Methylergometrine Tablets Leaflet.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Methylergometrine tablets This information is a summary only. It does not contain all information about this medicine. If you would like more information about the medicine you are taking, check with your doctor or other health care provider. No rights can be derived from the information provided in this medicine leaflet. Name of this product METHYLERGOMETRINE 0.125 mg tablets. Cardiac disorders Uncommon Chest pain. Description and composition Rare Bradycardia, tachycardia, palpitations. Pharmaceutical form Very rare Myocardial infarction, arteriospasm coronary. Coated tablets for oral administration. Active substance Vascular disorders METHYLERGOMETRINE Common Hypertension. Uncommon Hypotension. Indications Rare Vasoconstriction, vasospasm, arterial spasm. Prevention or treatment of uterine haemorrhage. Very rare Thrombophlebitis. Respiratory, thoracic and mediastinal disorders Dosage and administration Very rare Nasal congestion. Dosage Gastrointestinal disorders General target population Uncommon Vomiting, nausea. Treatment of subinvolution, lochiometra, puerperal bleeding Very rare Diarrhoea. The recommended dosage of Methylergometrine is: 1 or 2 tablets (0.125 to 0.25 Skin and subcutaneous tissue disorders mg) orally, up to 3 times daily and usually for up to 5 days. Common Skin eruptions. Uncommon Hyperhidrosis. Special populations Renal impairment / Hepatic impairment Musculoskeletal and connective tissue disorders Caution should be exercised in the presence of impaired hepatic or renal function Very rare Muscle spasms. (see section 6 Warnings and precautions). Pregnancy, puerperium and perinatal conditions Contraindications Common Abdominal pain (caused by uterine contractions). • Pregnancy; Interactions • First stage of labor; second stage of labor before delivery of the anterior Ergot alkaloids are substrates of CYP3A4. shoulder (Methylergometrine must not be used for induction or enhancement of Interactions resulting in concomitant use not being recommended labor); • Severe hypertension; CYP3A4 inhibitors • Pre-eclampsia and eclampsia; The concomitant use of Methylergometrine with potent CYP3A4 inhibitors such • Occlusive vascular disease (including ischemic heart disease); as macrolide antibiotics (e.g. troleandomycin, erythromycin, clarithromycin), HIV • Sepsis; protease or reverse transcriptase inhibitors (e.g. ritonavir, indinavir, nelfinavir, • Known hypersensitivity to methylergometrine, to other ergot alkaloids or to any delavirdine), or azole antifungals (e.g. ketoconazole, itraconazole, voriconazole) excipients of Methylergometrine. should be avoided, since this can result in an elevated exposure to methylergometrine and ergot toxicity (vasospasm and ischemia of the Warnings and precautions extremities and other tissues). General recommendation on administration Prostaglandins In breech presentation and other abnormal presentations Methylergometrine Prostaglandins (e.g. sulprostone, dinoprostone, misoprostol) facilitate contraction should not be given before delivery of the child is completed, and in multiple of the myometrium hence, Methylergometrine can potentiate the uterine action birth not before the last child has been delivered. of prostaglandins and vice versa. Active management of the third stage of labor requires obstetric supervision. Drugs (e.g. nevirapine, rifampicin) that are strong inducers of CYP3A4 are likely to Methylergometrine tablets contain lactose. Patients with rare hereditary decrease the pharmacological action of Methylergometrine. problems of galactose intolerance, severe lactase deficiency or glucose-galactose Glyceryl trinitrate and other antianginal drugs malabsorption should not take Methylergometrine tablets. Women of child-bearing potential, pregnancy, breast-feeding Breastfeeding and fertility Due to the possible side effects for the child and the reduction of the milk yield, Women of child-bearing potential Methylergometrine is not recommended for use during breast-feeding. Women Not applicable for Methylergometrine due to the targeted indications. should not breast-feed during treatment with Methylergometrine and at least 12 hours after administration of the last dose. Milk secreted during this period Pregnancy should be discarded The use of Methylergometrine in pregnancy is contraindicated because of its potent uterotonic activity. Driving and using machines Methylergometrine may cause dizziness and convulsions. Therefore, caution Breast-feeding should be exercised when driving or operating machines. In view of the possible side effects for the child and the reduction of the milk yield Methylergometrine is not recommended for use during breast-feeding. Women Adverse drug reactions should not breast-feed during treatment with Methylergometrine and at least 12 Immune system disorders hours after administration of the last dose. Milk secreted during this period Very rare Anaphylactic reactions. should be discarded. Nervous system disorders Fertility Common Headache. Not applicable for Methylergometrine due to the targeted indications. Uncommon Dizziness, convulsions. Very rare Hallucinations. Ear and labyrinth disorders Very rare Tinnitus. Lagaay International BV Van Helmontstraat 99 3029 AA Rotterdam, The Netherlands Tel: +31 - 10 4123871 Overdosage Symptoms Nausea; vomiting; hypertension or hypotension; numbness, tingling and pain in theextremities; respiratory depression; convulsions; coma. Treatment Elimination of orally ingested drug by administration of high doses of activated charcoal. Symptomatic treatment under close monitoring of the cardiovascular and the respiratory system. If sedation is required, benzodiazepines may be used. Pharmaceutical information Incompatibilities None known. Special precautions for storage Store in the refrigerator at 2-8° degrees. Lagaay International BV Van Helmontstraat 99 3029 AA Rotterdam, The Netherlands Tel: +31 - 10 4123871 .
Recommended publications
  • Oxytocin Versus Methylergometrine in the Active Management of Third Stage of Labour

    Oxytocin Versus Methylergometrine in the Active Management of Third Stage of Labour

    Open Journal of Obstetrics and Gynecology, 2014, 4, 666-671 Published Online August 2014 in SciRes. http://www.scirp.org/journal/ojog http://dx.doi.org/10.4236/ojog.2014.411093 Oxytocin versus Methylergometrine in the Active Management of Third Stage of Labour Ajantha Boopathi1*, Sujir Radhakrishnan Nayak2, Arun Rao2, Bharathi Rao2 1Andal Hospital, Cuddalore, India 2Department of Obstetrics and Gynecology, Kasturba Medical College (A Constituent of Manipal University), Mangalore, India Email: *[email protected] Received 19 June 2014; revised 15 July 2014; accepted 10 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Objective: To compare the efficacy of Oxytocin versus Methylergometrine in active management of third stage of labour in reducing risk of postpartum hemorrhage. Methods: This study was carried out by randomly assigning into two groups with 150 women in each group. Group 1 included pa- tients who received injection Oxytocin 10 IU intramuscular within one minute of the birth of the baby. Injection Methylergometrine (0.2 mg) was given intravenously at the delivery of anterior shoulder of the baby to women in Group 2. Outcome measures were the duration of third stage, blood loss, pre and post-delivery hematocrit, side effects and incidence of PPH. Statistical analysis was done using Chi square test, Fischers test, Mann Whitney test, and t test. p < 0.05 was consi- dered significant. Results: Mean duration of third stage of labour, mean blood loss, post-delivery fall in hematocrit and need for additional uterotonics were significantly less in the Group 2.
  • Biased Ligands Differentially Shape the Conformation of The

    Biased Ligands Differentially Shape the Conformation of The

    International Journal of Molecular Sciences Article Biased Ligands Differentially Shape the Conformation of the Extracellular Loop Region in 5-HT2B Receptors Katrin Denzinger, Trung Ngoc Nguyen, Theresa Noonan, Gerhard Wolber and Marcel Bermudez * Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2-4, 14195 Berlin, Germany; [email protected] (K.D.); [email protected] (T.N.N.); [email protected] (T.N.); [email protected] (G.W.) * Correspondence: [email protected] Received: 22 November 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: G protein-coupled receptors are linked to various intracellular transducers, each pathway associated with different physiological effects. Biased ligands, capable of activating one pathway over another, are gaining attention for their therapeutic potential, as they could selectively activate beneficial pathways whilst avoiding those responsible for adverse effects. We performed molecular dynamics simulations with known β-arrestin-biased ligands like lysergic acid diethylamide and ergotamine in complex with the 5-HT2B receptor and discovered that the extent of ligand bias is directly connected with the degree of closure of the extracellular loop region. Given a loose allosteric coupling of extracellular and intracellular receptor regions, we delineate a concept for biased signaling at serotonin receptors, by which conformational interference with binding pocket closure restricts the signaling repertoire of the receptor. Molecular docking studies of biased ligands gathered from the BiasDB demonstrate that larger ligands only show plausible docking poses in the ergotamine-bound structure, highlighting the conformational constraints associated with bias. This emphasizes the importance of selecting the appropriate receptor conformation on which to base virtual screening workflows in structure-based drug design of biased ligands.
  • WO 2010/099522 Al

    WO 2010/099522 Al

    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 2 September 2010 (02.09.2010) WO 2010/099522 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 45/06 (2006.01) A61K 31/4164 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/4045 (2006.01) A61K 31/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2010/025725 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 1 March 2010 (01 .03.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/156,129 27 February 2009 (27.02.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, HELSINN THERAPEUTICS (U.S.), INC.
  • Risk Assessment of Argyreia Nervosa

    Risk Assessment of Argyreia Nervosa

    Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos RIVM letter report 2019-0210 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to the: National Institute for Public Health and the Environment, and the title and year of publication are cited. DOI 10.21945/RIVM-2019-0210 W. Chen (author), RIVM L. de Wit-Bos (author), RIVM Contact: Lianne de Wit Department of Food Safety (VVH) [email protected] This investigation was performed by order of NVWA, within the framework of 9.4.46 Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 42 RIVM letter report 2019-0210 Synopsis Risk assessment of Argyreia nervosa In the Netherlands, seeds from the plant Hawaiian Baby Woodrose (Argyreia nervosa) are being sold as a so-called ‘legal high’ in smart shops and by internet retailers. The use of these seeds is unsafe. They can cause hallucinogenic effects, nausea, vomiting, elevated heart rate, elevated blood pressure, (severe) fatigue and lethargy. These health effects can occur even when the seeds are consumed at the recommended dose. This is the conclusion of a risk assessment performed by RIVM. Hawaiian Baby Woodrose seeds are sold as raw seeds or in capsules. The raw seeds can be eaten as such, or after being crushed and dissolved in liquid (generally hot water).
  • Summary of Product Characteristics

    Summary of Product Characteristics

    Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Zirtek Plus Decongestant 5mg/120mg Prolonged Release Tablet 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet provides 5 mg cetirizine dihydrochloride for immediate release, and 120 mg pseudoephedrine hydrochloride for prolonged release. Excipients with known effect: one tablet contains 43.23 mg lactose monohydrate For the full list of excipients, see section 6.1 3 PHARMACEUTICAL FORM Prolonged release tablet. White to off-white, round, biconvex circle-embossed, film-coated tablet, having a circular logo on one side. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications Cetirizine-pseudoephedrine is indicated for the treatment of symptoms such as nasal congestion, sneezing, rhinorrhoea, and nasal and ocular pruritus associated with seasonal or perennial allergic rhinitis. Cetirizine-pseudoephedrine should be administered when the anti-allergic properties of cetirizine dihydrochloride and the nasal decongestant activity of pseudoephedrine hydrochloride are desired. 4.2 Posology and method of administration Posology Adults One tablet two times a day (morning and evening), corresponding to the maximum recommended dose of 10 mg of cetirizine dihydrochloride and 240 mg of pseudoephedrine hydrochloride daily. Special populations Paediatric population Adolescents from 12 years of age and above: 1 tablet two times a day (morning and evening), with or without food. Children under 12 years of age: the use of the product is contraindicated (see sections 4.3 and 4.4). Renal impairment The dose should be reduced to 1 tablet daily in patients with moderate renal insufficiency. Hepatic impairment The dose should be reduced to 1 tablet daily in patients with moderate hepatic insufficiency.
  • Methysergide Art. 31

    Methysergide Art. 31

    20 February 2014 EMA/276466/2014 Committee for Medicinal Products for Human Use (CHMP) Assessment report Pursuant to Article 31 of Directive 2001/83/EC Methysergide containing medicinal products International non-proprietary name: methysergide Procedure No. EMEA/H/A-31/1335 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 3 1.1. Referral of the matter to the CHMP ......................................................................... 3 2. Scientific discussion ................................................................................ 3 2.1. Introduction......................................................................................................... 3 2.2. Clinical efficacy .................................................................................................... 3 2.2.1. Results ............................................................................................................. 4 2.2.2. Discussion ........................................................................................................ 9 2.3. Clinical safety ...................................................................................................
  • Albert Hofmann's Pioneering Work on Ergot Alkaloids and Its Impact On

    Albert Hofmann's Pioneering Work on Ergot Alkaloids and Its Impact On

    BIRTHDAY 83 CHIMIA 2006, 60, No. 1/2 Chimia 60 (2006) 83–87 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Albert Hofmann’s Pioneering Work on Ergot Alkaloids and Its Impact on the Search of Novel Drugs at Sandoz, a Predecessor Company of Novartis Dedicated to Dr. Albert Hofmann on the occasion of his 100th birthday Rudolf K.A. Giger* and Günter Engela Abstract: The scientific research on ergot alkaloids is fundamentally related to the work of Dr. Albert Hofmann, who was able to produce, from 1935 onwards, a number of novel and valuable drugs, some of which are still in use today. The complex chemical structures of ergot peptide alkaloids and their pluripotent pharmacological activity were a great challenge for Dr. Hofmann and his associates who sought to unravel the secrets of the ergot peptide alkaloids; a source of inspiration for the design of novel, selective and valuable medicines. Keywords: Aminocyclole · Bromocriptine Parlodel® · Dihydroergotamine Dihydergot® · Dihydro ergot peptide alkaloids · Ergobasin/ergometrin · Ergocornine · Ergocristine · α- and β-Ergocryptine · Ergolene · Ergoline · Ergoloid mesylate Hydergine® · Ergotamine Gynergen® · Ergotoxine · Lisuride · Lysergic acid diethylamide LSD · Methylergometrine Methergine® · Methysergide Deseril® · Paspalic acid · Pindolol Visken® · Psilocybin · Serotonin · Tegaserod Zelmac®/Zelnorm® · Tropisetron Navoban® Fig. 1. Albert Hofmann in 1943, 1979 and 2001 (Photos in 2001 taken by J. Zadrobilek and P. Schmetz) Dr. Albert Hofmann (Fig. 1), born on From the ‘Ergot Poison’ to *Correspondence: Dr. R.K.A. Giger January 11, 1906, started his extremely Ergotamine Novartis Pharma AG NIBR Global Discovery Chemistry successful career in 1929 at Sandoz Phar- Lead Synthesis & Chemogenetics ma in the chemical department directed The scientific research on ergot alka- WSJ-507.5.51 by Prof.
  • PRODUCT CATALOGUE 2021 Available on Product Known Teva Tech US EU Japan Korea Therapeutic Api IP File*** DMF DMF DMF DMF Area**

    PRODUCT CATALOGUE 2021 Available on Product Known Teva Tech US EU Japan Korea Therapeutic Api IP File*** DMF DMF DMF DMF Area**

    S NH2 N N O O O HN CH OH 3 N O SO3H PRODUCT CATALOGUE 2021 Available on www.teva-api.com Product Known Teva Tech US EU Japan Korea therapeutic api IP file*** DMF DMF DMF DMF area** A ABALOPARATIDE Osteoporosis ABEMACICLIB Oncology ABIRATERONE ACETATE Oncology ACALABRUTINIB Oncology AFATINIB Oncology ALCLOMETASONE DIPROPIONATE Dermatology ALLOPURINOL Rheumatology CEP AMCINONIDE Dermatology AMITRIPTYLINE HCl Neurology - Psychiatry CEP ANASTROZOLE Oncology CEP ANIDULAFUNGIN Infectious disease APALUTAMIDE* Oncology Coagulation APIXABAN inhibitors APREMILAST* Psoriasis ARIPIPRAZOLE* Neurology-Psychiatry CEP ATOMOXETINE HCl Neurology-Psychiatry ATORVASTATIN CALCIUM Lipid lowering CEP Preterm labor ATOSIBAN ACETATE prevention ATRACURIUM BESYLATE Muscle relaxant CEP AZACITIDINE Oncology AZITHROMYCIN DIHYDRATE Infectious disease CEP AZITHROMYCIN MONOHYDRATE Infectious disease CEP AZTREONAM* Infectious disease B BALOXAVIR Antiviral 2 Product Known Teva Tech US EU Japan Korea therapeutic api IP file*** DMF DMF DMF DMF area** BARICITINIB Rheumatology BECLOMETHASONE DIPROPIONATE Respiratory CEP BETAMETHASONE ACETATE Inflammation BETAMETHASONE BASE Dermatology CEP BETAMETHASONE DIPROPIONATE Dermatology CEP BETAMETHASONE VALERATE Dermatology CEP BICALUTAMIDE Oncology CEP BIVALIRUDIN Hematology BLEOMYCIN SULFATE Oncology BORTEZOMIB Oncology BREXANOLONE Neurology-Psychiatry BREXPIPRAZOLE Neurology-Psychiatry BROMOCRIPTINE MESYLATE Cardiovascular CEP BUDESONIDE Respiratory CEP BUPRENORPHINE BASE Neurology-Psychiatry CEP BUPRENORPHINE HCl Neurology-Psychiatry
  • Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor

    Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor

    pharmaceuticals Review Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor Qing Wang 1,2 , Yu Zhou 2 , Jianhui Huang 1 and Niu Huang 2,3,* 1 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; [email protected] (Q.W.); [email protected] (J.H.) 2 National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; [email protected] 3 Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China * Correspondence: [email protected]; Tel.: +86-10-80720645 Abstract: Since the first characterization of the 5-hydroxytryptamine 2B receptor (5-HT2BR) in 1992, significant progress has been made in 5-HT2BR research. Herein, we summarize the biological function, structure, and small-molecule pharmaceutical ligands of the 5-HT2BR. Emerging evidence has suggested that the 5-HT2BR is implicated in the regulation of the cardiovascular system, fibrosis disorders, cancer, the gastrointestinal (GI) tract, and the nervous system. Eight crystal complex structures of the 5-HT2BR bound with different ligands provided great insights into ligand recognition, activation mechanism, and biased signaling. Numerous 5-HT2BR antagonists have been discovered and developed, and several of them have advanced to clinical trials. It is expected that the novel 5-HT2BR antagonists with high potency and selectivity will lead to the development of first-in-class drugs in various therapeutic areas. Keywords: GPCR; 5-HT2BR; biased signaling; agonist; antagonist Citation: Wang, Q.; Zhou, Y.; Huang, J.; Huang, N. Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. 1. Introduction Pharmaceuticals 2021, 14, 76.
  • EUROPEAN PHARMACOPOEIA 10.0 Index 1. General Notices

    EUROPEAN PHARMACOPOEIA 10.0 Index 1. General Notices

    EUROPEAN PHARMACOPOEIA 10.0 Index 1. General notices......................................................................... 3 2.2.66. Detection and measurement of radioactivity........... 119 2.1. Apparatus ............................................................................. 15 2.2.7. Optical rotation................................................................ 26 2.1.1. Droppers ........................................................................... 15 2.2.8. Viscosity ............................................................................ 27 2.1.2. Comparative table of porosity of sintered-glass filters.. 15 2.2.9. Capillary viscometer method ......................................... 27 2.1.3. Ultraviolet ray lamps for analytical purposes............... 15 2.3. Identification...................................................................... 129 2.1.4. Sieves ................................................................................. 16 2.3.1. Identification reactions of ions and functional 2.1.5. Tubes for comparative tests ............................................ 17 groups ...................................................................................... 129 2.1.6. Gas detector tubes............................................................ 17 2.3.2. Identification of fatty oils by thin-layer 2.2. Physical and physico-chemical methods.......................... 21 chromatography...................................................................... 132 2.2.1. Clarity and degree of opalescence of
  • Ergometrine Maleate

    Ergometrine Maleate

    The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/237/97-FINAL June 1999 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS ERGOMETRINE MALEATE SUMMARY REPORT 1. Ergometrine is a naturally occurring alkaloid found in ergot (Claviceps purpurea). It is classified as a water-soluble lysergic acid derivative, and is an orally-active stimulant of uterine contractions. The maleate salt (ergometrine maleate) exhibits greater stability than the free base and is the usual form in which the alkaloid is used in medicinal products. It is used in veterinary medicine in the control of postpartum uterine haemorrhage, removal of fluid from atonic uteri, to prevent pro-lapsed uteri, and judiciously in terms of timing to aid in suturing the uterus after caesarean section or in replacing an everted uterus. Dose regimens are: cows and mares: 2 to 5 mg/animal (intravenously or intramuscularly); ewes, goats and sows: 0.5 to 1 mg/animal (intramuscularly). In human medicine, it is used orally and parenterally in the prevention and treatment of postpartum haemorrhage caused by uterine atony and for the stimulation of uterine involution. Usual oral doses are 500 µg 3 times daily up to 1.8 mg daily (approximately 0.03 mg/kg bw). Ergot alkaloids have been reported to be present in flour from rye, wheat and barley in amounts ranging from 0.01 to 2.36 mg/kg flour. EU legislation restricts the maximum percentage of ergot tolerated in flour to 0.1%. Total daily human intake of ergot alkaloids from contaminated foodstuffs of plant origin has been estimated as up to 7.8 µg/person.
  • Biotechnology and Genetics of Ergot Alkaloids

    Biotechnology and Genetics of Ergot Alkaloids

    Appl Microbiol Biotechnol (2001) 57:593–605 DOI 10.1007/s002530100801 MINI-REVIEW P. Tudzynski · T. Correia · U. Keller Biotechnology and genetics of ergot alkaloids Received: 28 May 2001 / Received revision: 8 August 2001 / Accepted: 17 August 2001 / Published online: 20 October 2001 © Springer-Verlag 2001 Abstract Ergot alkaloids, i.e. ergoline-derived toxic me- tions in the therapy of human CNS disorders. Chemical- tabolites, are produced by a wide range of fungi, pre- ly the ergot alkaloids are 3,4-substituted indol deriva- dominantly by members of the grass-parasitizing family tives having a tetracyclic ergoline ring structure (Fig. 1). of the Clavicipitaceae. Naturally occurring alkaloids like Based on their complexity, they can be divided into two the D-lysergic acid amides, produced by the “ergot fun- families of compounds. In the D-lysergic acid deriva- gus” Claviceps purpurea, have been used as medicinal tives, a simple amino alcohol or a short peptide chain agents for a long time. The pharmacological effects of (e.g. ergotamine) is attached to the ergoline nucleus in the various ergot alkaloids and their derivatives are due amide linkage via a carboxy group in the 8-position. In to the structural similarity of the tetracyclic ring system the simpler clavine alkaloids (e.g. agroclavine) that car- to neurotransmitters such as noradrenaline, dopamine or boxy group is replaced by a methyl or hydroxymethyl to serotonin. In addition to “classical” indications, e.g. mi- which attachment of side groups such as in the amide- graine or blood pressure regulation, there is a wide spec- type alkaloids is not possible.