Contemporary Mathematics 442

Total Page:16

File Type:pdf, Size:1020Kb

Contemporary Mathematics 442 CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV. Misra, Kailash, 1954- V. Title. QA252.3 .L555 2007 512'.482~dc22 2007060784 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission®ams. or g. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) © 2007 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles. Printed in the United States of America. § The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 12 11 10 09 08 07 Contents Preface vii Biographies of James Lepowsky and Robert Wilson XI List of Ph.D. Students xiii List of Talks XV List of Participants xix Lie algebras and related topics A Class of Gradings of Simple Lie Algebras KARIN BAUR AND NOLAN WALLACH 3 Conjugacy Results for the Lie Algebra s(2 over an Algebra Which is a UFD STEPHEN BERMAN AND JUN MORITA 17 Kirillov-Reshetikhin Modules Associated to G2 VYJAYANTHI CHARI AND ADRIANO MOURA 41 Support Spaces and Auslander-Reiten Components ROLF FARNSTEINER 61 On the Cohomology of Modular Lie Algebras J ORG FELDVOSS 89 Eisenstein Series on Loop Groups: Maass-Selberg Relations 4 HOWARD GARLAND 115 Generalized Littlewood-Richardson Rule for Exceptional Lie Algebras E6 and F4 AYUMU HOSHINO 159 An Introduction to Qn and Its Graph Related Quotients DAVID NACIN 171 Affine Geometric Crystal of Type G~ 1 ) TOSHIKI NAKASHIMA 179 New Constructions of Yang-Baxter Systems FLORIN F. NICHITA AND DEEPAK PARASHAR 193 Construction of Some Algebras Associated to Directed Graphs and Related to Factorizations of Noncommutative Polynomials VLADIMIR RETAKH, SHIRLEI SERCONEK AND ROBERT LEE WILSON 201 v vi CONTENTS Geometric and Combinatorial Realizations of Crystals of Enveloping Algebras ALISTAIR SAVAGE 221 Lie algebras of Small Dimensiou H. STRADE 233 Vertex (operator) algebras and related topics Symmetric Polynomials and HD-Quantum Vertex Algebras I. I. ANGUELOVA 269 Hr-Vertex Algebras MAARTEN J. BERGVELT 279 On Intertwining Operators and Recursions CORINA CALINESCU 289 Representations of Vertex Operator Algebras CHONGYING DONG AND CUIPO JIANG 303 On Non-Semisimple Fusion Rules and Tensor Categories J URGEN FUCHS 315 The Duality between Vertex Operator Algebras and Coalgebras, Modules and Co modules KEITH HUBBARD 339 Some Developments in Vertex Operator Algebra Theory, Old and New JAMES LEPOWSKY 355 Twisted Modules and Quasi-Modules for Vertex Operator Algebras HAISHENG LI 389 Chiral Algebras and Partition Functions GEOFFREY MASON AND MICHAEL P. TUITE 401 Modular Forms and Almost Linear Dependence of Graded Dimensions ANTUN MILAS 411 ( k, r )-Admissible Configurations and Intertwining Operators MIRKO PRIMC 425 Hilbert Schemes of Points on the Minimal Resolution and Soliton Equations ZHENBO QIN AND WEIQIANG WANG 435 Twining Characters and Picard Groups in Rational Conformal Field Theory CHRISTOPH SCHWEIGERT, JURGEN FUCHS, AND INGO RUNKEL 463 Preface The representation theory of finite- and infinite-dimensional Lie algebras has been an important area of mathematical research with numerous applications in many areas of mathematics and physics. In the last few decades, the classification of the finite-dimensional simple modular Lie algebras has been completed (except for low characteristics) and infinite-dimensional Lie algebras such as Kac-Moody Lie algebras, the Virasoro algebra and their generalizations have been discovered and studied extensively, with exciting connections to many other fields of mathematics, including combinatorics, group theory, number theory, partial differential equations, topology, conformal field theory, statistical mechanics and integrable systems. The interaction of an important class of infinite-dimensional Lie algebras known as affine Lie algebras with integrable systems led Drinfeld and Jimbo to introduce quantized universal enveloping algebras, also known as quantum groups, associ- ated with symmetrizable Kac-Moody Lie algebras. The representation theory of quantum groups given by Lusztig exhibits similarity with Kac-Moody Lie algebras. In fact Kazhdan and Lusztig showed that the category of modules for a quantum group associated with a finite-dimensional simple Lie algebra at a root of unity is equivalent as a rigid braided tensor category to a suitable category of modules for the corresponding affine Lie algebra. The representation theory of affine Lie alge- bras together with the theory of the "moonshine module" constructed by Frenkel, Lepowsky and Meurman also led Borcherds to a mathematical definition of a new algebraic structure called a vertex (operator) algebra, which is a mathematically precise algebraic counterpart of the concept of what physicists came to call a "chi- ral algebra" in two-dimensional conformal field theory as formalized by Belavin, Polyakov and Zamolodchikov. These algebras and their representations play im- portant roles in or have deep connections with a number of areas in mathematics and physics, including, in particular, the representation theory of the Fischer-Griess Monster finite simple group and the phenomena of "monstrous moonshine," the rep- resentation theory of the Virasoro algebra and affine Lie algebras, two-dimensional conformal field theory, modular functions, the theory of Riemann surfaces and al- gebraic curves, the geometric Langlands program, knot invariants and invariants of three-manifolds, quantum groups, monodromy associated with differential equa- tions, mirror symmetry, elliptic genera and elliptic cohomology, topological field theories, and string theory. During May 17-21, 2005, an international conference on "Lie algebras, vertex operator algebras and their applications" was held in North Carolina State Univer- sity, in honor of James Lepowsky and Robert Wilson on their sixtieth birthdays. James Lepowsky and Robert Wilson have made enormous contributions, individu- ally and jointly, to the development of both the theory of Lie algebras and the theory vii viii PREFACE of vertex operator algebra~_In 1978, in their joint seminal work on the construc- tion ofrepresentations of sl(2), they discovered what are now called "twisted vertex operators," which were used in their vertex-operator-theoretic proof of the famous Rogers-Ramanujan identities. Subsequently this led them to the discovery of what they called "Z-algebras," which became an important tool for vertex-operator- theoretic proofs of combinatorial identities. Also, this sequence of ideas played a role in leading Lepowsky, jointly with Frenkel and Meurman, to a construction of the "moonshine module vertex operator algebra," whose automorphism group is the Monster. Most
Recommended publications
  • Orthogonal Symmetric Affine Kac-Moody Algebras
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory.
    [Show full text]
  • Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
    Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively.
    [Show full text]
  • Group of Diffeomorphisms of the Unite Circle As a Principle U(1)-Bundle
    Group of diffeomorphisms of the unite circle as a principle U(1)-bundle Irina Markina, University of Bergen, Norway Summer school Analysis - with Applications to Mathematical Physics Gottingen¨ August 29 - September 2, 2011 Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 1/49 String Minkowski space-time moving in time woldsheet string string Worldsheet as an imbedding of a cylinder C into the Minkowski space-time with the induced metric g. 2 Nambu-Gotô action SNG = −T dσ | det gαβ| ZC p T is the string tension. Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 2/49 Polyakov action Change to the imbedding independent metric h on worldsheet. 2 αβ Polyakov action SP = −T dσ | det hαβ|h ∂αx∂βx, ZC p 0 1 δSP α, β = 0, 1, x = x(σ ,σ ). Motion satisfied δhαβ = 0. −1 δSP Energy-momentum tensor Tαβ = αβ T | det hαβ| δh p Tαβ = 0 and SP = SNG, whereas in general SP ≥ SNG Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 3/49 Gauges The metric h has 3 degrees of freedom - gauges that one need to fix. • Global Poincaré symmetries - invariance under Poincare group in Minkowski space • Local invariance under the reparametrizaition by 2D-diffeomorphisms dσ˜2 | det h˜| = dσ2 | det h| • Local Weyl rescaling p p α β ρ(σ0,σ1) α β hαβdσ dσ → e hαβdσ dσ ρ(σ0,σ1) 2 αβ µ ν hαβ = e ηαβ, SP = −T dσ η ηµν∂αx ∂βx ZC Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p.
    [Show full text]
  • Lattices and Vertex Operator Algebras
    My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H.
    [Show full text]
  • Introduction to Quantum Q-Langlands Correspondence
    Introduction to Quantum q-Langlands Correspondence Ming Zhang∗ May 16{19, 2017 Abstract Quantum q-Langlands Correspondence was introduced by Aganagic, Frenkel and Okounkov in their recent work [AFO17]. Roughly speaking, it is a correspondence between q-deformed conformal blocks of the quantum affine algebra and the deformed W-algebra. In this mini-course, I will define these objects and discuss some results in quantum K-theory of the Nakajima quiver varieties which is the key ingredient in the proof of the correspondence (in the simply-laced case). It will be helpful to know the basic concepts in the theory of Lie algebras (roots, weights, etc.). Contents 1 Introduction 2 1.1 The geometric Langlands correspondence.............................2 1.2 A representation-theoretic statement and its generalization in [AFO17].............2 2 Lie algebras 2 2.1 Root systems.............................................3 2.2 The Langlands dual.........................................4 3 Affine Kac{Moody algebras4 3.1 Via generators and relations.....................................5 3.2 Via extensions............................................6 4 Representations of affine Kac{Moody algebras7 4.1 The extended algebra........................................7 4.2 Representations of finite-dimensional Lie algebras.........................8 4.2.1 Weights............................................8 4.2.2 Verma modules........................................8 4.3 Representations of affine Kac{Moody algebras...........................9 4.3.1 The category of representations.............................9 4.3.2 Verma modulesO........................................ 10 4.3.3 The evaluation representation................................ 11 4.3.4 Level.............................................. 11 ∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail [email protected] with any more corrections. Compiled on May 21, 2017. 1 1 Introduction We will follow Aganagic, Frenkel, and Okounkov's paper [AFO17], which came out in January of this year.
    [Show full text]
  • 7 International Centre for Theoretical Physics
    IC/93/173 -n I 'r.2_. \ INTERNATIONAL CENTRE FOR 7 THEORETICAL PHYSICS IIK;IIKK SPIN EXTENSIONS OF THE VIRASORO ALCE1IRA, AREA-PRESERVING AL(;EURAS AND THE MATRIX ALGEBRA M. Zakkuri INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION MIRAMARE-TRIESTE IC/93/173 Infinite dimensional algebras have played a central role in the development of string theories and two dimensional conformal field theory. These symmetries have been shown International Atomic Energy Agency to be related to the Virasoro algebra, its supersymmetric extensions and the Kac-Moody and one. Together, they are generated by conformal spin ,s currents with s <2. United Nations Educational Scientific and Cultural Organization However, some years ago, Zamolodchikov discovered a new extension, W3, involving besides the usual spin 2 conformal current, a conformal spin 3 current [1]. The obtained INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS structure is called non-linear Lie algebra. Recently, much interest has been made in the understanding of these higher conformal spin extensions of the Virasoro algebra [2.3,4}. In this paper, we study these algebraic structures using the infinite matrix representa- tion. Actually the present work may be viewed as a generalization of the infinite matrix HIGHER SPIN EXTENSIONS OF THE VIRASORO ALGEBRA, realization of the Virasoro algebra obtained by Kac et al. [5|. Some results have been AREA-PRESERVING ALGEBRAS AND THE MATRIX ALGEBRA described in our first papers [6,7]. However, we give here some precisions on the generality of above results. Moreover, we extend the above construction to include the algebra of area preserving diffeomorphism on the 2-dimensional torus [8], Actually, this result is k 1 expected to be generalizable for higher dimensions [10], namely for the torus T , k > 1.
    [Show full text]
  • Strings, Symmetries and Representations
    Strings, symmetries and representations C. Schweigert, I. Runkel LPTHE, Universite´ Paris VI, 4 place Jussieu, F – 75 252 Paris Cedex 05 J. Fuchs Institutionen for¨ fysik, Universitetsgatan 5, S – 651 88 Karlstad Abstract. Several aspects of symmetries in string theory are reviewed. We discuss the roleˆ of symmetries both of the string world sheet and of the target space. We also show how to obtain string scattering amplitudes with the help of structures familiar from the representation theory of quantum groups. 1. Strings and conformal field theory Symmetries of various types, and consequently representation theoretic tools, play an important roleˆ in string theory and conformal field theory. The present contribution aims at reviewing some of their aspects, the choice of topics being influenced by our personal taste. After a brief overview of string theory and conformal field theory, we first discuss orbifolds and duality symmetries. We then turn to D-branes and theories of open strings, which we investigate in the final section using Frobenius algebras in representation categories. A minimalistic point of view on (perturbative) string theory is to regard it as a pertur- bative quantization of a field theory, with the perturbation expansion being organized not in terms of graphs, i.e. one-dimensional objects, but rather in terms of surfaces. What makes this perturbation expansion particularly interesting is that it even covers the quantization of theories that include a gravitational sector. The configuration space of a classical string is given by the embeddings of its two- dimensional world sheet Σ, with local coordinates τ and σ, into a target space M with coordinates Xµ.
    [Show full text]
  • An Introduction to Affine Kac-Moody Algebras
    An introduction to affine Kac-Moody algebras David Hernandez To cite this version: David Hernandez. An introduction to affine Kac-Moody algebras. DEA. Lecture notes from CTQM Master Class, Aarhus University, Denmark, October 2006, 2006. cel-00112530 HAL Id: cel-00112530 https://cel.archives-ouvertes.fr/cel-00112530 Submitted on 9 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AN INTRODUCTION TO AFFINE KAC-MOODY ALGEBRAS DAVID HERNANDEZ Abstract. In these lectures we give an introduction to affine Kac- Moody algebras, their representations, and applications of this the- ory. Contents 1. Introduction 1 2. Quick review on semi-simple Lie algebras 2 3. Affine Kac-Moody algebras 5 4. Representations of Lie algebras 8 5. Fusion product, conformal blocks and Knizhnik- Zamolodchikov equations 14 References 19 1. Introduction Affine Kac-Moody algebras ˆg are infinite dimensional analogs of semi-simple Lie algebras g and have a central role both in Mathematics (Modular forms, Geometric Langlands program...) and Mathematical Physics (Conformal Field Theory...). These lectures are an introduction to the theory of affine Kac-Moody algebras and their representations with basic results and constructions to enter the theory.
    [Show full text]
  • Root Components for Tensor Product of Affine Kac-Moody Lie Algebra Modules
    ROOT COMPONENTS FOR TENSOR PRODUCT OF AFFINE KAC-MOODY LIE ALGEBRA MODULES SAMUEL JERALDS AND SHRAWAN KUMAR 1. Abstract Let g be an affine Kac-Moody Lie algebra and let λ, µ be two dominant integral weights for g. We prove that under some mild restriction, for any positive root β, V(λ)⊗V(µ) contains V(λ+µ−β) as a component, where V(λ) denotes the integrable highest weight (irreducible) g-module with highest weight λ. This extends the corresponding result by Kumar from the case of finite dimensional semisimple Lie algebras to the affine Kac-Moody Lie algebras. One crucial ingredient in the proof is the action of Virasoro algebra via the Goddard-Kent-Olive construction on the tensor product V(λ) ⊗ V(µ). Then, we prove the corresponding geometric results including the higher cohomology vanishing on the G-Schubert varieties in the product partial flag variety G=P × G=P with coefficients in certain sheaves coming from the ideal sheaves of G-sub Schubert varieties. This allows us to prove the surjectivity of the Gaussian map. 2. Introduction Let g be a symmetrizable Kac–Moody Lie algebra, and fix two dominant inte- gral weights λ, µ 2 P+. To these, we can associate the integrable, highest weight (irreducible) representations V(λ) and V(µ). Then, the content of the tensor decom- position problem is to express the product V(λ)⊗V(µ) as a direct sum of irreducible components; that is, to find the decomposition M ⊕mν V(λ) ⊗ V(µ) = V(ν) λ,µ ; ν2P+ ν where mλ,µ 2 Z≥0 is the multiplicity of V(ν) in V(λ) ⊗ V(µ).
    [Show full text]
  • About Lie-Rinehart Superalgebras Claude Roger
    About Lie-Rinehart superalgebras Claude Roger To cite this version: Claude Roger. About Lie-Rinehart superalgebras. 2019. hal-02071706 HAL Id: hal-02071706 https://hal.archives-ouvertes.fr/hal-02071706 Preprint submitted on 18 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. About Lie-Rinehart superalgebras Claude Rogera aInstitut Camille Jordan ,1 , Universit´ede Lyon, Universit´eLyon I, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France Keywords:Supermanifolds, Lie-Rinehart algebras, Fr¨olicher-Nijenhuis bracket, Nijenhuis-Richardson bracket, Schouten-Nijenhuis bracket. Mathematics Subject Classification (2010): .17B35, 17B66, 58A50 Abstract: We extend to the superalgebraic case the theory of Lie-Rinehart algebras and work out some examples concerning the most popular samples of supermanifolds. 1 Introduction The goal of this article is to discuss some properties of Lie-Rinehart structures in a superalgebraic context. Let's first sketch the classical case; a Lie-Rinehart algebra is a couple (A; L) where L is a Lie algebra on a base field k, A an associative and commutative k-algebra, with two operations 1. (A; L) ! L denoted by (a; X) ! aX, which induces a A-module structure on L, and 2.
    [Show full text]
  • Affine Lie Algebras 8
    Affine Lie Algebras Kevin Wray January 16, 2008 Abstract In these lectures the untwisted affine Lie algebras will be constructed. The reader is assumed to be familiar with the theory of semisimple Lie algebras, e.g. that he or she knows a big part of James E. Humphreys' Introduction to Lie algebras and repre- sentation theory [1]. The notations used in these notes will be taken from [1]. These lecture notes are based on the course Affine Lie Algebras given by Prof. Dr. Johan van de Leur at the Mathematical Research Insitute in Utrecht (The Netherlands) during the fall of 2007. 1 Semisimple Lie Algebras 1.1 Root Spaces Recall some basic notions from [1]. Let L be a semisimple Lie algebra, H a Cartan subalgebra (CSA), and κ(x; y) = T r(ad (x) ad (y)) the Killing form on L. Then the Killing form is symmetric, non-degenerate (since L is semisimple and using theorem 5.1 page 22 z [1]), and associative; i.e. κ : L × L ! F is bilinear on L and satisfies κ ([x; y]; z) = κ (x; [y; z]) : The restriction of the Killing form to the CSA, denoted by κjH (·; ·), is non-degenerate (Corollary 8.2 page 37 [1]). This allows for the identification of H with H∗ (see [1] x8.2: ∗ to φ 2 H there corresponds a unique element tφ 2 H satisfying φ(h) = κ(tφ; h) for all h 2 H). This makes it possible to define a symmetric, non-degenerate bilinear form, ∗ ∗ ∗ (·; ·): H × H ! F, given on H as ∗ (α; β) = κ(tα; tβ)(8 α; β 2 H ) : ∗ Let Φ ⊂ H be the root system corresponding to L and ∆ = fα1; : : : ; α`g a fixed basis of Φ (∆ is also called a simple root system).
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Enveloping Algebras
    Mathematisches Forschungsinstitut Oberwolfach Report No. 13/2005 Enveloping Algebras and Geometric Representation Theory Organised by Shrawan Kumar (Chapel Hill) Peter Littelmann (Wuppertal) Wolfgang Soergel (Freiburg) March 13th – March 19th, 2005 Abstract. The study of Enveloping Algebras has undergone a significant and con- tinuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. The aim of the workshop was to bring together researchers from diverse but highly interre- lated subjects to discuss new developments and bring forward the research in this whole area by fostering the scientific interaction. Mathematics Subject Classification (2000): 17xx, 22xx, 81xx. Introduction by the Organisers Since its inception in the early seventies, the study of Enveloping Algebras has undergone a significant and continuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. As indicated above, one of the main goals behind this meeting was to bring together a group of participants with a wide range of interests in and around the geometric and the combinatorial side of the representation theory of Lie groups and algebras. We strongly believe that such an approach to representation theory, in particular interaction between geometry and representation theory, will open up new avenues of thought and lead to progress in a number of areas. This diversity was well reflected in the expertize represented by the conference participants, as well as in the wide range of topics covered.
    [Show full text]