Improving the Handling, Transport and Release of Sterile Male Mosquitoes As Part of an Area-Wide Integrated Pest Management Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Improving the Handling, Transport and Release of Sterile Male Mosquitoes As Part of an Area-Wide Integrated Pest Management Strategy Improving the Handling, Transport and Release of Sterile Male Mosquitoes as Part of an Area-wide Integrated Pest Management Strategy Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy Nicole Jean Culbert April 2020 ___________________________________________________ Abstract Improving the Handling, Transport and Release of Sterile Male Mosquitoes as Part of an Area-wide Integrated Pest Management Strategy By Nicole Jean Culbert The global burden of vector-borne diseases continues to grow year on year. Diseases transmitted by mosquitoes lead to more than 700,000 deaths each year, with malaria alone accounting for almost half a million of the total deaths. Such statistics underline the urgency for alternative complementary control measures. The sterile insect technique (SIT) is one of several genetic control measures routinely used throughout the world to suppress, contain or eradicate various species of agricultural, veterinary or human insect pests. SIT is a technique which has proved successful and sustainable, particularly when deployed as part of an area-wide integrated pest management programme (AW-IPM). A build-up of insecticide resistance coupled with the global spread of species such as Aedes aegypti and Aedes albopictus has reignited interest in developing mosquito SIT as part of an AW-IPM approach. Significant progress has been made in the last decade towards taking mosquito SIT to the operational level, however, distinct gaps still remain in the literature, especially regarding the post-pupal irradiation stages. The aim of this research thesis was to address some of the key issues where information was lacking, specifically the handling, transport and release of sterile male mosquitoes. The impact of immobilisation temperature and duration on male mosquito survival was investigated in Aedes aegypti, Aedes albopictus and Anopheles arabiensis, in order to determine a suitable storage and transportation temperature range when conducting releases of sterile male mosquitoes. The effect of compaction during storage was investigated and a maximum tolerable threshold determined. A standardised method to mark male mosquitoes for a small-scale field release was developed and verified in Aedes aegypti, Aedes albopictus and Anopheles arabiensis. A novel flight ability device, which aims to assess male mosquito quality was created and validated for Aedes aegypti, Aedes albopictus and subsequently modified and verified for Anopheles arabiensis.The effect of varying environmental conditions relating to the time of day that sterile male releases could occur was investigated for both male Anopheles arabiensis and Aedes aegypti. Finally, an adult aerial release device was developed in conjunction with the NGO WeRobotics and as part of a United States Agency for International Development grant. The system was successfully field tested in Brazil via a series of mark-release-recapture studies. As mosquito SIT nears the operational phase, it is hoped this research is a starting point when addressing some of the outstanding questions related to the handling, transport and release of sterile male mosquitoes. ii _____________________________________________ Declaration I declare that this thesis has not been previously submitted for any other degree or professional qualification. This thesis is the result of my own investigations. The results presented in chapters 2 – 8 were obtained in collaboration with others, whose contributions were as follows: Chapter 2: Conceptualisation and experimental design: NJCa and JRLGb. Experimental work: NJC. Data interpretation and analysis: NJC. Supervision: JRLG and RSLc. Writing original draft: NJC. Writing – review and editing: NJC, RSL, MJBVd, ACDe and JRLG. Chapter 3: Conceptualisation and experimental design: NJC and JRLG. Experimental work: NJC. Data interpretation and analysis: NJC and JB. Supervision: JRLG. Writing original draft: NJC. Writing – review and editing: NJC, JRLG and JBf. Chapter 4: Conceptualisation and experimental design: NJC, FBg, ADh, GSHi and JB. Experimental work: NJC, TWj and HYk. Data interpretation and analysis: NJC and JB. Supervision: JB. Writing original draft: NJC. Writing – review and editing: NJC, FB, AD, GSH, HY, TW and JB. Chapter 5: Conceptualisation and experimental design: NJC and JB. Experimental work: NJC, NSBSl, DDSm, SCn, TW, HMo and WMp. Data interpretation and analysis: NJC and JB. Supervision: JB. Writing original draft: NJC. Writing – review and editing: NJC, NSBS, DDS, SC, TW, HM, WM, HY and JB. iii Chapter 6: Conceptualisation and experimental design: NJC, MKq, NVr and JRLG. Experimental work: NJC, MK and NV. Data interpretation and analysis: NJC and JB. Supervision: JRLG and JB. Writing original draft: NJC. Writing – review and editing: NJC, MK, NV, MJBV, JRLG and JB. Chapter 7: Conceptualisation and experimental design: NJC, JRLG and WM. Experimental work: NJC, HM, NSBS and WM. Data interpretation and analysis: WM. Supervision: JRLG. Writing original draft: NJC and WM. Writing – review and editing: NJC, HM, NSBS, JRLG, JB and WM. Chapter 8: Conceptualisation and experimental design: JB, NJC, JVs and RAHt. Experimental work: NJC, MGu, AKv, JGw, TW, GSH, RAH, HY and FB. Data interpretation and analysis: AHDx and JB. Supervision: JB and JV. Writing original draft: JB, NJC, AHD, MG, JG and RAH. Writing – review and editing: JB, NJC, AHD, MG, JV, AK, JG, TW, GSH, RAH, HY, FB and MJBV. aNicole J. Culbert; bJeremie R. L. Gilles; cRosemary S. Lees; dMarc J. B. Vreysen; eAlistair C. Darby; fJérémy Bouyer; gFabrizio Balestrino; hAriane Dor; iGustavo S. Herranz; jThomas Wallner; kHanano Yamada; lNanwintoum S. B. Somda; mDieudonné D. Soma; nSilvana Caravantes; oHamidou Maiga; pWadaka Mamai; qMaria Kaiser; rNelius Venter; sJair Virgilio; tRafa A. Herrero; uMaylen Gomez; vAdam Klaptocz; wJurg Germann; xAhmidou H. Dicko. Signed ……………………………………………………………………. (candidate) Date ………………………………………………………………………. iv _____________________________________________ Acknowledgements First and foremost, I would like to express the utmost gratitude to my supervisors, Dr Jérémy Bouyer and Dr Alistair Darby, for their endless support, guidance, encouragement and tuition during both the research and writing elements of this thesis. I further extend my thanks to my previous group leader Dr Jeremie Gilles with whom I began this journey and who actively encouraged me to pursue this PhD. To all past and present members of the Insect Pest Control Laboratory, I thank you for your boundless advice and support during my research. To my work besties, Hanano and Thomas (clap clap), you kept me sane during some tough times and always managed to put a smile on my face when it was most needed, vielen Dank! I would like to thank my Mum and brother for their unwavering support throughout the thesis, despite the curveball life threw at us in the midst of it all. To all the friends I made along the way during my years in Vienna and to all my friends scattered across the globe, thanks for letting me bore you with my mosquito-related geek facts or for offering a shoulder of support when needed. To my boyfriend and best friend, thanks for seeing me through the end of this journey, encouraging me as a scientist ever since those Deen days and for teaching me to follow my dreams. I love you. The biggest thank you of all has to go to my best friend forever, my soul sister and my partner in crime, Silvana. If anyone got me through these past few years it was you. You have always been by my side when I needed you and if you weren’t, you were just a Facebook video call away. Thanks for always believing in me. From staying late v in the lab helping me with my mozzies, to bringing me a McDonalds coffee every morning. Thank you for every last thing you did for me. Finally, I would like to acknowledge the selfless support of all of the collaborators in each of the chapters of this thesis. Thank you all. vi _____________________________________________ Dedication I started this journey with you by my side and yet I must finish it alone. This one’s for you Dad. vii _____________________________________________ Table of Contents Abstract ……………………………………………………...…….…… ii Declaration …………………………………………………...……….. iii Acknowledgements …………………………………………….…….… v Dedication ………………………………………………………...…... vii Table of Contents …………………………………………………...…viii List of Figures ………………………………………………………... xiii List of Tables …………………………………………...………..….. xvii Abbreviations ……………………………………...…………………. xxi Chapter 1: Introduction ……………….……………………………… 1 1.1 The World’s Deadliest Animal ……………………..…………………………… 2 1.2 A Global Concern ………………………………………………..……………… 4 1.3 Alternative Vector Control Solutions ……………………………………..…….. 5 1.4 The Birth of the Sterile Insect Technique ………………………………...……... 9 1.5 Sterile Insect Technique Successes Against Other Diptera ………………….…. 11 1.6 Sterile Insect Technique Successes Against Lepidoptera ……………......…….. 13 1.7 Historical Applications of the Sterile Insect Technique Against Mosquitoes ….. 16 1.8 Recent Applications of the Sterile Insect Technique Against Mosquitoes …..... 17 1.9 Developing the Mass Rearing Process for Sterile Insects: Pre-irradiation ……... 20 1.9.1 Larval Rearing ………….…………………………..………...………….… 20 1.9.2 Larval Diet …………...………………………………………...………...… 22 1.9.3 Sex Separation …….……..…………………………………...……………. 23 1.9.4 Irradiation …………..…...….……………………………………………… 26 1.9.5 Mass Rearing Cages …………..………...……………….……………….... 28 1.10 Mass Rearing
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Download the File
    HORIZONTAL AND VERTICAL TRANSMISSION OF A PANTOEA SP. IN CULEX SP. A University Thesis Presented to the Faculty of California State University, East Bay In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Science By Alyssa Nicole Cifelli September, 2015 Copyright © by Alyssa Cifelli ii Abstract Mosquitoes serve as vectors for several life-threatening pathogens such as Plasmodium spp. that cause malaria and Dengue viruses that cause dengue hemorrhagic fever. Control of mosquito populations through insecticide use, human-mosquito barriers such as the use of bed nets, and control of standing water, such as areas where rainwater has collected, collectively work to decrease transmission of pathogens. None, however, continue to work to keep disease incidence at acceptable levels. Novel approaches, such as paratransgenesis are needed that work specifically to interrupt pathogen transmission. Paratransgenesis employs symbionts of insect vectors to work against the pathogens they carry. In order to take this approach a candidate symbiont must reside in the insect where the pathogen also resides, the symbiont has to be safe for use, and amenable to genetic transformation. For mosquito species, Pantoea agglomerans is being considered for use because it satisfies all of these criteria. What isn’t known about P. agglomerans is how mosquitoes specifically acquire this bacterium, although given that this bacterium is a typical inhabitant of the environment it is likely they acquire it horizontally through feeding and/or exposure to natural waters. It is possible that they pass the bacteria to their offspring directly by vertical transmission routes. The goal of my research is to determine means of symbiont acquisition in Culex pipiens, the Northern House Mosquito.
    [Show full text]
  • Diptera: Culicidae) Colombian Populations Cannot Be Differentiated by Isoenzymes
    Population genetics of Psorophora in Colombia 229 Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes Manuel Ruiz-Garcia1, Diana Ramirez1, Felio Bello2 and Diana Alvarez1 1Unidad de Genetica (Genetica de Poblaciones-Biologia Evolutiva), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana. CRA 7ª No. 43-82, Bogota DC, Colombia 2Departamento de Biología, Universidad de La Salle, Bogota DC, Colombia Corresponding author: M. Ruiz-Garcia E-mail: [email protected] Genet. Mol. Res. 2 (2): 229-259 (2003) Received November 8, 2002 Accepted May 30, 2003 Published June 30, 2003 ABSTRACT. Two populations of the mosquito Psorophora columbiae from the central Andean area of Colombia and one population of Ps. toltecum from the Atlantic coast of Colombia were analyzed for 11 isoen- zyme markers. Psorophora columbiae and Ps. toltecum are two of the main vectors of Venezuelan equine encephalitis. We found no conspicu- ous genetic differences between the two species. The relatively high gene flow levels among these populations indicate that these are not two different species or that there has been recent divergence between these taxa. In addition, no global differential selection among the loci was detected, although the α-GDH locus showed significantly less genetic heterogeneity than the remaining loci, which could mean that homogeniz- ing natural selection acts at this locus. No isolation by distance was de- tected among the populations, and a spatial population analysis showed opposite spatial trends among the 31 alleles analyzed. Multiregression analyses showed that both expected heterozygosity and the average num- ber of alleles per locus were totally determined by three variables: alti- tude, temperature and size of the human population at the locality.
    [Show full text]
  • Psorophora Columbiae (Dyar & Knab) (Insecta: Diptera: Culicidae)1 Christopher S
    EENY-735 Dark Rice Field Mosquito (suggested common name) Psorophora columbiae (Dyar & Knab) (Insecta: Diptera: Culicidae)1 Christopher S. Bibbs, Derrick Mathias, and Nathan Burkett-Cadena2 Introduction Psorophora columbiae is a member of the broader Psorphora confinnis species complex (a group of closely-related spe- cies) that occurs across much of North and South America. This mosquito is associated with sun-exposed ephemeral water sources such as pooled water in agricultural lands and disturbed or grassy landscapes. The ubiquity of these habitats among agrarian and peridomestic landscapes contribute to explosive abundance of Psorophora columbiae following periods of high precipitation. Psorophora colum- biae is both a common nuisance mosquito and significant livestock pest. Common names of Psorophora columbiae vary by Figure 1. Psorophora columbiae (Dyar & Knab) adult female. region. In rice-growing regions of Arkansas, Florida, and Credits: Nathan Burkett-Cadena, UF/IFAS Louisiana Psorophora columbiae is known as the dark rice field mosquito because of its overall dark coloration and Synonymy proliferation in flooded rice fields. In the Atlantic Seaboard Janthinosoma columbiae Dyar & Knab (1906) region Psorophora columbiae is colloquially referred to as the glades mosquito or the Florida glades mosquito (King Janthinosoma floridense Dyar & Knab (1906) et al. 1960) due to its association with grasslands (glades) in otherwise forested areas. Janthinosoma texanum Dyar & Knab (1906) From the Integrated Taxonomic Information System and International Commission on Zoological Nomenclature. 1. This document is EENY-735, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date August 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • •3,500 Species of Flies Are Mosquitoes •Occur on Every Continent Except Antarctica
    4/13/2016 •3,500 species of flies are mosquitoes •Occur on every continent except Antarctica. •Most important arthropod affecting human and animal health. from Bohart and Washino. Mosquitoes of California • The fly order (Diptera) • Family Culicidae • long proboscis • long legs • scales on wing veins • 172 species in U.S. • 85 species in Texas • 37 species in Dallas Co. (DCHHS) 1 4/13/2016 Mosquito life cycle •Aquatic insects • Adults live 4‐30 days adult •4‐14+ days from egg to adult pupa •Strong to weak fliers, depending on species eggs •Potential disease transmitters larva US Armed Forces Pest Management Board Photos: Institute for Clinical Pathology and Medical Research, University of Sydney, Australia Ovitrap with eggs of Aedes aegypti Mosquito feeding 2 4/13/2016 Zika virus Chikungunya virus Chicago, Illinois Harris, Co. Texas West Nile virus Dengue virus 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Hamer et al. PLoS ONE 2011 Analysis performed using data from Molaei et al. 2007 Two Basic Types •Typically live 4‐5 days •Standing water species (up to one month) • Aedes albopictus/aegypti •Excellent fliers (5‐10 • Aedes solicitans miles or more) • Culex quinquefasciatus •eggs survive up to 2 •Floodwater species years in soil • Psorophora columbiae • Aedes vexans •painful bites • Difficult to control due to flight range • drainage of marshes • floodwater control • community fogging • avoidance • Water need only stand 3‐4 days to breed mosquitoes • Not as frequent vectors of human disease (except Cx. Photo by Sean McCann, BugGuide.net tarsalis in western U.S.) 3 4/13/2016 Culex species responsible for WNV transmission to humans Culex tarsalis Culex pipiens Cx.
    [Show full text]
  • Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic?
    Molecular Phylogenetics and Evolution 54 (2010) 833–848 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of ladybirds (Coleoptera: Coccinellidae): Are the subfamilies monophyletic? A. Magro a,b,1, E. Lecompte b,c,*,1, F. Magné b,c, J.-L. Hemptinne a,b, B. Crouau-Roy b,c a Université de Toulouse, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), 2 route de Narbonne, F-31320 Castanet Tolosan, France b CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062 Toulouse, France c Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France article info abstract Article history: The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known Received 20 April 2009 because of their use as biocontrol agents, and are the subject of many ecological studies. However, little Revised 15 October 2009 is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is Accepted 16 October 2009 needed for the family. This paper provides the first phylogenetic reconstruction of the relationships Available online 10 November 2009 within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relation- Keywords: ships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), Phylogeny and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference Coccinellidae Partitioned analyses with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae Evolution is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic.
    [Show full text]
  • Wikipedia Beetles Dung Beetles Are Beetles That Feed on Feces
    Wikipedia beetles Dung beetles are beetles that feed on feces. Some species of dung beetles can bury dung times their own mass in one night. Many dung beetles, known as rollers , roll dung into round balls, which are used as a food source or breeding chambers. Others, known as tunnelers , bury the dung wherever they find it. A third group, the dwellers , neither roll nor burrow: they simply live in manure. They are often attracted by the dung collected by burrowing owls. There are dung beetle species of different colours and sizes, and some functional traits such as body mass or biomass and leg length can have high levels of variability. All the species belong to the superfamily Scarabaeoidea , most of them to the subfamilies Scarabaeinae and Aphodiinae of the family Scarabaeidae scarab beetles. As most species of Scarabaeinae feed exclusively on feces, that subfamily is often dubbed true dung beetles. There are dung-feeding beetles which belong to other families, such as the Geotrupidae the earth-boring dung beetle. The Scarabaeinae alone comprises more than 5, species. The nocturnal African dung beetle Scarabaeus satyrus is one of the few known non-vertebrate animals that navigate and orient themselves using the Milky Way. Dung beetles are not a single taxonomic group; dung feeding is found in a number of families of beetles, so the behaviour cannot be assumed to have evolved only once. Dung beetles live in many habitats , including desert, grasslands and savannas , [9] farmlands , and native and planted forests. They are found on all continents except Antarctica. They eat the dung of herbivores and omnivores , and prefer that produced by the latter.
    [Show full text]
  • Encyclopedia of Social Insects
    G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated.
    [Show full text]
  • Pest Management News
    Pest Management News Dr. John D. Hopkins, Associate Professor and Extension Entomologist – Coeditor Dr. Kelly M. Loftin, Professor and Extension Entomologist – Coeditor Contributors Dr. Rebecca McPeake, Professor and Wildlife Extension Specialist Dr. Bob Scott, Professor and Extension Weed Scientist Sherrie E. Smith, Plant Pathology Instructor, Plant Health Clinic Diagnostician Letter #4 August 31, 2017 ________________________________________________________________________________ Mosquitoes in Arkansas: the Top Five John D. Hopkins Mosquitoes represent a significant biting nuisance for the majority of Arkansans. To the unlucky few, mosquitoes can also vector a myriad of potentially serious diseases. Arkansas is home to some 62 mosquito species (Darsie & Ward, 1981; Lancaster, Barnes, & Roberts, 1968; McNeel & Ferguson, 1954) with most having little or no impact of man. The top five mosquitoes in Arkansas (Meisch, personal communication) include: Psorophora columbiae (Dyar & Knab) – dark ricefield mosquito; Anopheles quadrimaculatus Say – common malaria mosquito; Aedes vexans (Meigen) – floodwater mosquito; Aedes albopictus (Skuse) – Asian tiger mosquito; and Culex quinquefasciatus Say – southern house mosquito. Dark Ricefield Mosquito (Meisch, 1994) In Arkansas, this mosquito reaches its greatest Dark Ricefield Mosquito, Psorophora abundance in the rice growing areas of the state. In columbiae (Dyar & Knab) rice country, it is the most troublesome mosquito through June (population diminishes with the heat of summer). This mosquito when attacking in large numbers, has been reported to kill livestock. Other studies have shown severe losses in weight gain and milk production resulting from the bloodfeeding activity of this mosquito. Psorophora columbiae also causes extreme annoyance to people. The mosquito is an important vector of Venezuelan equine encephalitis and anaplasmosis in cattle. Eggs are deposited on moist soil which is subject to flooding by water from rainfall or irrigation.
    [Show full text]
  • Mosquito Management Plan and Environmental Assessment
    DRAFT Mosquito Management Plan and Environmental Assessment for the Great Meadows Unit at the Stewart B. McKinney National Wildlife Refuge Prepared by: ____________________________ Date:_________________________ Refuge Manager Concurrence:___________________________ Date:_________________________ Regional IPM Coordinator Concured:______________________________ Date:_________________________ Project Leader Approved:_____________________________ Date:_________________________ Assistant Regional Director Refuges, Northeast Region Table of Contents Chapter 1 PURPOSE AND NEED FOR PROPOSED ACTION ...................................................................................... 5 1.1 Introduction ....................................................................................................................................................... 5 1.2 Refuge Location and Site Description ............................................................................................................... 5 1.3 Proposed Action ................................................................................................................................................ 7 1.3.1 Purpose and Need for Proposed Action ............................................................................................................ 7 1.3.2 Historical Perspective of Need .......................................................................................................................... 9 1.3.3 Historical Mosquito Production Areas of the Refuge ....................................................................................
    [Show full text]
  • Harmonia Axyridis As a Model Species Helen E
    From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species Helen E. Roy . Eric Wajnberg Editors From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species Foreword by Helen E. Roy and Eric Wajnberg Previously published in BioControl, Volume 53, No. 1, 2008 123 Helen E. Roy Eric Wajnberg Biological Records Centre I.N.R.A., Sophia Antipolis Huntingdon, UK Cedex, France Cover illustration: Harmonia axyridis egg-laying – Photograph by April Zobel Library of Congress Control Number: 2008920732 ISBN-13: 978-1-4020-6938-3 e-ISBN-13: 978-1-4020-6939-0 Printed on acid-free paper. Ó 2008 IOBC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the International Organization for Biological Control of Noxious Animals and Plants (IOBC, www.IOBC-Global.org), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 1 springer.com Contents FOREWORD From biological control to invasion: the ladybird Harmonia axyridis as a model species H. Roy · E. Wajnberg . 1 Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid P.M.J.
    [Show full text]
  • P2699 Identification Guide to Adult Mosquitoes in Mississippi
    Identification Guide to Adult Mosquitoes in Mississippi es Identification Guide to Adult Mosquitoes in Mississippi By Wendy C. Varnado, Jerome Goddard, and Bruce Harrison Cover photo by Dr. Blake Layton, Mississippi State University Extension Service. Preface Entomology, and Plant Pathology at Mississippi State University, provided helpful comments and Mosquitoes and the diseases they transmit are in- other supportIdentification for publication and ofGeographical this book. Most Distri- creasing in frequency and geographic distribution. butionfigures of used the inMosquitoes this book of are North from America, Darsie, R. North F. and As many as 1,000 people were exposed recently ofWard, Mexico R. A., to dengue fever during an outbreak in the Florida Mos- Keys. “New” mosquito-borne diseases such as quitoes of, NorthUniversity America Press of Florida, Gainesville, West Nile and Chikungunya have increased pub- FL, 2005, and Carpenter, S. and LaCasse, W., lic awareness about disease potential from these , University of California notorious pests. Press, Berkeley, CA, 1955. None of these figures are This book was written to provide citizens, protected under current copyrights. public health workers, school teachers, and other Introduction interested parties with a hands-on, user-friendly guide to Mississippi mosquitoes. The book’s util- and Background ity may vary with each user group, and that’s OK; some will want or need more detail than others. Nonetheless, the information provided will allow There has never been a systematic, statewide you to identify mosquitoes found in Mississippi study of mosquitoes in Mississippi. Various au- with a fair degree of accuracy. For more informa- thors have reported mosquito collection records tion about mosquito species occurring in the state as a result of surveys of military installations in and diseases they may transmit, contact the ento- the state and/or public health malaria inspec- mology staff at the Mississippi State Department of tions.
    [Show full text]