Template for for the Jurnal Teknologi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PGR Diversity and Economic Utilization of Orchids
Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids. -
Seidenfaden Malaysia: 0.65 These Figures Are Surprisingly High, They Apply to Single Only. T
BIOGEOGRAPHY OF MALESIAN ORCHIDACEAE 273 VIII. Biogeographyof Malesian Orchidaceae A. Schuiteman Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands INTRODUCTION The Orchidaceae outnumber far other in Malesia. At how- by any plant family present, accurate estimate of the of Malesian orchid is difficult to make. ever, an number species Subtracting the numberofestablishedsynonyms from the numberof names attributed to Malesian orchid species results in the staggering figure of 6414 species, with a retention of 0.74. This is ratio (ratio of ‘accepted’ species to heterotypic names) undoubtedly a overestimate, of the 209 Malesian orchid have been revised gross as most genera never their entire from availablerevisions estimate realis- over range. Extrapolating to a more tic retention ratio is problematic due to the small number of modern revisions and the different of treated. If look for Malesian of nature the groups we comparison at species wide ofretention ratios: some recently revised groups, we encounter a range Bulbophylluw sect. Uncifera (Vermeulen, 1993): 0.24 Dendrobium sect. Oxyglossum (Reeve & Woods, 1989): 0.24 Mediocalcar (Schuiteman, 1997): 0.29 Pholidota (De Vogel, 1988): 0.29 Bulbophyllum sect. Pelma (Vermeulen, 1993): 0.50 Paphiopedilum (Cribb, 1987, modified): 0.57 Dendrobium sect. Spatulata (Cribb, 1986, modified): 0.60. Correspondingly, we find a wide rangeof estimates for the ‘real’ numberof known Male- sian orchid species: from 2050 to 5125. Another approach would be to look at a single area, and to compute the retention ratio for the orchid flora of that area. If we do this for Java (mainly based on Comber, 1990), Peninsular Malaysia & Singapore (Seidenfaden & Wood, 1992) and Sumatra (J.J. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation. -
CITES Orchid Checklist Volumes 1, 2 & 3 Combined
CITES Orchid Checklist Online Version Volumes 1, 2 & 3 Combined (three volumes merged together as pdf files) Available at http://www.rbgkew.org.uk/data/cites.html Important: Please read the Introduction before reading this Part Introduction - OrchidIntro.pdf Part I : All names in current use - OrchidPartI.pdf (this file) Part II: Accepted names in current use - OrchidPartII.pdf Part III: Country Checklist - OrchidPartIII.pdf For the genera: Aerangis, Angraecum, Ascocentrum, Bletilla, Brassavola, Calanthe, Catasetum, Cattleya, Constantia, Cymbidium, Cypripedium, Dendrobium (selected sections only), Disa, Dracula, Encyclia, Laelia, Miltonia, Miltonioides, Miltoniopsis, Paphiopedilum, Paraphalaenopsis, Phalaenopsis, Phragmipedium, Pleione, Renanthera, Renantherella, Rhynchostylis, Rossioglossum, Sophronitella, Sophronitis Vanda and Vandopsis Compiled by: Jacqueline A Roberts, Lee R Allman, Sharon Anuku, Clive R Beale, Johanna C Benseler, Joanne Burdon, Richard W Butter, Kevin R Crook, Paul Mathew, H Noel McGough, Andrew Newman & Daniela C Zappi Assisted by a selected international panel of orchid experts Royal Botanic Gardens, Kew Copyright 2002 The Trustees of The Royal Botanic Gardens Kew CITES Secretariat Printed volumes: Volume 1 first published in 1995 - Volume 1: ISBN 0 947643 87 7 Volume 2 first published in 1997 - Volume 2: ISBN 1 900347 34 2 Volume 3 first published in 2001 - Volume 3: ISBN 1 84246 033 1 General editor of series: Jacqueline A Roberts 2 Part I: ORCHIDACEAE BINOMIALS IN CURRENT USAGE Ordered alphabetically on All -
January 2011
An Affiliate of the American Orchid Society FORT LAUDERDALE ORCHID SOCIETY January 20lL Fred Clarke To Speak Jan. 10th Our Best Time, Show Time This artwork is to set the tone for beautiful and Our January meeting always kicks off show week and special which describes our show and one of the for that reason alone it is both busy and exciting. TIlis world's most famous orchids to be described here later. year we have a very exciting night planned. Fred Now some show thoughts. Our show is probably Clarke is famous for his ("a/ose/1I1Il intergencric the second largest display show in the United States. hybrids which produced, afier 10 years of work, the It costs about S50,000 to put on. One of the many blackest flowers every witnessed. That plant was of happy things about the show is the tim of working course Fredclarkeara After Dark wh ich has been together, and we do work. It takes 163 fo ur hour shill:; awarded eight FCCs. Fred has recently added New to make the show what it is while it is open. [t takes Guiana DendrobiulIIs to his ' normal' interest range of mega other hours for pre-show activities. This Co/ase/ums. Cyc floches, Mormodes and hybridizing newsletter is going out early to remind you to COllleyas. Bulbop/iylulIIs and PaphiopedilulIls. volunteer for one or more show sbifts. The greatest Fred's business is Sunset Orchids in Vista, needs are for the I :20-4:40, and the 4:40-8:00 PM Ca lifornia. -
Molecularphylogeneticsof Phalaenopsis(Orchidaceae)
The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・ Molecular Phylogenetics of Phalaenopsis (Orchidaceae)and allied Genera: Re-evaluation of Generic Concepts TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3 i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an, Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state. Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001). -
Gastrochilus Deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a New Species from Taiwan
Taiwania 63(4): 360-365, 2018 DOI: 10.6165/tai.2018.63.360 Gastrochilus deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a new species from Taiwan Tian-Chuan HSU1, Szu-I HSIEH2,*, Jin-Hua WU3 , Hsin-Chieh HUNG4 1. Botanicial Garden Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 10066, Taiwan. 2. Department of Forestry, The Affiliated Taichung Agricultural Vocational Senior High School of National Chung Hsing University, No. 283, Taichung Rd., Taichung City, 401, Taiwan. 3. Nantou Forest District Office, Forestry Bureau, No. 456, Shiguan Rd., Caotun Town, Nantou 542, Taiwan. 4. Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation, No. 31, Tongsing Rd., Gaoshu Township, Pingtung County 906, Taiwan. *Corresponding author’s email: [email protected] (Manuscript received 9 August 2018; accepted 16 October 2018; online published 30 October 2018) ABSTRACT: A new species, Gastrochilus deltoglossus, is described and illustrated from Taiwan. This species is characterized by the presence of pendulous stems, leaves without awned apex, 3.5–4.0 mm tall subconical hypochile, and broadly deltoid, ciliate, adaxially sparsely short-hairy epichile that are approximately as wide as hypochile. Notes on its distribution, ecology, conservation status and taxonomic affinities are presented. KEY WORDS: Gastrochilus ciliaris, Gastrochilus raraensis, Orchidaceae, Taiwan, Taxonomy. INTRODUCTION Gastrochilus without flowers in a mid-altitudinal mixed forest of central Taiwan. As Gastrochilus species are Gastrochilus D. Don (Orchdaceae: Aeridinae, typically hardly identifiable without flower, these plants Vandeae, Epidendroideae,) is a monopodial orchid were regularly monitored by the third author in field until genus comprising ca. 65 species widely distributed June 2018 when some blooms were observed. -
Gulf Coast Orchid Society Newsletter
Gulf Coast Orchid Society Newsletter June 9, 2013 Our June meeting will be held Sunday, June 9, at 2:00 at the Jeff Davis Community College located at the corner of Runnymeade Rd and Debuys; just north of Pass Rd. We will meet in the main cafeteria and then move to the smaller meeting room for the program. The room that we normally use will be closed due to another meeting. PLEASE DO NOT GO INTO THE REGULAR MEETING ROOM. The Orchid’s 101 meeting led by Glen Ladnier will precede the meeting at 1:30 in the smaller meeting room. This month’s topic will be “It’s all in the roots!” PROGRAM: Glen will also do our main program on Native Orchids of South Mississippi. This will be part power point presentation and part live orchids that Glen will bring in. Glen has been working with native orchids for several years. He is currently working with Crosby Arboretum in their efforts to create a native orchid garden. We will also have several plants to sell at the meeting; some of the great plants Walter Taylor donated for the May auction, some plants donated by Jo Ann Vaz and many blooming Phals and Dendrobium purchased earlier in the year. All plants will be prepriced; you can purchase these plants from the time they get to the meeting (around 1:00 PM) until 1:20 and during the break of the regular meeting. Sales will stop just before the Orchids 101 class starts. They will be covered so no shopping or setting plants aside. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
Aerides Odorata
Research Collection Report Improving livelihoods through market assessment and sustainable development of non-timber forest products (NTFPs) in two selected villages in the northern uplands of Vietnam Author(s): Hilfiker, Karin Publication Date: 2005 Permanent Link: https://doi.org/10.3929/ethz-a-004999400 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Zurich, 28 February 2005 Internship report Improving livelihoods through market assessment and sustainable development of non-timber forest products (NTFPs) in two selected villages in the northern uplands of Vietnam. Karin Hilfiker Dipl. Forest Engineer ETH Zurich, Switzerland January 2004 – February 2005 Author: Karin Hilfiker, Dipl. Forest Engineer ETH Zurich, Switzerland Assistant cum interpreter: Nguyen Trung Thong, Forester Xuan Mai University, Vietnam Internship tutor: Ruedi Lüthi, Technical Advisor of Extension and Training Support Project (ETSP) in Hanoi, Vietnam Scientific support: Dr. phil. Claudia Zingerli, Chair of Forest Policy and Forest Economics, Department of Environmental Sciences, ETH Zurich, Switzerland Dr. sc. nat. Jean-Pierre Sorg, Chair of Silviculture, Department of Environmental Sciences, ETH Zurich, Switzerland Implementation and funding: HELVETAS Switzerland, Zurich mandated by the Swiss Agency for Development and Cooperation (SDC), Berne Helvetas Vietnam – Swiss Association for International Cooperation ETSP – Extension and Training Support Project for Forestry and Agriculture in the Uplands 218 Doi Can Street, GPO Box 81, Hanoi, Vietnam; phone: +84 4 832 98 33, fax: +84 4 832 98 34 e-mail: [email protected] web site ETSP: http://www.etsp.org.vn, web site Helvetas Vietnam: http://www.helvetas.org.vn i Table of contents Summary................................................................................................................................. -
182. BIERMANNIA King & Pantling, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 66
Flora of China 25: 487–488. 2009. 182. BIERMANNIA King & Pantling, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 66: 591. 1897. 胼胝兰属 pian zhi lan shu Chen Xinqi (陈心启 Chen Sing-chi); Jeffrey J. Wood Herbs, epiphytic, small, monopodial. Stems short, enclosed in leaf sheaths. Leaves several, linear, ± fleshy, jointed and sheathing at base, unequally bilobed, lobules acute. Inflorescence lateral, racemose, rather short, several flowered; floral bracts small. Flowers usually opening successively, short-lived, resupinate, small. Sepals and petals free, subequal; lateral sepals attached to column base, usually broader. Petals shorter than sepals; lip sessile, narrowly but firmly adnate to column foot at a right angle, sides enveloping or parallel with column, base with a small slitlike opening leading to a small hidden pouch, spur absent, 3-lobed; lateral lobes parallel to or ± embracing column; mid-lobe linear to narrowly ovate. Column short or rather long, usually stout, with a short foot; pollinia 2, waxy, subglobose, slightly grooved or with a small cavity, attached by a common broadly linear-oblong stipe to a solitary viscidium. About nine species: China, India, Indonesia, Peninsular Malaysia, Thailand, Vietnam; one species in China. 1. Biermannia calcarata Averyanov, Bot. Zhurn. (Moscow & trifid-tipped. Column ca. 2 mm; stipe ca. 0.5 mm. Fl. Jul–Sep. Leningrad) 73: 429. 1988. Epiphytic on trees in forests; ca. 800 m. SW Guangxi [Vietnam]. 胼胝兰 pian zhi lan Stems ca. 5 mm, base with several fleshy roots. Leaves basal, 4 or 5, oblong-lanceolate, 3–5 × ca. 1 cm, unequally bilobed. Inflorescence pendulous, 5–12 mm, 3–6-flowered; peduncle and rachis slightly flattened; floral bracts 1–3 mm.