Biased Ligands Differentially Shape the Conformation of The

Total Page:16

File Type:pdf, Size:1020Kb

Biased Ligands Differentially Shape the Conformation of The International Journal of Molecular Sciences Article Biased Ligands Differentially Shape the Conformation of the Extracellular Loop Region in 5-HT2B Receptors Katrin Denzinger, Trung Ngoc Nguyen, Theresa Noonan, Gerhard Wolber and Marcel Bermudez * Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2-4, 14195 Berlin, Germany; [email protected] (K.D.); [email protected] (T.N.N.); [email protected] (T.N.); [email protected] (G.W.) * Correspondence: [email protected] Received: 22 November 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: G protein-coupled receptors are linked to various intracellular transducers, each pathway associated with different physiological effects. Biased ligands, capable of activating one pathway over another, are gaining attention for their therapeutic potential, as they could selectively activate beneficial pathways whilst avoiding those responsible for adverse effects. We performed molecular dynamics simulations with known β-arrestin-biased ligands like lysergic acid diethylamide and ergotamine in complex with the 5-HT2B receptor and discovered that the extent of ligand bias is directly connected with the degree of closure of the extracellular loop region. Given a loose allosteric coupling of extracellular and intracellular receptor regions, we delineate a concept for biased signaling at serotonin receptors, by which conformational interference with binding pocket closure restricts the signaling repertoire of the receptor. Molecular docking studies of biased ligands gathered from the BiasDB demonstrate that larger ligands only show plausible docking poses in the ergotamine-bound structure, highlighting the conformational constraints associated with bias. This emphasizes the importance of selecting the appropriate receptor conformation on which to base virtual screening workflows in structure-based drug design of biased ligands. As this mechanism of ligand bias has also been observed for muscarinic receptors, our studies provide a general mechanism of signaling bias transferable between aminergic receptors. Keywords: GPCR; biased signaling; molecular dynamics; serotonin receptors; virtual screening; conformational descriptor; pharmacophore; drug design 1. Introduction G protein-coupled receptors (GPCRs) are involved in the regulation of a plethora of physiological processes, and about 35% of currently marketed therapeutics directly target GPCRs [1]. In the last decade, structural and biophysical data helped to revisit our understanding of GPCR activation and revealed a surprisingly complex pharmacology [2] including several dimensions of spatiotemporal signaling [3–8]. One important aspect of this complexity is the preference of a certain ligand–receptor complex for one intracellular transducer protein over another, commonly referred to as biased signaling or functional selectivity [9]. Signaling bias can contribute to a desired effect or trigger adverse reactions [10–12]. Its rational design remains challenging, but without any doubt, biased ligands bear a vast therapeutic potential to be uncovered [13–15]. Mechanistic understanding of ligand-triggered receptor activation is key to develop drugs with biased signaling properties. Current activation models are based on allosteric coupling of the ligand binding site with intracellular receptor regions allowing for binding of different intracellular binding partners like G Int. J. Mol. Sci. 2020, 21, 9728; doi:10.3390/ijms21249728 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 14 Int. J. Mol. Sci. 2020, 21, 9728 2 of 14 Current activation models are based on allosteric coupling of the ligand binding site with intracellular receptor regions allowing for binding of different intracellular binding partners like G proteinsproteins oror ββ-arrestin.-arrestin. ActivationActivation uponupon ligandligand bindingbinding causescauses long-rangelong-range conformationalconformational changeschanges withinwithin thethe receptor,receptor, resultingresulting inin anan outwardoutward movementmovement ofof thethe intracellularintracellular partpart ofof transmembranetransmembrane domaindomain 66 (TM6)(TM6) toto enableenable bindingbinding ofof intracellularintracellular transducerstransducers andand subsequentsubsequent releaserelease ofof secondsecond messengermessenger molecules [16]. [16]. Reciprocally, Reciprocally, G-protein G-protein binding binding causes causes a aclosure closure of ofthe the binding binding pocket pocket by bydrawing drawing together together extracellular extracellular loops loops 2 2and and 3 3(ECL (ECL22 and and ECL3, ECL3, respectively), trapping the ligandligand withinwithin thethe bindingbinding pocketpocket andand stabilizingstabilizing thethe ternaryternary GPCRGPCR complexcomplex [[17].17]. DueDue toto thethe dynamicdynamic naturenature ofof GPCRs,GPCRs, multiplemultiple receptorreceptor conformationsconformations existexist betweenbetween thethe fullyfully activeactive andand inactiveinactive state,state, andand eacheach ligandligand stabilizes a a distinct distinct ensemble ensemble of of receptor receptor co conformationsnformations [18,19]. [18,19 Thus,]. Thus, ligands ligands that that extend extend into intothe extracellular the extracellular vestibule vestibule can affect can atheffect degree the degree of binding of binding pocket pocketclosure closurevia their via interaction their interaction patterns patternswith extracellular with extracellular epitopes. epitopes. This in turn This might in turn influence might influence the degree the of degree intracellular of intracellular opening resulting opening resultingin a differential in a diff recruitmenterential recruitment of signal of transducer signal transducerss (Figure (Figure1) [20].1 The)[ 20 relationship]. The relationship between between ligand ligandinteraction interaction patterns patterns at the at extracellular the extracellular loop loop region, region, ECL ECL closure, closure, and and resulting resulting pharmacological functionsfunctions hashas recentlyrecently beenbeen studiedstudied withwith bitopicbitopic ligandsligands at muscarinic receptors (SI Figure S1) [21,22]. [21,22]. TheseThese findingsfindings show show that that ligand-dependent ligand-dependent conformational conformational constraints constraints at theat the extracellular extracellular binding binding site cansite becan linked be linked to a restrictionto a restriction of the of muscarinic the muscarinic receptor’s receptor’s signaling signaling repertoire. repertoire. Figure 1. A schematic representation of the general activation mechanism illustrates the full signaling Figure 1. A schematic representation of the general activation mechanism illustrates the full signaling repertoire of a classical orthosteric agonist (left, green circle) and the restricted conformational freedom repertoire of a classical orthosteric agonist (left, green circle) and the restricted conformational by extended molecular motives (middle, salmon shape) resulting in biased signaling. One example of freedom by extended molecular motives (middle, salmon shape) resulting in biased signaling. One such extended (bitopic) ligands is iper-8-phth, which is shown on the right in its proposed binding example of such extended (bitopic) ligands is iper-8-phth, which is shown on the right in its proposed mode at the M1 receptor [22]. While the iperoxo building block (blue surface) binds to the orthosteric binding mode at the M1 receptor [22]. While the iperoxo building block (blue surface) binds to the binding pocket, the extended molecular structure (grey shape) spatially interferes with extracellular orthosteric binding pocket, the extended molecular structure (grey shape) spatially interferes with loop regions. extracellular loop regions. The present study follows the hypothesis that this mechanism for biased signaling is transferable to otherThe aminergicpresent study receptors. follows the Given hypothesis the availability that this mechanism of structural for and biased functional signaling data, is transferable we focus to other aminergic receptors. Given the availability of structural and functional data, we focus on the on the 5-HT2BR and its co-crystallized, nature-derived, β–arrestin-biased ligands lysergic acid diethylamide5-HT2BR and its (LSD) co-crystallized, and ergotamine nature-derived, [23,24]. Weβ–arrestin-biased compare their ligands influence lysergic on extracellularacid diethylamide loop dynamics(LSD) and with ergotamine the unbiased [23,24]. endogenous We compare ligand theirserotonin influence (5-HT)on extracellular by means loop of molecular dynamics dynamics with the unbiased endogenous ligand serotonin (5-HT) by means of molecular dynamics (MD) simulations (MD) simulations and dynamic pharmacophores. The analysis of additional biased 5-HT2BR ligands fromand dynamic the BiasDB pharmacophores., a publicly available The analysis database of additional for biased biased GPCR 5-HT ligands2BR [ligands25], and from recent the structural BiasDB, a publicly available database for biased GPCR ligands [25], and recent structural data of the 5-HT1AR, data of the 5-HT1AR, 5-HT1BR, and dopamine D2 receptor support our findings [23,26–28]. Given the existence5-HT1BR, ofand pathway-specific dopamine D2 receptor binding support site conformations, our findings we[23,26 discuss–28]. implicationsGiven the existence for structure-based of pathway- approachesspecific binding in drug site design, conformations, providing
Recommended publications
  • Anti-Migraine Agents Reference Number: OH.PHAR.PPA.34 Effective Date: 01.01.21 Last Review Date: 11.20 Line of Business: Medicaid
    Clinical Policy: Anti-Migraine Agents Reference Number: OH.PHAR.PPA.34 Effective Date: 01.01.21 Last Review Date: 11.20 Line of Business: Medicaid See Important Reminder at the end of this policy for important regulatory and legal information. Description • When using a preferred agent where applicable, the number of tablets/doses allowed per month will be restricted based on the manufacturer’s package insert and/or Buckeye Health plans quantity limits. CNS AGENTS: ANTI-MIGRAINE AGENTS – ACUTE MIGRANE TREATMENT NO PA REQUIRED “PREFERRED” STEP THERAPY REQUIRED PA REQUIRED “NON-PREFERRED” “PREFERRED” NARATRIPTAN (GENERIC OF AMERGE®) NURTEC™ ODT (rimegepant) ALMOTRIPTAN (generic of Axert®) RIZATRIPTAN TABLETS (GENERIC OF CAFERGOT® (ergotamine w/caffeine) MAXALT®) ELETRIPTAN (generic of Relpax®) RIZATRIPTAN ODT (GENERIC OF ERGOMAR® (ergotamine) MAXALT-MLT®) FROVA® (frovatriptan) SUMATRIPTAN TABLETS, NASAL SPRAY, MIGERGOT® (ergotamine w/caffeine) INJECTION (GENERIC OF MIGRANAL® (dihydroergotamine) IMITREX®) ONZETRA™ XSAIL™ (sumatriptan) REYVOW™ (lasmiditan) SUMAVEL DOSEPRO® (sumatriptan) TOSYMRA® (sumatriptan) TREXIMET® (sumatriptan/naproxen) UBRELVY™ (ubrogepant)* ZOLMITRIPTAN (generic of Zomig®) ZOLMITRIPTAN ODT (generic of Zomig ZMT®) ZOMIG® NASAL SPRAY (zolmitriptan) CNS AGENTS: ANTI-MIGRAINE AGENTS – CLUSTER HEADACHE TREATMENT NO PA REQUIRED “PREFERRED” PA REQUIRED “NON-PREFERRED” VERAPAMIL (Generic of Calan®) EMGALITY™ (galcanezumab) VERAPAMIL SR/ER (Generic of Calan SR®, Isoptin SR®, Verelan®) CNS AGENTS: ANTI-MIGRAINE AGENTS – PROPHYLAXIS TREATMENT NO PA REQUIRED “PREFERRED” STEP THERAPY REQUIRED PA REQUIRED “NON-PREFERRED” (Trials of at least 3 controller “PREFERRED” medications) Cardiovascular Agents: Beta-blockers AIMOVIG™ (erenumab-aooe) † EMGALITY™ (galcanezumab) CNS Agents: Anticonvulsants AJOVY™ (fremanezumab-vfrm) * CNS Agents: Serotonin-norepinephrine reuptake inhibitors CNS Agents: Tricyclic antidepressants †Initial Dose is limited to 70mg once monthly; may request dose increase if 70mg fails to provide adequate relief over two consecutive months.
    [Show full text]
  • Pericardial, Retroperitoneal, and Pleural Fibrosis Induced by Pergolide
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.66.1.79 on 1 January 1999. Downloaded from J Neurol Neurosurg Psychiatry 1999;66:79–81 79 SHORT REPORT Pericardial, retroperitoneal, and pleural fibrosis induced by pergolide S Shaunak, A Wilkins, J B Pilling, D J Dick Abstract 1992, the emergence of motor fluctuations led Three patients with Parkinson’s disease to the introduction of pergolide, and the dose are described who developed pericardial, of this was gradually increased to a maximum retroperitoneal, and pleural fibrosis asso- of 1mg/day. 1n 1994, 2 years after the ciated with pergolide treatment. Surgical introduction of pergolide, the patient devel- intervention was required in all three oped left flank pain with weight loss, and was cases, either to reach a tissue diagnosis or found to have a mild anaemia (haemoglobin for potentially life threatening complica- 10.4 g/dl), with indices suggesting iron defi- tions. Symptoms emerged on average 2 ciency, and an ESR of 40 mm/h. Upper gastro- years after the institution of treatment, intestinal endoscopy and barium enema gave and were suYciently non-specific to cause negative results. Seven months later right sided significant delays in diagnosis in all cases. chest pain and a non-productive cough devel- The erythrocyte sedimentation rate (ESR) oped; investigations confirmed persistent anae- was raised in the two patients in whom it mia, an ESR of 55 mm/h, and bilateral pleural was measured. Serosal fibrosis is a rarely thickening on chest radiography and CT. Lung reported adverse eVect of pergolide treat- function tests showed a reduction in total lung ment, although it is well described with capacity of 36% with no fall in transfer factor, other dopamine agonists.
    [Show full text]
  • Oxytocin Versus Methylergometrine in the Active Management of Third Stage of Labour
    Open Journal of Obstetrics and Gynecology, 2014, 4, 666-671 Published Online August 2014 in SciRes. http://www.scirp.org/journal/ojog http://dx.doi.org/10.4236/ojog.2014.411093 Oxytocin versus Methylergometrine in the Active Management of Third Stage of Labour Ajantha Boopathi1*, Sujir Radhakrishnan Nayak2, Arun Rao2, Bharathi Rao2 1Andal Hospital, Cuddalore, India 2Department of Obstetrics and Gynecology, Kasturba Medical College (A Constituent of Manipal University), Mangalore, India Email: *[email protected] Received 19 June 2014; revised 15 July 2014; accepted 10 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Objective: To compare the efficacy of Oxytocin versus Methylergometrine in active management of third stage of labour in reducing risk of postpartum hemorrhage. Methods: This study was carried out by randomly assigning into two groups with 150 women in each group. Group 1 included pa- tients who received injection Oxytocin 10 IU intramuscular within one minute of the birth of the baby. Injection Methylergometrine (0.2 mg) was given intravenously at the delivery of anterior shoulder of the baby to women in Group 2. Outcome measures were the duration of third stage, blood loss, pre and post-delivery hematocrit, side effects and incidence of PPH. Statistical analysis was done using Chi square test, Fischers test, Mann Whitney test, and t test. p < 0.05 was consi- dered significant. Results: Mean duration of third stage of labour, mean blood loss, post-delivery fall in hematocrit and need for additional uterotonics were significantly less in the Group 2.
    [Show full text]
  • Evidence from Horses with Pituitary Pars Intermedia Dysfunction Jessica S
    Fortin et al. BMC Veterinary Research (2020) 16:356 https://doi.org/10.1186/s12917-020-02565-3 RESEARCH ARTICLE Open Access Restoring pars intermedia dopamine concentrations and tyrosine hydroxylase expression levels with pergolide: evidence from horses with pituitary pars intermedia dysfunction Jessica S. Fortin1*, Matthew J. Benskey2, Keith J. Lookingland2, Jon S. Patterson1, Erin B. Howey1, John L. Goudreau2,3 and Harold C. Schott II4* Abstract Background: Pituitary pars intermedia dysfunction (PPID) develops slowly in aged horses as degeneration of hypothalamic dopaminergic neurons leads to proliferation of pars intermedia (PI) melanotropes through hyperplasia and adenoma formation. Dopamine (DA) concentrations and tyrosine hydroxylase (TH) immunoreactivity are markedly reduced in PI tissue of PPID-affected equids and treatment with the DA receptor agonist pergolide results in notable clinical improvement. Thus, we hypothesized that pergolide treatment of PPID-affected horses would result in greater DA and TH levels in PI tissue collected from PPID-affected horses versus untreated PPID-affected horses. To test this hypothesis, pituitary glands were removed from 18 horses: four untreated PPID-affected horses, four aged and four young horses without signs of PPID, and six PPID-affected horses that had been treated with pergolide at 2 µg/kg orally once daily for 6 months. DA concentrations and TH expression levels in PI tissues were determined by high performance liquid chromatography with electrochemical detection and Western blot analyses, respectively. Results: DA and TH levels were lowest in PI collected from untreated PPID-affected horses while levels in the pergolide treated horses were similar to those of aged horses without signs of PPID.
    [Show full text]
  • WO 2014/106238 Al 3 July 2014 (03.07.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/106238 Al 3 July 2014 (03.07.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/404 (2006.01) C07D 209/04 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61P 25/18 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, PCT/US2013/078453 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 3 1 December 2013 (3 1.12.2013) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/747,499 31 December 2012 (3 1. 12.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: FANG, Qun, Kevin [US/US]; 34 Atwood TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Street, Westfield, MA 02482 (US).
    [Show full text]
  • Progress and Prospects of Ergot Alkaloid Research
    Progress and Prospects of Ergot Alkaloid Research Joydeep Mukherjee, Miriam Menge Institut für Technische Chemie, Universität Hannover, Callinstr. 3, D-30167 Hannover, Germany E-mail: [email protected] Ergot alkaloids, produced by the plant parasitic fungi Claviceps purpurea are important pharmaceuticals. The chemistry, biosynthesis, bioconversions, physiological controls, and biochemistry have been extensively reviewed by earlier authors.We present here the research done on the organic synthesis of the ergot alkaloids during the past two decades. Our aim is to apply this knowledge to the synthesis of novel synthons and thus obtain new molecules by directed biosynthesis. The synthesis of clavine alkaloids, lysergic acid derivatives, the use of tryptophan as the starting material, the chemistry of 1,3,4,5-tetrahydrobenzo[cd]indoles, and the structure activity relationships for ergot alkaloids have been discussed. Recent advances in the molecular biology and enzymology of the fungus are also mentioned. Application of oxygen vectors and mathematical modeling in the large scale production of the alkaloids are also discussed. Finally, the review gives an overview of the use of modern analytical methods such as capillary electrophoresis and two-dimensional fluorescence spectroscopy. Keywords. Ergot, Alkaloid synthesis, Claviceps, Directed biosynthesis, Bioreactors 1Introduction . 2 2 Chemistry, Bioconversions, and Directed Biosynthesis . 2 2.1 Chemical Synthesis . 3 2.1.1 Chemical Structures . 3 2.1.1.1 Clavine Alkaloids . 3 2.1.1.2 Simple Lysergic Acid Derivatives . 4 2.1.1.3 Ergopeptines . 4 2.1.1.4 Ergopeptams . 5 2.1.2 Synthesis of Clavine Alkaloids and Lysergic Acid Derivatives . 5 2.1.3 Use of Tryptophan as the Starting Material .
    [Show full text]
  • Cabergoline Patient Handout
    Cabergoline For the Patient: Cabergoline Other names: DOSTINEX® • Cabergoline (ca-BERG-go-leen) is used to treat cancers that cause the body to produce too much of a hormone called prolactin. Cabergoline helps decrease the size of the cancer and the production of prolactin. It is a tablet that you take by mouth. • Tell your doctor if you have ever had an unusual or allergic reaction to bromocriptine or other ergot derivatives, such as pergoline (PERMAX®) and methysergide (SANSERT®), before taking cabergoline. • Blood tests and blood pressure measurement may be taken while you are taking cabergoline. The dose of cabergoline may be changed based on the test results and/or other side effects. • It is important to take cabergoline exactly as directed by your doctor. Make sure you understand the directions. Take cabergoline with food. • If you miss a dose of cabergoline, take it as soon as you can if it is within 2 days of the missed dose. If it is over 2 days since your missed dose, skip the missed dose and go back to your usual dosing times. • Other drugs such as azithromycin (ZITHROMAX®), clarithromycin (BIAXIN®), erythromycin, domperidone, metoclopramide, and some drugs used to treat mental or mood problems may interact with cabergoline. Tell your doctor if you are taking these or any other drugs as you may need extra blood tests or your dose may need to be changed. Check with your doctor or pharmacist before you start or stop taking any other drugs. • The drinking of alcohol (in small amounts) does not appear to affect the safety or usefulness of cabergoline.
    [Show full text]
  • Prascend® (Pergolide Tablets)1 Mg
    PRASCEND- pergolide tablet Boehringer Ingelheim Animal Health USA Inc. ---------- Prascend® (pergolide tablets) 1 mg Dopamine receptor agonist for oral use in horses only Caution: Federal law restricts this drug to use by or on the order of a licensed veterinarian. Description: PRASCEND Tablets are rectangular light red colored, half-scored tablets containing 1 mg pergolide, as pergolide mesylate. Pergolide mesylate is a synthetic ergot derivative and is a potent dopamine receptor agonist. The chemical name of pergolide mesylate is 8β-[(Methylthio) methyl]-6- propylergoline monomethanesulfonate. The chemical structure is: Indication: For the control of clinical signs associated with Pituitary Pars Intermedia Dysfunction (Equine Cushing’s Disease) in horses. Dosage and Administration: Administer orally at a starting dose of 2 mcg/kg once daily. Dosage may be adjusted to effect, not to exceed 4 mcg/kg daily. It has been reported that pergolide tablets may cause eye irritation, an irritating smell, or headache when PRASCEND Tablets are split or crushed. PRASCEND Tablets should not be crushed due to the potential for increased human exposure and care should be taken to minimize exposure when splitting tablets. The tablets are scored and the calculated dosage should be provided to the nearest one-half tablet increment (see Table 1). Table 1 Dosing Table Dosage Dosage Body Weight 2 mcg/kg 4 mcg/kg 136 - 340 kg 0.5 tablet 1 tablet (300 - 749 lb) 341 - 567 kg 1 tablet 2 tablets (750 - 1,249 lb) 568 - 795 kg 1.5 tablets 3 tablets (1,250 - 1,749 lb) 796 - 1,022 kg 2 tablets 4 tablets (1,750 - 2,249 lb) Dosing should be titrated according to individual response to therapy to achieve the lowest effective dose.
    [Show full text]
  • WO 2010/099522 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 2 September 2010 (02.09.2010) WO 2010/099522 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 45/06 (2006.01) A61K 31/4164 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/4045 (2006.01) A61K 31/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2010/025725 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 1 March 2010 (01 .03.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/156,129 27 February 2009 (27.02.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, HELSINN THERAPEUTICS (U.S.), INC.
    [Show full text]
  • Risk Assessment of Argyreia Nervosa
    Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos RIVM letter report 2019-0210 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to the: National Institute for Public Health and the Environment, and the title and year of publication are cited. DOI 10.21945/RIVM-2019-0210 W. Chen (author), RIVM L. de Wit-Bos (author), RIVM Contact: Lianne de Wit Department of Food Safety (VVH) [email protected] This investigation was performed by order of NVWA, within the framework of 9.4.46 Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 42 RIVM letter report 2019-0210 Synopsis Risk assessment of Argyreia nervosa In the Netherlands, seeds from the plant Hawaiian Baby Woodrose (Argyreia nervosa) are being sold as a so-called ‘legal high’ in smart shops and by internet retailers. The use of these seeds is unsafe. They can cause hallucinogenic effects, nausea, vomiting, elevated heart rate, elevated blood pressure, (severe) fatigue and lethargy. These health effects can occur even when the seeds are consumed at the recommended dose. This is the conclusion of a risk assessment performed by RIVM. Hawaiian Baby Woodrose seeds are sold as raw seeds or in capsules. The raw seeds can be eaten as such, or after being crushed and dissolved in liquid (generally hot water).
    [Show full text]
  • Summary of Product Characteristics
    Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Zirtek Plus Decongestant 5mg/120mg Prolonged Release Tablet 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet provides 5 mg cetirizine dihydrochloride for immediate release, and 120 mg pseudoephedrine hydrochloride for prolonged release. Excipients with known effect: one tablet contains 43.23 mg lactose monohydrate For the full list of excipients, see section 6.1 3 PHARMACEUTICAL FORM Prolonged release tablet. White to off-white, round, biconvex circle-embossed, film-coated tablet, having a circular logo on one side. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications Cetirizine-pseudoephedrine is indicated for the treatment of symptoms such as nasal congestion, sneezing, rhinorrhoea, and nasal and ocular pruritus associated with seasonal or perennial allergic rhinitis. Cetirizine-pseudoephedrine should be administered when the anti-allergic properties of cetirizine dihydrochloride and the nasal decongestant activity of pseudoephedrine hydrochloride are desired. 4.2 Posology and method of administration Posology Adults One tablet two times a day (morning and evening), corresponding to the maximum recommended dose of 10 mg of cetirizine dihydrochloride and 240 mg of pseudoephedrine hydrochloride daily. Special populations Paediatric population Adolescents from 12 years of age and above: 1 tablet two times a day (morning and evening), with or without food. Children under 12 years of age: the use of the product is contraindicated (see sections 4.3 and 4.4). Renal impairment The dose should be reduced to 1 tablet daily in patients with moderate renal insufficiency. Hepatic impairment The dose should be reduced to 1 tablet daily in patients with moderate hepatic insufficiency.
    [Show full text]
  • Wednesday, July 10, 2019 4:00Pm
    Wednesday, July 10, 2019 4:00pm Oklahoma Health Care Authority 4345 N. Lincoln Blvd. Oklahoma City, OK 73105 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review (DUR) Board Members FROM: Melissa Abbott, Pharm.D. SUBJECT: Packet Contents for DUR Board Meeting – July 10, 2019 DATE: July 3, 2019 NOTE: The DUR Board will meet at 4:00pm. The meeting will be held at 4345 N. Lincoln Blvd. Enclosed are the following items related to the July meeting. Material is arranged in order of the agenda. Call to Order Public Comment Forum Action Item – Approval of DUR Board Meeting Minutes – Appendix A Update on Medication Coverage Authorization Unit/SoonerPsych Program Update – Appendix B Action Item – Vote to Prior Authorize Jornay PM™ [Methylphenidate Extended-Release (ER) Capsule], Evekeo ODT™ [Amphetamine Orally Disintegrating Tablet (ODT)], Adhansia XR™ (Methylphenidate ER Capsule), and Sunosi™ (Solriamfetol Tablet) – Appendix C Action Item – Vote to Prior Authorize Balversa™ (Erdafitinib) – Appendix D Action Item – Vote to Prior Authorize Annovera™ (Segesterone Acetate/Ethinyl Estradiol Vaginal System), Bijuva™ (Estradiol/Progesterone Capsule), Cequa™ (Cyclosporine 0.09% Ophthalmic Solution), Corlanor® (Ivabradine Oral Solution), Crotan™ (Crotamiton 10% Lotion), Gloperba® (Colchicine Oral Solution), Glycate® (Glycopyrrolate Tablet), Khapzory™ (Levoleucovorin Injection), Qmiiz™ ODT [Meloxicam Orally Disintegrating Tablet (ODT)], Seconal Sodium™ (Secobarbital
    [Show full text]