Mosquitoes, Midges and Microbiota and Midges Mosquitoes

Total Page:16

File Type:pdf, Size:1020Kb

Mosquitoes, Midges and Microbiota and Midges Mosquitoes Mosquitoes, midges and microbiota Mosquitoes, midges and microbiota midges and microbiota Mosquitoes, European vector diversity and the spread of pathogens Tim W.R. Möhlmann Tim W.R. Möhlmann W.R. Tim Mosquitoes, midges and microbiota European vector diversity and the spread of pathogens Tim W.R. Möhlmann Thesis committee Promotor Prof. Dr M. Dicke Professor of Entomology Wageningen University & Research Co-promotors Dr C.J.M. Koenraadt Associate Professor, Laboratory of Entomology Wageningen University & Research Dr L.S. van Overbeek Senior researcher, Biointeractions and Plant Health Wageningen University & Research Other Members Prof. Dr H.F.J. Savelkoul, Wageningen University & Research Prof. Dr P.A. van Rijn, Wageningen Bioveterinary Research Dr M.J.J. Schrama, Leiden University Dr S. Carpenter, Pirbright Institute, Pirbright, UK This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology & Resource Conservation. Mosquitoes, midges and microbiota European vector diversity and the spread of pathogens Tim W.R. Möhlmann Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 22 March 2019 at 4 p.m. in the Aula. Tim W.R. Möhlmann Mosquitoes, midges and microbiota European vector diversity and the spread of pathogens 280 pages. PhD thesis, Wageningen University, Wageningen, The Netherlands (2019) With references, with summary in English ISBN 978-94-6343-395-2 DOI: 10.18174/466379 Table of contents Chapter 1 9 General introduction Chapter 2 27 Community analysis of the abundance and diversity of mosquito species (Diptera: Culicidae) in three European countries at different latitudes Chapter 3 47 Latitudinal diversity of Culex pipiens biotypes and hybrids in farm, peri-urban, and wetland habitats in Europe Chapter 4 59 Community analysis of the abundance and diversity of biting midge species (Diptera: Ceratopogonidae) in three European countries at different latitudes Chapter 5 75 Latitudinal diversity of biting midge species within the Obsoletus group across three habitats in Europe Chapter 6 89 Biting midge dynamics and bluetongue transmission: A multiscale model linking catch data with climate and disease outbreaks Chapter 7 129 Species identity, life history, and geographic distance influence gut bacterial communities in lab-reared and European field-collected Culicoides biting midges Chapter 8 159 Impact of gut bacteria on the infection and transmission of pathogenic arboviruses by biting midges and mosquitoes Chapter 9 181 Vector competence of biting midges and mosquitoes for Shuni virus Chapter 10 201 General discussion References 217 Summary 255 Acknowledgements 261 Curriculum Vitae 269 List of publications 273 Education statement 277 Chapter 1 General introduction Chapter 1 Introduction A community is an assemblage of organisms found in a certain place and time. Often communities are dominated by a few very common species. However, the composition of a community can change over time (Morin, 2009). Communities occur on a large scale as well as on a more local scale such as an insect community around a livestock farm. Even the smallest organisms such as bacteria and viruses form communities within larger scale environments. The close interaction among species in a community means that a shift in species occurrence within a community can be expected to have an effect on the other species within the same community, as well as the environment or ecosystem that supports this community (Chapin et al., 2000; Ives & Cardinale, 2004; Wang et al., 2011). Both on a large scale, as well as on a small scale, these changes can have a profound impact on the community composition and their effects on the ecosystem at large. Insects play a crucial role in many ecosystems and the communities therein. With an estimation of several millions of insect species worldwide, they can be found almost everywhere in the world (Stork, 2018). Several insect species have become dependent on blood from other animals for their own reproduction (Lehane, 2005; Shaw et al., 2015). Females of these so- called haematophagous insects take a blood meal from a host to develop their eggs. A female can develop several egg batches during her lifetime and, therefore, has to take multiple blood meals (Lehane, 2005). During a blood meal, the female can take up pathogens that circulate in the host’s blood. Some pathogens utilize these blood-feeding insects as a vehicle to get to a new host. Insects that can transmit pathogens in this way are, therefore, referred to as vectors. Some of the well-known insect vectors of human and animal pathogens are mosquitoes, ticks and biting midges (Lehane, 2005). One Health With a constantly growing human population, increased travel and trade around the globe and global climate change, we face new challenges such as food security and food safety as well as increased risks of infectious diseases (Purse et al., 2008; Costello et al., 2009; Keesing et al., 2010; Kilpatrick & Randolph, 2012; McMichael, 2013). In a One Health approach, these challenges are tackled with the inclusion of human, veterinary, wildlife, environmental and ecological aspects. These aspects cannot be considered separately if we want to develop durable solutions for these global challenges. For example, to secure sufficient food production for a growing human population, crop production and livestock farms are expanded and intensified. Higher densities of domestic animals can lead to increased risks of animal-disease outbreaks. Often these diseases originate from wildlife populations and are initiated by direct or indirect contacts between wildlife and domesticated animals (Gortázar et al., 2007). To tackle these global problems a One Health approach is key. Prevention of large disease outbreaks in both wildlife and livestock will also protect human health. 10 General introduction Diseases cause major losses in animal production and simultaneously pose a threat to human health due to their zoonotic potential. Over 200 zoonotic diseases that infect both animals and humans are recognized as a threat for animal and human health. Of all emerging infectious 1 diseases, over 60% is zoonotic and of these zoonotic diseases more than 70% originates from wildlife animals (Jones et al., 2008). Vector-borne pathogens are responsible for more than 15% of all emerging infectious diseases and can harm both animals and humans (Jones et al., 2008; WHO, 2017). Combatting vector-borne infectious diseases is, therefore, a perfect example of requiring an transdisciplinary approach due to the complex epidemiology of the diseases, interactions with humans, livestock, wildlife and insect vectors, economic importance, and the multifaceted management of control and prevention (Costello et al., 2009). Due to increased travel and trade, exotic vector species are repeatedly introduced into new environments. Simultaneously, global rising temperatures provide favourable conditions for these exotic vector species at new locations where the vectors may become established. In addition, increased temperatures accelerate the development of insect vectors, thereby boosting their populations. Finally, higher temperatures increase virus proliferation in the vector, thereby reducing the extrinsic incubation period, which leads to a higher vectorial capacity. These factors all increase the potential of vector-borne pathogen transmission, and consequently increase the risk of disease outbreaks (Kilpatrick & Randolph, 2012). The global challenges associated with vector-borne diseases need integrated solutions to improve animal and human health. Identification of endemic and exotic vector species, monitoring of vector abundance, predictions of pathogen transmission by vectors, optimization of existing and development of new control methods and testing vector competence of endemic vector species for emerging virus strains will all support preparedness for future disease outbreaks. Only through an integrated approach that involves experts from different scientific disciplines can such solutions be achieved and our preparedness for future disease risks be improved (Garros et al., 2018). Vectors Mosquitoes (Culicidae) and biting midges (Culicoides spp.) are important vectors of pathogens. Mosquitoes can transmit pathogens such as Plasmodium, Zika virus (ZIKV), Chikungunya virus (CHIKV) and West Nile virus (WNV). Biting midges are known to transmit Oropouche virus (OROV), African horse sickness virus (AHSV), Schmallenberg virus (SBV) and bluetongue virus (BTV) (Mellor, 1990; Hubálek & Halouzka, 1999; Rasmussen et al., 2012; Weaver & Lecuit, 2015; Benelli & Romano, 2017; Vogels et al., 2017). Only female mosquitoes and biting midges take blood meals for the development of their eggs. The eggs are deposited in, or close to water or a moist environment. The larvae and pupae of mosquitoes and biting midges have a (semi-)aquatic lifestyle. Larvae of mosquitoes prefer (small) standing water bodies, whereas larvae of biting midges inhabit moist environments rich in organic material, 11 Chapter 1 such as mud, tree holes or animal dung (Murray, 1957; Foxi & Delrio, 2010; Steinke et al., 2016). The larvae of both mosquitoes and biting midges are detritivorous or omnivorous and feed on animal- and plant-derived material in their environment (Conte et al., 2007).
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Download the File
    HORIZONTAL AND VERTICAL TRANSMISSION OF A PANTOEA SP. IN CULEX SP. A University Thesis Presented to the Faculty of California State University, East Bay In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Science By Alyssa Nicole Cifelli September, 2015 Copyright © by Alyssa Cifelli ii Abstract Mosquitoes serve as vectors for several life-threatening pathogens such as Plasmodium spp. that cause malaria and Dengue viruses that cause dengue hemorrhagic fever. Control of mosquito populations through insecticide use, human-mosquito barriers such as the use of bed nets, and control of standing water, such as areas where rainwater has collected, collectively work to decrease transmission of pathogens. None, however, continue to work to keep disease incidence at acceptable levels. Novel approaches, such as paratransgenesis are needed that work specifically to interrupt pathogen transmission. Paratransgenesis employs symbionts of insect vectors to work against the pathogens they carry. In order to take this approach a candidate symbiont must reside in the insect where the pathogen also resides, the symbiont has to be safe for use, and amenable to genetic transformation. For mosquito species, Pantoea agglomerans is being considered for use because it satisfies all of these criteria. What isn’t known about P. agglomerans is how mosquitoes specifically acquire this bacterium, although given that this bacterium is a typical inhabitant of the environment it is likely they acquire it horizontally through feeding and/or exposure to natural waters. It is possible that they pass the bacteria to their offspring directly by vertical transmission routes. The goal of my research is to determine means of symbiont acquisition in Culex pipiens, the Northern House Mosquito.
    [Show full text]
  • Diptera: Culicidae) Colombian Populations Cannot Be Differentiated by Isoenzymes
    Population genetics of Psorophora in Colombia 229 Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes Manuel Ruiz-Garcia1, Diana Ramirez1, Felio Bello2 and Diana Alvarez1 1Unidad de Genetica (Genetica de Poblaciones-Biologia Evolutiva), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana. CRA 7ª No. 43-82, Bogota DC, Colombia 2Departamento de Biología, Universidad de La Salle, Bogota DC, Colombia Corresponding author: M. Ruiz-Garcia E-mail: [email protected] Genet. Mol. Res. 2 (2): 229-259 (2003) Received November 8, 2002 Accepted May 30, 2003 Published June 30, 2003 ABSTRACT. Two populations of the mosquito Psorophora columbiae from the central Andean area of Colombia and one population of Ps. toltecum from the Atlantic coast of Colombia were analyzed for 11 isoen- zyme markers. Psorophora columbiae and Ps. toltecum are two of the main vectors of Venezuelan equine encephalitis. We found no conspicu- ous genetic differences between the two species. The relatively high gene flow levels among these populations indicate that these are not two different species or that there has been recent divergence between these taxa. In addition, no global differential selection among the loci was detected, although the α-GDH locus showed significantly less genetic heterogeneity than the remaining loci, which could mean that homogeniz- ing natural selection acts at this locus. No isolation by distance was de- tected among the populations, and a spatial population analysis showed opposite spatial trends among the 31 alleles analyzed. Multiregression analyses showed that both expected heterozygosity and the average num- ber of alleles per locus were totally determined by three variables: alti- tude, temperature and size of the human population at the locality.
    [Show full text]
  • Psorophora Columbiae (Dyar & Knab) (Insecta: Diptera: Culicidae)1 Christopher S
    EENY-735 Dark Rice Field Mosquito (suggested common name) Psorophora columbiae (Dyar & Knab) (Insecta: Diptera: Culicidae)1 Christopher S. Bibbs, Derrick Mathias, and Nathan Burkett-Cadena2 Introduction Psorophora columbiae is a member of the broader Psorphora confinnis species complex (a group of closely-related spe- cies) that occurs across much of North and South America. This mosquito is associated with sun-exposed ephemeral water sources such as pooled water in agricultural lands and disturbed or grassy landscapes. The ubiquity of these habitats among agrarian and peridomestic landscapes contribute to explosive abundance of Psorophora columbiae following periods of high precipitation. Psorophora colum- biae is both a common nuisance mosquito and significant livestock pest. Common names of Psorophora columbiae vary by Figure 1. Psorophora columbiae (Dyar & Knab) adult female. region. In rice-growing regions of Arkansas, Florida, and Credits: Nathan Burkett-Cadena, UF/IFAS Louisiana Psorophora columbiae is known as the dark rice field mosquito because of its overall dark coloration and Synonymy proliferation in flooded rice fields. In the Atlantic Seaboard Janthinosoma columbiae Dyar & Knab (1906) region Psorophora columbiae is colloquially referred to as the glades mosquito or the Florida glades mosquito (King Janthinosoma floridense Dyar & Knab (1906) et al. 1960) due to its association with grasslands (glades) in otherwise forested areas. Janthinosoma texanum Dyar & Knab (1906) From the Integrated Taxonomic Information System and International Commission on Zoological Nomenclature. 1. This document is EENY-735, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date August 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • •3,500 Species of Flies Are Mosquitoes •Occur on Every Continent Except Antarctica
    4/13/2016 •3,500 species of flies are mosquitoes •Occur on every continent except Antarctica. •Most important arthropod affecting human and animal health. from Bohart and Washino. Mosquitoes of California • The fly order (Diptera) • Family Culicidae • long proboscis • long legs • scales on wing veins • 172 species in U.S. • 85 species in Texas • 37 species in Dallas Co. (DCHHS) 1 4/13/2016 Mosquito life cycle •Aquatic insects • Adults live 4‐30 days adult •4‐14+ days from egg to adult pupa •Strong to weak fliers, depending on species eggs •Potential disease transmitters larva US Armed Forces Pest Management Board Photos: Institute for Clinical Pathology and Medical Research, University of Sydney, Australia Ovitrap with eggs of Aedes aegypti Mosquito feeding 2 4/13/2016 Zika virus Chikungunya virus Chicago, Illinois Harris, Co. Texas West Nile virus Dengue virus 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Hamer et al. PLoS ONE 2011 Analysis performed using data from Molaei et al. 2007 Two Basic Types •Typically live 4‐5 days •Standing water species (up to one month) • Aedes albopictus/aegypti •Excellent fliers (5‐10 • Aedes solicitans miles or more) • Culex quinquefasciatus •eggs survive up to 2 •Floodwater species years in soil • Psorophora columbiae • Aedes vexans •painful bites • Difficult to control due to flight range • drainage of marshes • floodwater control • community fogging • avoidance • Water need only stand 3‐4 days to breed mosquitoes • Not as frequent vectors of human disease (except Cx. Photo by Sean McCann, BugGuide.net tarsalis in western U.S.) 3 4/13/2016 Culex species responsible for WNV transmission to humans Culex tarsalis Culex pipiens Cx.
    [Show full text]
  • Pest Management News
    Pest Management News Dr. John D. Hopkins, Associate Professor and Extension Entomologist – Coeditor Dr. Kelly M. Loftin, Professor and Extension Entomologist – Coeditor Contributors Dr. Rebecca McPeake, Professor and Wildlife Extension Specialist Dr. Bob Scott, Professor and Extension Weed Scientist Sherrie E. Smith, Plant Pathology Instructor, Plant Health Clinic Diagnostician Letter #4 August 31, 2017 ________________________________________________________________________________ Mosquitoes in Arkansas: the Top Five John D. Hopkins Mosquitoes represent a significant biting nuisance for the majority of Arkansans. To the unlucky few, mosquitoes can also vector a myriad of potentially serious diseases. Arkansas is home to some 62 mosquito species (Darsie & Ward, 1981; Lancaster, Barnes, & Roberts, 1968; McNeel & Ferguson, 1954) with most having little or no impact of man. The top five mosquitoes in Arkansas (Meisch, personal communication) include: Psorophora columbiae (Dyar & Knab) – dark ricefield mosquito; Anopheles quadrimaculatus Say – common malaria mosquito; Aedes vexans (Meigen) – floodwater mosquito; Aedes albopictus (Skuse) – Asian tiger mosquito; and Culex quinquefasciatus Say – southern house mosquito. Dark Ricefield Mosquito (Meisch, 1994) In Arkansas, this mosquito reaches its greatest Dark Ricefield Mosquito, Psorophora abundance in the rice growing areas of the state. In columbiae (Dyar & Knab) rice country, it is the most troublesome mosquito through June (population diminishes with the heat of summer). This mosquito when attacking in large numbers, has been reported to kill livestock. Other studies have shown severe losses in weight gain and milk production resulting from the bloodfeeding activity of this mosquito. Psorophora columbiae also causes extreme annoyance to people. The mosquito is an important vector of Venezuelan equine encephalitis and anaplasmosis in cattle. Eggs are deposited on moist soil which is subject to flooding by water from rainfall or irrigation.
    [Show full text]
  • Mosquito Management Plan and Environmental Assessment
    DRAFT Mosquito Management Plan and Environmental Assessment for the Great Meadows Unit at the Stewart B. McKinney National Wildlife Refuge Prepared by: ____________________________ Date:_________________________ Refuge Manager Concurrence:___________________________ Date:_________________________ Regional IPM Coordinator Concured:______________________________ Date:_________________________ Project Leader Approved:_____________________________ Date:_________________________ Assistant Regional Director Refuges, Northeast Region Table of Contents Chapter 1 PURPOSE AND NEED FOR PROPOSED ACTION ...................................................................................... 5 1.1 Introduction ....................................................................................................................................................... 5 1.2 Refuge Location and Site Description ............................................................................................................... 5 1.3 Proposed Action ................................................................................................................................................ 7 1.3.1 Purpose and Need for Proposed Action ............................................................................................................ 7 1.3.2 Historical Perspective of Need .......................................................................................................................... 9 1.3.3 Historical Mosquito Production Areas of the Refuge ....................................................................................
    [Show full text]
  • P2699 Identification Guide to Adult Mosquitoes in Mississippi
    Identification Guide to Adult Mosquitoes in Mississippi es Identification Guide to Adult Mosquitoes in Mississippi By Wendy C. Varnado, Jerome Goddard, and Bruce Harrison Cover photo by Dr. Blake Layton, Mississippi State University Extension Service. Preface Entomology, and Plant Pathology at Mississippi State University, provided helpful comments and Mosquitoes and the diseases they transmit are in- other supportIdentification for publication and ofGeographical this book. Most Distri- creasing in frequency and geographic distribution. butionfigures of used the inMosquitoes this book of are North from America, Darsie, R. North F. and As many as 1,000 people were exposed recently ofWard, Mexico R. A., to dengue fever during an outbreak in the Florida Mos- Keys. “New” mosquito-borne diseases such as quitoes of, NorthUniversity America Press of Florida, Gainesville, West Nile and Chikungunya have increased pub- FL, 2005, and Carpenter, S. and LaCasse, W., lic awareness about disease potential from these , University of California notorious pests. Press, Berkeley, CA, 1955. None of these figures are This book was written to provide citizens, protected under current copyrights. public health workers, school teachers, and other Introduction interested parties with a hands-on, user-friendly guide to Mississippi mosquitoes. The book’s util- and Background ity may vary with each user group, and that’s OK; some will want or need more detail than others. Nonetheless, the information provided will allow There has never been a systematic, statewide you to identify mosquitoes found in Mississippi study of mosquitoes in Mississippi. Various au- with a fair degree of accuracy. For more informa- thors have reported mosquito collection records tion about mosquito species occurring in the state as a result of surveys of military installations in and diseases they may transmit, contact the ento- the state and/or public health malaria inspec- mology staff at the Mississippi State Department of tions.
    [Show full text]
  • WO 2014/053403 Al 10 April 2014 (10.04.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/053403 Al 10 April 2014 (10.04.2014) P O P C T (51) International Patent Classification: (72) Inventors: KORBER, Karsten; Hintere Lisgewann 26, A01N 43/56 (2006.01) A01P 7/04 (2006.01) 69214 Eppelheim (DE). WACH, Jean-Yves; Kirchen- strafie 5, 681 59 Mannheim (DE). KAISER, Florian; (21) International Application Number: Spelzenstr. 9, 68167 Mannheim (DE). POHLMAN, Mat¬ PCT/EP2013/070157 thias; Am Langenstein 13, 6725 1 Freinsheim (DE). (22) International Filing Date: DESHMUKH, Prashant; Meerfeldstr. 62, 68163 Man 27 September 2013 (27.09.201 3) nheim (DE). CULBERTSON, Deborah L.; 6400 Vintage Ridge Lane, Fuquay Varina, NC 27526 (US). ROGERS, (25) Filing Language: English W. David; 2804 Ashland Drive, Durham, NC 27705 (US). Publication Language: English GUNJIMA, Koshi; Heighths Takara-3 205, 97Shirakawa- cho, Toyohashi-city, Aichi Prefecture 441-8021 (JP). (30) Priority Data DAVID, Michael; 5913 Greenevers Drive, Raleigh, NC 61/708,059 1 October 2012 (01. 10.2012) US 027613 (US). BRAUN, Franz Josef; 3602 Long Ridge 61/708,061 1 October 2012 (01. 10.2012) US Road, Durham, NC 27703 (US). THOMPSON, Sarah; 61/708,066 1 October 2012 (01. 10.2012) u s 45 12 Cheshire Downs C , Raleigh, NC 27603 (US). 61/708,067 1 October 2012 (01. 10.2012) u s 61/708,071 1 October 2012 (01. 10.2012) u s (74) Common Representative: BASF SE; 67056 Ludwig 61/729,349 22 November 2012 (22.11.2012) u s shafen (DE).
    [Show full text]
  • Introduction to Mosquito Biology and Key North Texas Species
    Introduction to Mosquito Biology and Key North Texas species Michael Merchant, PhD, BCE Professor and Urban Entomologist Texas A&M AgriLife Center at Dallas [email protected] Mosquitoes: Culicidae . 3,500 species worldwide . Occur on every continent except Antarctica. Most important arthropod affecting human and animal health. Diverse habitats; some have become “domesticated”. Hundreds of millions of dollars spent on control in U.S. for nuisance reasons alone. Courtesy G. Hamer, Dept. Entomology, Texas A&M University Anopheles Malaria mosquito . 219 million cases in 2010 (cf. 34 m AIDS cases) . 660,000 deaths annually . 90% cases in Africa . $1.84 b international aid from Bohart and Washino. Mosquitoes of California Recognizing Mosquitoes . The fly order (Diptera) . Family Culicidae . long proboscis . long legs . scales on wing veins . 172 species in U.S. 85 species in Texas . 37 species in Dallas County (DCHHS) Mosquito life cycle adult pupa eggs larva Culex Eggs Photos: Institute for Clinical Pathology and Medical Research, University of Sydney, Australia US Armed Forces Pest Management Board Aedes eggs Ovitrap with eggs of Aedes aegypti Marin/Sonoma Mosquito and Vector Control District Mosquito larvae .Aquatic insects .4-14+ days from egg to adult .Adults may be strong to weak fliers, depending on species Photo: M. Merchant, Texas A&M AgriLife Mosquito mouthparts Modified from Scientific American, Tom Prentiss Mosquito feeding . Plant nectar or honeydew for first 3-5 Mosquito hosts days after emergence . Blood of vertebrate hosts need for most species to initiate egg development . Birds . Mammals . Reptiles . Amphibians Mosquito diversity .Two basic types . Floodwater mosquitoes . Standing water (container) breeders .
    [Show full text]
  • T3-B1-Mosquitoecology.Pdf
    Suffolk County Vector Control and Wetlands Management Long-Term Plan Literature Review Task Three – Book 1 -- Long Island Mosquitoes October 2004 SUFFOLK COUNTY LONG TERM PLAN The Consultant Team Cashin, Associates, P.C. Hauppauge, NY Subconsultants Cameron Engineering, L.L.P. Syosset, NY Integral Consulting Annapolis, MD Bowne Management Systems, Inc. Mineola, NY Kamazima Lwiza, PhD University at Stony Brook, NY Ducks Unlimited Stony Brook, NY Steven Goodbred, PhD & Laboratory University at Stony Brook, NY RTP Environmental Westbury, NY Sinnreich, Safar & Kosakoff Central Islip, NY Bruce Brownawell, PhD & Laboratory University at Stony Brook, NY Anne McElroy, PhD & Laboratory University at Stony Brook, NY Andrew Spielman, PhD Harvard School of Public Health, Boston, MA Richard Pollack, PhD Harvard School of Public Health, Boston, MA Wayne Crans, PhD Rutgers University, New Brunswick, NJ Susan Teitelbaum, PhD Mount Sinai School of Medicine, NY Zawicki Vector Management Consultants Freehold, NJ Robert Turner, PhD & Laboratory Southampton College, NY Christopher Gobler, PhD & Laboratory Southampton College, NY Jerome Goddard, PhD Mississippi Department of Health, Jackson, MS Sergio Sanudo, PhD & Laboratory University of Stony Brook, NY Suffolk County Department of Health Hauppauge, NY Services, Division of Environmental Quality Project Management Richard LaValle, P.E., Chief Deputy Suffolk County Department of Public Works, Commissioner Yaphank, NY Vito Minei, P.E., Director, Division of Suffolk County Department of Health Services, Environmental Quality Hauppauge, NY Walter Dawydiak, Jr., P.E., J.D., Chief Suffolk County Department of Health Services, Engineer, Division of Environmental Hauppauge, NY Quality Dominick Ninivaggi, Superintendent, Suffolk County Department of Public Works, Division of Vector Control Yaphank, NY Cashin Associates, P.C.
    [Show full text]
  • Appendix N. List of Citations Accepted and Rejected by ECOTOX Criteria
    Appendix N. List of citations accepted and rejected by ECOTOX criteria. The citations in this appendix were accepted by ECOTOX. Citations include the ECOTOX Reference number. References in section H.1 those relevant to carbaryl which were acceptable in ECOTOX. References in section H.2 were those relevant to carbaryl which were not cited within the risk assessment. References in section H.3 those relevant to degradates of carbaryl which were cited within this risk assessment. References in section H.4 were those relevant to degradates of carbaryl which were not cited within the risk assessment. In order to be included in the ECOTOX database, papers must meet the following minimum criteria: • the toxic effects are related to single chemical exposure; • the toxic effects are on an aquatic or terrestrial plant or animal species; • there is a biological effect on live, whole organisms; • a concurrent environmental chemical concentration/dose or application rate is reported; and • there is an explicit duration of exposure. Section H.5 includes the list of exclusion terms and descriptions for citations not accepted by ECOTOX. For carbaryl, there were 2,116 references that were not accepted by ECOTOX for one or more of the reasons included in section H.5. A full list of the citations reviewed and rejected by the criteria for ECOTOX is listed in section H.6. N.1. ECOTOX accepted references, relevant to carbaryl, contained more sensitive endpoints than those cited in the IRED 6797 Mayer FL Jr.;Ellersieck MR; (1986) Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals.
    [Show full text]