Irving Ezra Segal (1918–1998)

Total Page:16

File Type:pdf, Size:1020Kb

Irving Ezra Segal (1918–1998) mem-segal.qxp 5/12/99 12:57 PM Page 659 Irving Ezra Segal (1918–1998) John C. Baez, Edwin F. Beschler, Leonard Gross, Bertram Kostant, Edward Nelson, Michèle Vergne, and Arthur S. Wightman Irving Segal died suddenly on August 30, 1998, After the war while taking an evening walk. He was seventy-nine Segal spent two and was vigorously engaged in research. years at the Insti- Born on September 13, 1918, in the Bronx, he tute for Advanced grew up in Trenton and received his A.B. from Study, where he Princeton in 1937. What must it have been like to held the first of the be a member of the Jewish quota at Princeton in three Guggenheim the 1930s? He told me once that a fellow under- Fellowships that he graduate offered him money to take an exam in his was to win. Other stead and was surprised when Irving turned him honors included down. election to the Na- He received his Ph.D. from Yale in 1940. His the- tional Academy of sis was written under the nominal direction of Sciences in 1973 Einar Hille, who suggested that Segal continue his and the Humboldt Award in 1981. At and Tamarkin’s investigation of the ideal theory the University of of the algebra of Laplace-Stieltjes transforms ab- Chicago from 1948 solutely convergent in a fixed half-plane. But, Segal to 1960, he had fif- wrote, “For conceptual clarification and for other teen doctoral stu- reasons, an investigation of the group algebra of dents, and at MIT, a general [locally compact] abelian group was of where he was pro- Irving Segal interest.” And the thesis was not restricted to fessor from 1960 abelian groups. on, formally retir- Segal was an instructor at Harvard in 1941, and ing in 1989, he had twenty-five. Segal’s mathe- then war work—first at Princeton and later in the matical ancestry runs from Hille and Marcel Riesz army at the Aberdeen Proving Ground—prevented through Fejér and Schwarz to Weierstrass. a full publication of the thesis until 1947. I had the great fortune to be one of Irving’s stu- Looking edgewise at a bound journal volume, dents. After telling him what I intended to do in one perceives a band spectrum for the articles— my thesis, I was embarrassed to learn from a fel- the darker the band, the more intensely has the ar- low student that one is supposed to ask for a topic. ticle been studied. Segal’s thesis acquired a dark But Irving never demurred; he gave me free rein band indeed. Together with M. H. Stone and I. M. and helped launch me on a career. I shall repeat Gelfand, he was one of the principal architects of here something I wrote on the occasion of his six- the application of algebraic methods to analysis, tieth birthday, since it recounts an early experience vastly simplifying and extending classical results that helped shape my mathematical life. His of harmonic analysis. encouragement was strong when I was writing a JUNE/JULY 1999 NOTICES OF THE AMS 659 mem-segal.qxp 5/12/99 12:57 PM Page 660 thesis, and equally important was his total lack of ter is itself a deformation of the Lie algebra of the encouragement when I found a result unrelated to conformal group, and now we have reached the end anything beyond itself. One of the chief charac- of the road: this Lie algebra is rigid. teristics of Segal’s work is that his theorems are Segal’s vision was that the universe is the uni- part of theories, and this sense of the global na- versal cover M of the conformal compactification ture of mathematical research was one of the most of Minkowski space—Einstein’s spherical uni- valuable things that he imparted to his students. verse—with the universal cover of the conformal Segal had an extraordinary intuition for the es- group as symmetry group. He pursued this vision sential. The work of N. Wiener and of R. H. Cameron with passion and immense industry. In cosmology and W. T. Martin on Brownian motion was tied to it yields an alternative explanation of the redshift a particular representation; in Segal’s hands, it be- as due to the difference between chronometric came a general theory of Gaussian integration on time and the time measured in an observatory. In Hilbert space. There is no orthogonally invariant quantum field theory the compactness of space in Gaussian measure on an infinite-dimensional real the Einstein universe (it is S3) and a natural time Hilbert space, but Segal constructed the corre- cyclicity mollify the divergence problems. Together sponding algebra of random variables. And he in- with Zhengfang Zhou, Segal constructed quantum variably produced new concrete results that fol- electrodynamics and a nontrivial φ4 quantum lowed from his abstract constructions. Similarly, field on M. Here is a summary he wrote [2] in 1992: quantum theory—especially of systems of infi- Universal space-time is a natural nitely many degrees of freedom—was tied to par- candidate for the “bare” arena of the ticular representations by operators on some fundamental forces, being the maximal Hilbert space. It was Segal who realized that the ∗ 4-dimensional manifold having physi- structure of physical relevance was the C -alge- cally indicated properties of causality bra generated by the observables, a discovery that and symmetry. It is locally conformal was largely ignored at first and then became taken to Minkowski space, and globally con- for granted. These two developments were unified formal to the Einstein universe in a theory of algebraic integration that applies to E ∼ R1 × S3. The Einstein energy ex- commutative and noncommutative systems alike, ceeds that in the canonically imbedded with applications to stochastic processes, a Minkowski space, and the difference Plancherel formula for unimodular Type I locally has been proposed by the chronomet- compact groups, and implementability of canoni- ric theory to represent the redshift. Al- cal transforms in quantum systems of infinitely though this eliminates adjustable cos- many degrees of freedom. mological parameters, the directly In all his work Segal was a pioneer. To mention observable implications of this pro- one example not discussed elsewhere in this arti- posal have been statistically quite con- cle, Sergiu Klainerman, in accepting the Bôcher sistent with direct observations in ob- Prize (Notices, April 1999), credits Segal with being jective samples of redshifted sources. the first to point out the role of space-time in- These developments represent a math- equalities for nonlinear hyperbolic equations. ematical specification of proposals by In the 1960s Segal organized two conferences Mach, Einstein, Minkowski, and Hub- at MIT that were the occasion of an initial break- ble and Tolman. They suggest that the through in constructive quantum field theory. The fundamental forces of Nature are con- extraordinary subsequent development, primar- formally invariant, but that the state of ily by James Glimm and Arthur Jaffe, was not along the Universe breaks the symmetry down lines that Segal favored—a viewpoint that he made to the Einstein isometry group. This painfully clear. provides an alternative to the Higgs The last thirty years of his professional life mechanism, and otherwise has impli- were dominated by a discovery he published in cations for particle physics, including 1951. In the last section of a wide-ranging article the elimination of ultraviolet diver- [1], Segal initiated the theory of deformations of gences in representative nonlinear Lie algebras. (Deformations became “contractions” quantum fields, the formulation of a in the physics literature and were “limiting cases” unified invariant interaction Lagrangian, in the article.) Classical mechanics is a limiting assignments of observed elementary case of quantum mechanics as ~ → 0; the corre- particles to irreducible unitary posi- sponding commutative Lie algebra is a deforma- tive-energy representations of the con- tion of the Heisenberg algebra. Nonrelativistic me- formal group, and the correlation of chanics is a limiting case of relativistic mechanics the S-matrix with the action in E of as c →∞; the Lie algebra of the Galilei group is a the generator of the infinite cyclic cen- deformation of the Lie algebra of the inhomoge- ter of the simply-connected form of the neous Lorentz group. But Segal showed that the lat- conformal group. 660 NOTICES OF THE AMS VOLUME 46, NUMBER 6 mem-segal.qxp 5/12/99 12:57 PM Page 661 Why has this work not received an adequate eval- One day I noticed I had a counterexample to one uation? Part of the reason lies in Segal’s style of of Segal’s lemmas. I had never had a personal con- scientific exchange—at times it resembles that of versation with him, and my wrong impression was Giordano Bruno (later burned at the stake), who that he would not welcome one. It was at the urg- very shortly after his arrival in Geneva issued a ing of friends of mine that I finally mustered the pamphlet on Twenty Errors Committed by Profes- courage to go to his office and show him my coun- sor De la Faye in a Single Lesson. But part of the terexample. He graciously agreed that I was cor- fault lies with cosmologists and particle physi- rect. However, it was only a small matter. He had cists intent on defending turf. just neglected to add some rather natural hy- The time for polemics is past. Segal’s work on pothesis. As I was walking out the door he suddenly the Einstein universe as the arena for cosmology stopped me and asked, “What do you know about and particle physics is a vast unfinished edifice, Lie groups?” I replied that I knew something about constructed with a handful of collaborators.
Recommended publications
  • THE RIEMANN HYPOTHESIS BERNARD RUSSO University Of
    THE RIEMANN HYPOTHESIS BERNARD RUSSO University of California, Irvine PART I THE PRIME NUMBER THEOREM JULY 29, 2010 PACIFIC SUMMER UNSOLVED PROBLEMS SEMINAR PART II THE RIEMANN HYPOTHESIS SEPTEMBER 14, 2010 MATH COLLOQUIUM FULLERTON COLLEGE DEPARTMENT OF MATHEMATICS BEGINNING OF PART I “book report” “PRIME OBSESSION” JOHN DERBYSHIRE 2003 PRESENTATION OF CREDENTIALS Bernard Russo 1965 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 M. Riesz 1912 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 M. Riesz 1912 L. Fejer 1902 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 M. Riesz 1912 L. Fejer 1902 H. A. Schwarz 1864 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 M. Riesz 1912 L. Fejer 1902 H. A. Schwarz 1864 Karl Weierstrass 1854—E. E. Kummer 1831 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 M. Riesz 1912 L. Fejer 1902 H. A. Schwarz 1864 Karl Weierstrass 1854—E. E. Kummer 1831 C. Gudermann 1841—H. Scherk 1823 PRESENTATION OF CREDENTIALS Bernard Russo 1965 Henry Dye 1950 Irving Segal 1940 Einar Hille 1918 M. Riesz 1912 L. Fejer 1902 H. A. Schwarz 1864 Karl Weierstrass 1854—E. E. Kummer 1831 C. Gudermann 1841—H.
    [Show full text]
  • The Consistency of Arithmetic
    The Consistency of Arithmetic Timothy Y. Chow July 11, 2018 In 2010, Vladimir Voevodsky, a Fields Medalist and a professor at the Insti- tute for Advanced Study, gave a lecture entitled, “What If Current Foundations of Mathematics Are Inconsistent?” Voevodsky invited the audience to consider seriously the possibility that first-order Peano arithmetic (or PA for short) was inconsistent. He briefly discussed two of the standard proofs of the consistency of PA (about which we will say more later), and explained why he did not find either of them convincing. He then said that he was seriously suspicious that an inconsistency in PA might someday be found. About one year later, Voevodsky might have felt vindicated when Edward Nelson, a professor of mathematics at Princeton University, announced that he had a proof not only that PA was inconsistent, but that a small fragment of primitive recursive arithmetic (PRA)—a system that is widely regarded as implementing a very modest and “safe” subset of mathematical reasoning—was inconsistent [11]. However, a fatal error in his proof was soon detected by Daniel Tausk and (independently) Terence Tao. Nelson withdrew his claim, remarking that the consistency of PA remained “an open problem.” For mathematicians without much training in formal logic, these claims by Voevodsky and Nelson may seem bewildering. While the consistency of some axioms of infinite set theory might be debatable, is the consistency of PA really “an open problem,” as Nelson claimed? Are the existing proofs of the con- sistency of PA suspect, as Voevodsky claimed? If so, does this mean that we cannot be sure that even basic mathematical reasoning is consistent? This article is an expanded version of an answer that I posted on the Math- Overflow website in response to the question, “Is PA consistent? do we know arXiv:1807.05641v1 [math.LO] 16 Jul 2018 it?” Since the question of the consistency of PA seems to come up repeat- edly, and continues to generate confusion, a more extended discussion seems worthwhile.
    [Show full text]
  • Irving Kaplansky
    Portraying and remembering Irving Kaplansky Hyman Bass University of Michigan Mathematical Sciences Research Institute • February 23, 2007 1 Irving (“Kap”) Kaplansky “infinitely algebraic” “I liked the algebraic way of looking at things. I’m additionally fascinated when the algebraic method is applied to infinite objects.” 1917 - 2006 A Gallery of Portraits 2 Family portrait: Kap as son • Born 22 March, 1917 in Toronto, (youngest of 4 children) shortly after his parents emigrated to Canada from Poland. • Father Samuel: Studied to be a rabbi in Poland; worked as a tailor in Toronto. • Mother Anna: Little schooling, but enterprising: “Health Bread Bakeries” supported (& employed) the whole family 3 Kap’s father’s grandfather Kap’s father’s parents Kap (age 4) with family 4 Family Portrait: Kap as father • 1951: Married Chellie Brenner, a grad student at Harvard Warm hearted, ebullient, outwardly emotional (unlike Kap) • Three children: Steven, Alex, Lucy "He taught me and my brothers a lot, (including) what is really the most important lesson: to do the thing you love and not worry about making money." • Died 25 June, 2006, at Steven’s home in Sherman Oaks, CA Eight months before his death he was still doing mathematics. Steven asked, -“What are you working on, Dad?” -“It would take too long to explain.” 5 Kap & Chellie marry 1951 Family portrait, 1972 Alex Steven Lucy Kap Chellie 6 Kap – The perfect accompanist “At age 4, I was taken to a Yiddish musical, Die Goldene Kala. It was a revelation to me that there could be this kind of entertainment with music.
    [Show full text]
  • Contemporary Mathematics 442
    CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV.
    [Show full text]
  • About Lie-Rinehart Superalgebras Claude Roger
    About Lie-Rinehart superalgebras Claude Roger To cite this version: Claude Roger. About Lie-Rinehart superalgebras. 2019. hal-02071706 HAL Id: hal-02071706 https://hal.archives-ouvertes.fr/hal-02071706 Preprint submitted on 18 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. About Lie-Rinehart superalgebras Claude Rogera aInstitut Camille Jordan ,1 , Universit´ede Lyon, Universit´eLyon I, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France Keywords:Supermanifolds, Lie-Rinehart algebras, Fr¨olicher-Nijenhuis bracket, Nijenhuis-Richardson bracket, Schouten-Nijenhuis bracket. Mathematics Subject Classification (2010): .17B35, 17B66, 58A50 Abstract: We extend to the superalgebraic case the theory of Lie-Rinehart algebras and work out some examples concerning the most popular samples of supermanifolds. 1 Introduction The goal of this article is to discuss some properties of Lie-Rinehart structures in a superalgebraic context. Let's first sketch the classical case; a Lie-Rinehart algebra is a couple (A; L) where L is a Lie algebra on a base field k, A an associative and commutative k-algebra, with two operations 1. (A; L) ! L denoted by (a; X) ! aX, which induces a A-module structure on L, and 2.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Enveloping Algebras
    Mathematisches Forschungsinstitut Oberwolfach Report No. 13/2005 Enveloping Algebras and Geometric Representation Theory Organised by Shrawan Kumar (Chapel Hill) Peter Littelmann (Wuppertal) Wolfgang Soergel (Freiburg) March 13th – March 19th, 2005 Abstract. The study of Enveloping Algebras has undergone a significant and con- tinuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. The aim of the workshop was to bring together researchers from diverse but highly interre- lated subjects to discuss new developments and bring forward the research in this whole area by fostering the scientific interaction. Mathematics Subject Classification (2000): 17xx, 22xx, 81xx. Introduction by the Organisers Since its inception in the early seventies, the study of Enveloping Algebras has undergone a significant and continuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. As indicated above, one of the main goals behind this meeting was to bring together a group of participants with a wide range of interests in and around the geometric and the combinatorial side of the representation theory of Lie groups and algebras. We strongly believe that such an approach to representation theory, in particular interaction between geometry and representation theory, will open up new avenues of thought and lead to progress in a number of areas. This diversity was well reflected in the expertize represented by the conference participants, as well as in the wide range of topics covered.
    [Show full text]
  • The Legacy of Norbert Wiener: a Centennial Symposium
    http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R.
    [Show full text]
  • 1995 Steele Prizes
    steele.qxp 4/27/98 3:29 PM Page 1288 1995 Steele Prizes Three Leroy P. Steele Prizes were presented at The text that follows contains, for each award, the awards banquet during the Summer Math- the committee’s citation, the recipient’s response fest in Burlington, Vermont, in early August. upon receiving the award, and a brief bio- These prizes were established in 1970 in honor graphical sketch of the recipient. of George David Birkhoff, William Fogg Osgood, and William Caspar Graustein Edward Nelson: 1995 Steele Prize for and are endowed under the Seminal Contribution to Research terms of a bequest from The 1995 Leroy P. Steele award for research of Leroy P. Steele. seminal importance goes to Professor Edward The Steele Prizes are Nelson of Princeton University for the following ...for a research awarded in three categories: two papers in mathematical physics character- for a research paper of fun- ized by leaders of the field as extremely innov- paper of damental and lasting impor- ative: tance, for expository writing, 1. “A quartic interaction in two dimensions” in fundamental and for cumulative influence Mathematical Theory of Elementary Particles, and lasting extending over a career, in- MIT Press, 1966, pages 69–73; cluding the education of doc- 2. “Construction of quantum fields from Markoff importance, toral students. The current fields” in Journal of Functional Analysis 12 award is $4,000 in each cate- (1973), 97–112. for expository gory. In these papers he showed for the first time The recipients of the 1995 how to use the powerful tools of probability writing, and for Steele Prizes are Edward Nel- theory to attack the hard analytic questions of son for seminal contribution constructive quantum field theory, controlling cumulative to research, Jean-Pierre Serre renormalizations with Lp estimates in the first influence for mathematical exposition, paper and, in the second, turning Euclidean and John T.
    [Show full text]
  • NOTICES Was Sent to Press, the Meeting Dates Which Fall Rather Far in the Future Are Subject Tr Change
    AMERICAN MATHEMATICAL SOCIETY Nottces Edited by GORDON L. WALKER Contents MEETINGS Calendar of Meetings • • • . • • • • • • • • . • • • • • . • • • • • • 4 Program of the February Meeting in Tucson • • • . • . • . • . 5 Abstracts for the Meeting, pp. 80-84 Program of the February Meeting in New York ••••••••• 10 Abstracts for the Meeting, pp. 85-94 PRELIMINARY ANNOUNCEMENTS OF MEETINGS ••••••.••• 15 ACTIVITIES OF OTHER ASSOCIATIONS ••••••••••••••••• 19 NEWS ITEMS AND ANNOUNCEMENTS •••••••••••••••••• 27 FOREIGN SCIENCE INFORMATION •••••••••.•••••••••• 38 PERSONAL ITEMS •••••••.•••••••••.••••••••••••• 47 NEW PUBLICATIONS ••••••••••••••••••••••••••••. 50 CATALOGUE OF LECTURE NOTES - Supplement No.1 . • • • • • 57 ABSTRACTS OF CONTRIBUTED PAPERS • • • • • • . • • • • • • • • 59 RESERVATION FORM . • . • • • • • • • • • • . • • • • • . • . • • • • • • 99 3 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the NOTICES was sent to press, The meeting dates which fall rather far in the future are subject tr change. This is particularly true of the meetings to which no numbers have yet been assigned, Meet­ Deadline ing Date Place for No, Abstracts* 567 April 14-16, 1960 New York, New York Mar. 1 568 April 22-23, 1960 Chicago, Illinois Mar, 1 569 April 22-23, 1960 Berkeley, California Mar, 570 June 18, 1960 Missoula, Montana May 5 571 August 29-September 3, 1960 East Lansing, Michigan July 15 (65th Summer Meeting) 572 October 22, 1960 Worcester, Massachusetts Sept. 8 January 24-27, 1961 Washington, D. C. (67th Annual Meeting) August, 1961 Stillwater, Oklahoma (66th Summer Meeting) January, 1962 Kansas City, Missouri (68th Annual Meeting) August, 1962 Vancouver, British Columbia (67th Summer Meeting) August, 1963 Boulder, Colorado (68th Summer Meeting) *The abstracts of papers to be presented at the meetings must be received i.
    [Show full text]
  • Fedosov's Quantization of Semisimple Coadjoint Orbits
    Fedosov's quantization of semisimple coadjoint orbits. by Alexander Astashkevich Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1996 @ Massachusetts Institute of Technology 1996. All rights reserved. Author .............................. ..... , ....................... Department of Mathematics May 1, 1996 Certified by. x.... Bertram Kostant Professor Thesis Supervisor Accepted by ........ .... .............. ...... ........ David Vogan Chairman, Departmental Committee on Graduate Students SCIENCE MA ;C t4 J :-:, t;,2 .'I•--_ B ~996 Fedosov's quantization of semisimple coadjoint orbits. by Alexander Astashkevich Submitted to the Department of Mathematics on May 1, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis, we consider Fedosov's quantization (C"(0)[[h]], *) of the functions on a coadjoint orbit 0 of a Lie group G corresponding to the trivial cohomology class in H 2 (O, IR[[h]]) and G-invariant torsion free symplectic connection on 0 (when it exists). We show that the map g X -+ IX eC' (0)[[h]] is a homomorphism of Lie algebras, where we consider kC'(0) [[h]] as a Lie algebra with the bracket [f, g] = fg- gff,, g EC"C'(0)[[h]]. This map defines an algebra homomorphism A from U(g)((h)) to the algebra C~"(0)((h)). We construct a representation of Co((0)((h)). In case G is a simple Lie group and O is a semisimple coadjoint orbit, we show that p maps U(g)((h)) onto the algebra of polynomial functions on 0 endowed with a star product.
    [Show full text]
  • Council Congratulates Exxon Education Foundation
    from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon.
    [Show full text]
  • Edward Nelson (1932-2014) 3
    EDWARD NELSON (1932-2014) MIKHAIL G. KATZ AND SEMEN S. KUTATELADZE On September 10, 2014 we lost Edward Nelson, one of the most original and controversial mathematical thinkers of our time. Nelson was born on May 4, 1932 in Decatur, Georgia. His father spoke fluent Russian, having spent some time in St. Petersburg in con- nection with issues related to prisoners of war (Nelson 1995 [11]). Nel- son was educated at the University of Chicago. In 1953 he was awarded a master’s degree, and in 1955 he earned a doctorate under the super- vision of Irving Segal, an expert in mathematical methods of quantum mechanics and functional analysis and one of the founders of the theory of C*-algebras. Not surprisingly, Nelson’s early papers were devoted to quantum mechanics. In 1995, Nelson received the Steele prize awarded by the American Mathematical Society, for his 1963 and 1977 papers on applications of probability theory to quantum fluctuations. After graduating, Nelson spent three years at Princeton’s Institute for Advanced Study, and from 1959 until his retirement in 2013, he worked at Princeton University where he became a Professor in 1964. In his memory the university flag was raised at half-mast for three days. In 1975 Nelson was elected to the American Academy of Arts and Sciences, and in 1997, to the National Academy of Sciences of the USA. Princeton University Press published the following six monographs by Nelson: arXiv:1506.01570v1 [math.HO] 4 Jun 2015 (1) Dynamical theories of Brownian motion. Princeton University Press, Princeton, N.J.
    [Show full text]