected by near future experiments. For the case of stop- and selectron-loop mediated scattering, an experiment reaching the neutrino background will probe thermal binos as heavy as 500 and 300 GeV, respectively. We present three key examples that illustrate in detail the framework for determining weak scale coefficients, and for mapping onto a low-energy theory at hadronic scales, through a sequence of effective theories and renormalization group evolution. For the case of a squark degenerate with the bino, we extend the framework to include a squark degree of freedom at low energies using heavy particle effective theory, thus accounting for large logarithms through a “heavy-light current.” Benchmark predictions for scattering cross sections are evaluated, including complete leading order matching onto quark and gluon operators, and a systematic treatment of perturbative and hadronic uncertainties.
    [Show full text]
  • Supersymmetry: Lecture 2: the Supersymmetrized Standard Model
    Supersymmetry: Lecture 2: The Supersymmetrized Standard Model Yael Shadmi Technion June 2014 Yael Shadmi (Technion) ESHEP June 2014 1 / 91 Part I: The Supersymmetrized SM: motivation and structure before 2012, all fundamental particles we knew had spin 1 or spin 1/2 but we now have the Higgs: it's spin 0 of course spin-0 is the simplest possibility spin-1 is intuitive too (we all understand vectors) the world and (QM courses) would have been very different if the particle we know best, the electron, were spin-0 supersymmetry: boson $ fermion so from a purely theoretical standpoint, supersymmetry would provide an explanation for why we have particles of different spins Yael Shadmi (Technion) ESHEP June 2014 2 / 91 The Higgs and fine tuning: because the Higgs is spin-0, its mass is quadratically divergent 2 2 δm / ΛUV (1) unlike fermions (protected by chiral symmetry) gauge bosons (protected by gauge symmetry) Yael Shadmi (Technion) ESHEP June 2014 3 / 91 Higgs Yukawa coupling: quark (top) contribution also, gauge boson, Higgs loops Yael Shadmi (Technion) ESHEP June 2014 4 / 91 practically: we don't care (can calculate anything in QFT, just put in a counter term) theoretically: believe ΛUV is a concrete physical scale, eg: mass of new fields, scale of new strong interactions then 2 2 2 m (µ) = m (ΛUV ) + # ΛUV (2) 2 m (ΛUV ) determined by the full UV theory # determined by SM we know LHS: m2 ∼ 1002 GeV2 18 if ΛUV = 10 GeV 2 36 2 we need m (ΛUV ) ∼ 10 GeV and the 2 terms on RHS tuned to 32 orders of magnitude.
    [Show full text]
  • Partially Composite Supersymmetry
    PHYSICAL REVIEW D 99, 035046 (2019) Partially composite supersymmetry † ‡ Yusuf Buyukdag,* Tony Gherghetta, and Andrew S. Miller School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA (Received 9 December 2018; published 28 February 2019) We consider a supersymmetric model that uses partial compositeness to explain the fermion mass hierarchy and predict the sfermion mass spectrum. The Higgs and third-generation matter superfields are elementary, while the first two matter generations are composite. Linear mixing between elementary superfields and supersymmetric operators with large anomalous dimensions is responsible for simulta- neously generating the fermion and sfermion mass hierarchies. After supersymmetry is broken by the strong dynamics, partial compositeness causes the first- and second-generation sfermions to be split from the much lighter gauginos and third-generation sfermions. This occurs even though the tree-level soft masses of the elementary fields are subject to large radiative corrections from the composite sector, which we calculate in the gravitational dual theory using the AdS=CFT correspondence. The sfermion mass scale is constrained by the observed 125 GeV Higgs boson, leading to stop masses and gauginos around 10–100 TeV and the first two generation sfermion masses around 100–1000 TeV. This gives rise to a splitlike supersymmetric model that explains the fermion mass hierarchy while simultaneously predicting an inverted sfermion mass spectrum consistent with LHC and flavor constraints. Finally, the lightest supersymmetric particle is a gravitino in the keV to TeV range, which can play the role of dark matter. DOI: 10.1103/PhysRevD.99.035046 I. INTRODUCTION A knowledge of the sfermion mass spectrum has The Higgs boson discovery at the LHC [1–3] has led to important implications for collider and flavor experiments new constraints on the parameter space of supersymmetric seeking to discover supersymmetry.
    [Show full text]