Supersymmetry: Lecture 2: the Supersymmetrized Standard Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthogonal Symmetric Affine Kac-Moody Algebras
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory. -
Report of the Supersymmetry Theory Subgroup
Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale. -
The Pev-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability
The PeV-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability Waqas Ahmed ? 1, Adeel Mansha ? 2, Tianjun Li ? ~ 3, Shabbar Raza ∗ 4, Joydeep Roy ? 5, Fang-Zhou Xu ? 6, ? CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China ~School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China ∗ Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan Institute of Modern Physics, Tsinghua University, Beijing 100084, China Abstract The null results of the LHC searches have put strong bounds on new physics scenario such as supersymmetry (SUSY). With the latest values of top quark mass and strong coupling, we study the upper bounds on the sfermion masses in Split-SUSY from the observed Higgs boson mass and electroweak (EW) vacuum stability. To be consistent with the observed Higgs mass, we find that the largest value of supersymmetry breaking 3 1:5 scales MS for tan β = 2 and tan β = 4 are O(10 TeV) and O(10 TeV) respectively, thus putting an upper bound on the sfermion masses around 103 TeV. In addition, the Higgs quartic coupling becomes negative at much lower scale than the Standard Model (SM), and we extract the upper bound of O(104 TeV) on the sfermion masses from EW vacuum stability. Therefore, we obtain the PeV-Scale Split-SUSY. The key point is the extra contributions to the Renormalization Group Equation (RGE) running from arXiv:1901.05278v1 [hep-ph] 16 Jan 2019 the couplings among Higgs boson, Higgsinos, and gauginos. -
The Standard Model of Particle Physics and Beyond
Clases de Master FisyMat, Desarrollos Actuales The Standard Model of particle physics and Beyond Date and time: 02/03 to 07/04/2021 15:30–17:00 Video/Sala CAJAL Organizer and Lecturer: Abdelhak Djouadi ([email protected]) You can find the pdfs of the lectures at: https://www.ugr.es/˜adjouadi/ 6. Supersymmetric theories 6.1 Basics of Supersymmetry 6.2 The minimal Supesymmetric Standard Model 6.3 The constrained MSSM’s 6.4 The superparticle spectrum 6.5 The Higgs sector of the MSSM 6.6 Beyond the MSSM 1 6.1 Basics of Supersymmetry Here, we give only basic facts needed later in the phenomenological discussion. For details on theoretical issues, see basic textbooks like Drees, Godbole, Roy. SUperSYmmetry: is a symmetry that relates scalars/vector bosons and fermions. The SUSY generators transform fermions into bosons and vice–versa, namely: FermionQ > Boson > , Boson > Fermion > Q| | Q| | must be an anti–commuting (and thus rather complicated) object. Q † is also a distinct symmetry generator: Q † Fermion > Boson > , † Boson > Fermion > Q | | Q | | Highly restricted [e.g., no go theorem] theories and in 4-dimension with chiral fermions: 1 , † carry spin– with left- and right- helicities and they should obey Q Q 2 .... The SUSY algebra: which schematically is given by µ , † = P , , =0 , †, † =0, {Qµ Q } µ {Q Q} a {Q Qa } [P , ]=0, [P , †]=0, [T , ]=0, [T , †]=0 Q Q Q Q P µ: is the generator of space–time transformations. T a are the generators of internal (gauge) symmetries. SUSY: unique extension of the Poincar´egroup of space–time symmetry to include ⇒ a four–dimensional Quantum Field Theory.. -
Gaugino-Induced Quark and Lepton Masses in a Truly Minimal Left-Right
UCRHEP-T354 ULB-TH/03-16 NSF-KITP-03-32 May 2003 Gaugino-induced quark and lepton masses in a truly minimal left-right model J.-M. Fr`ere1,3 and Ernest Ma2,3 1 Service de Physique Th´eorique, Universit´eLibre de Bruxelles, B-1050 Brussels, Belgium 2 Physics Department, University of California, Riverside, California 92521, USA 3 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA arXiv:hep-ph/0305155v2 20 Aug 2003 Abstract It has recently been proposed that all fundamental fermion masses (whether Dirac or Majorana) come from effective dimension-five operators in the context of a truly minimal left-right model. We show how a particularly economical scheme emerges in a supersymmetric framework, where chiral symmetry breaking originates in the gaugino sector. In the Standard Model of particle interactions, the spontaneous breaking of the SU(2)L × U(1)Y gauge symmetry to U(1)em is achieved through the vacuum expectation value of the scalar doublet Φ = (φ+,φ0). At the same time, since left-handed quarks and leptons are doublets under SU(2)L U(1)Y whereas right-handed quarks and leptons are singlets, chiral × symmetry is also broken by φ0 , thus allowing quarks and leptons to acquire the usual Dirac h i masses. The only exception is the neutrino which gets a small Majorana mass through the unique dimension-five operator [1, 2] fij 0 + 0 + Λ = (νiφ eiφ )(νjφ ejφ )+ H.c. (1) L 2Λ − − Suppose we now extend the standard-model gauge symmetry to SU(3)C SU(2)L × × SU(2)R U(1)B L [3], then the spontaneous breaking of SU(2)R U(1)B L to U(1)Y is × − × − simply achieved by the scalar doublet + 0 ΦR =(φ ,φ ) (1, 1, 2, 1), (2) R R ∼ where the notation refers to the dimension of the non-Abelian representation or the value of the Abelian charge B L or Y in the convention − 1 Y Q = I3L + I3R + (B L)= I3L + , (3) 2 − 2 while the corresponding field + 0 ΦL =(φ ,φ ) (1, 2, 1, 1), (4) L L ∼ becomes the same as the usual scalar doublet of the Standard Model, and breaks SU(2)L × U(1)Y in turn to U(1)em. -
Table of Contents (Print)
PERIODICALS PHYSICAL REVIEW Dä For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 90, NUMBER 5 CONTENTS D1 SEPTEMBER 2014 RAPID COMMUNICATIONS Measurement of the electric charge of the top quark in tt¯ events (8 pages) ........................................................ 051101(R) V. M. Abazov et al. (D0 Collaboration) BRST-symmetry breaking and Bose-ghost propagator in lattice minimal Landau gauge (5 pages) ............................. 051501(R) Attilio Cucchieri, David Dudal, Tereza Mendes, and Nele Vandersickel ARTICLES pffiffiffi Search for supersymmetry in events with four or more leptons in s ¼ 8 TeV pp collisions with the ATLAS detector (33 pages) ................................................................................................................................. 052001 G. Aad et al. (ATLAS Collaboration) pffiffiffi Low-mass vector-meson production at forward rapidity in p þ p collisions at s ¼ 200 GeV (12 pages) .................. 052002 A. Adare et al. (PHENIX Collaboration) Measurement of Collins asymmetries in inclusive production of charged pion pairs in eþe− annihilation at BABAR (26 pages) 052003 J. P. Lees et al. (BABAR Collaboration) Measurement of the Higgs boson mass from the H → γγ and H → ZZÃ → 4l channels in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector (35 pages) ................................................................... 052004 G. Aad et al. (ATLAS Collaboration) pffiffiffi Search for high-mass dilepton resonances in pp collisions at s ¼ 8 TeV with the ATLAS detector (30 pages) .......... 052005 G. Aad et al. (ATLAS Collaboration) Search for low-mass dark matter with CsI(Tl) crystal detectors (6 pages) .......................................................... 052006 H. -
Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively. -
Measuring the Spin of SUSY Particles SUSY: • Every SM Fermion (Spin 1/2
Measuring the spin of SUSY particles SUSY: • every SM fermion (spin 1/2) ↔ SUSY scalar (spin 0) • every SM boson (spin 1 or 0) ↔ SUSY fermion (spin 1/2) Want to check experimentally that (e.g.) eL,R are really spin 0 and Ce1,2 are really spin 1/2. 2 preserve the 5th dimensional momentum (KK number). The corresponding coupling constants among KK modes Model with a 500 GeV-size extra are simply equal to the SM couplings (up to normaliza- tion factors such as √2). The Feynman rules for the KK dimension could give a rather SUSY- modes can easily be derived (e.g., see Ref. [8, 9]). like spectrum! In contrast, the coefficients of the boundary terms are not fixed by Standard Model couplings and correspond to new free parameters. In fact, they are renormalized by the bulk interactions and hence are scale dependent [10, 11]. One might worry that this implies that all pre- dictive power is lost. However, since the wave functions of Standard Model fields and KK modes are spread out over the extra dimension and the new couplings only exist on the boundaries, their effects are volume sup- pressed. We can get an estimate for the size of these volume suppressed corrections with naive dimensional analysis by assuming strong coupling at the cut-off. The FIG. 1: One-loop corrected mass spectrum of the first KK −1 result is that the mass shifts to KK modes from bound- level in MUEDs for R = 500 GeV, ΛR = 20 and mh = 120 ary terms are numerically equal to corrections from loops GeV. -
Lattices and Vertex Operator Algebras
My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H. -
Introduction to Quantum Q-Langlands Correspondence
Introduction to Quantum q-Langlands Correspondence Ming Zhang∗ May 16{19, 2017 Abstract Quantum q-Langlands Correspondence was introduced by Aganagic, Frenkel and Okounkov in their recent work [AFO17]. Roughly speaking, it is a correspondence between q-deformed conformal blocks of the quantum affine algebra and the deformed W-algebra. In this mini-course, I will define these objects and discuss some results in quantum K-theory of the Nakajima quiver varieties which is the key ingredient in the proof of the correspondence (in the simply-laced case). It will be helpful to know the basic concepts in the theory of Lie algebras (roots, weights, etc.). Contents 1 Introduction 2 1.1 The geometric Langlands correspondence.............................2 1.2 A representation-theoretic statement and its generalization in [AFO17].............2 2 Lie algebras 2 2.1 Root systems.............................................3 2.2 The Langlands dual.........................................4 3 Affine Kac{Moody algebras4 3.1 Via generators and relations.....................................5 3.2 Via extensions............................................6 4 Representations of affine Kac{Moody algebras7 4.1 The extended algebra........................................7 4.2 Representations of finite-dimensional Lie algebras.........................8 4.2.1 Weights............................................8 4.2.2 Verma modules........................................8 4.3 Representations of affine Kac{Moody algebras...........................9 4.3.1 The category of representations.............................9 4.3.2 Verma modulesO........................................ 10 4.3.3 The evaluation representation................................ 11 4.3.4 Level.............................................. 11 ∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail [email protected] with any more corrections. Compiled on May 21, 2017. 1 1 Introduction We will follow Aganagic, Frenkel, and Okounkov's paper [AFO17], which came out in January of this year. -
Stringy Instantons, Deformed Geometry and Axions
Stringy instantons, deformed geometry and axions. Eduardo Garc´ıa-Valdecasas Tenreiro Instituto de F´ısica Teorica´ UAM/CSIC, Madrid Based on 1605.08092 by E.G. & A. Uranga and ongoing work Iberian Strings 2017, Lisbon, 16th January 2017 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Motivation & Outline Motivation Axions have very flat potentials ) Good for Inflation. Axions developing a potential, i.e. through instantons, can always be described as a 3-Form eating up the 2-Form dual to the axion. There is no candidate 3-Form for stringy instantons. We will look for it in the geometry deformed by the instanton. The instanton triggers a geometric transition. Outline 1 Axions and 3-Forms. 2 Backreacting Instantons. 3 Flavor branes at the conifold. Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 2 / 22 2 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions and 3-Forms Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 3 / 22 3 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions Axions are periodic scalar fields. This shift symmetry can be broken to a discrete shift symmetry by non-perturbative effects ! Very flat potential, good for inflation. However, discrete shift symmetry is not enough to keep the corrections to the potential small. There is a dual description where the naturalness of the flatness is more manifest. For example, a quadratic potential with monodromy can be described by a Kaloper-Sorbo lagrangian (Kaloper & Sorbo, 2009), 2 2 j dφj + nφF4 + jF4j (1) The potential is recovered using E.O.M, 2 V0 ∼ (nφ − q) ; q 2 Z (2) Eduardo Garc´ıa-ValdecasasSo there Tenreiro is a discreteStringy instantons, shift deformed symmetry, geometry and axions. -
Printed Here
PHYSICAL REVIEW C VOLUME 55, NUMBER 2 FEBRUARY 1997 Selected Abstracts from Physical Review D Abstracts of papers published in Physical Review D which may be of interest to our readers are printed here. Superlight neutralino as a dark matter particle candidate. V. A. Constraints on big bang nucleosynthesis ~BBN! and on cosmo- Bednyakov, Max-Planck-Institut fu¨r Kernphysik, Postfach 103980, logical parameters from conflicting deuterium observations in dif- D-69029, Heidelberg, Germany and Laboratory of Nuclear Prob- ferent high redshift QSO systems are discussed. The high deuterium lems, Joint Institute for Nuclear Research, Moscow region, 141980 observations by Carswell et al., Songaila et al., and Rugers and Dubna, Russia; H. V. Klapdor-Kleingrothaus, Max-Planck-Institut Hogan are consistent with 4He and 7Li observations and standard fu¨r Kernphysik, Postfach 103980, D-69029, Heidelberg, Germany; BBN (Nn 53! and allows Nn<3.6 at 95% C.L., but are inconsistent S. G. Kovalenko, Max-Planck-Institut fu¨r Kernphysik, Postfach with local observations of D and 3He in the context of conventional 103980, D-69029, Heidelberg, Germany and Laboratory of Nuclear theories of stellar and galactic evolution. In contrast, the low deu- Problems, Joint Institute for Nuclear Research, Moscow region, terium observations by Tytler, Fan, and Burles and Burles and 141980 Dubna, Russia. ~Received 2 August 1996! Tytler are consistent with the constraints from local galactic obser- We address the question of how light the lightest supersymmetric vations, but require Nn51.960.3 at 68% C.L., excluding standard particle neutralino can be to be a reliable cold dark matter ~CDM! BBN at 99.9% C.L., unless the systematic uncertainties in the 4 particle candidate.