What Is Your Skill Level?

Total Page:16

File Type:pdf, Size:1020Kb

What Is Your Skill Level? What is your skill level? • Beginner • No training yet • Never identified mosquitoes • Just beginning to learn to identify mosquitoes • Intermediate • Identify local species easily • Use of taxonomic keys • Would easily recognize something “new” • Advanced • Can identify all species in the region • Teaches others to identify mosquitoes • Can figure out “new” species by using a taxonomic key Mosquito Identification Skills assessment Name the three major body parts of the adult female mosquito Adult Female Mosquito Thorax Head Abdomen Mosquito Identification Skills assessment True or false: Mosquitoes have scales on their wings Non-mosquito Mosquito Identification Skills assessment Which is male? Which is female? Extra – what species? Culex nigripalpus Florida Medical Entomology Laboratory Mosquito Identification Skills assessment •What mosquito is this? Mosquito Identification Skills assessment Mosquito Identification Skills assessment On which major body part of the adult female mosquito would you find the post-spiracular setae? Classification of Mosquitoes Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Diptera Family: Culicidae Genus: Culex Species: nigripalpus Family •Culicidae •All mosquitoes are in this family •Only mosquitoes are in this family Genus (genera) - North America, North of Mexico • Aedes • Mansonia • Anopheles • Orthopodomyia • Coquillettidia • Psorophora • Culex • Toxorhynchites • Culiseta • Uranotaenia • Deinocerites • Wyeomyia How do we know we are looking at an adult mosquito? • 3 major body parts • Head, thorax, and abdomen • 2 wings • Scales on the wings • 6 legs • Proboscis • Piercing-sucking How whole-body mosquito identification is done (excludes molecular testing) •Use of taxonomic keys •Sight Identification Tools for Mosquito Identification Tools for Mosquito Identification • Stereomicroscope aka Dissecting Scope • Magnification range: 4X – 50X • Gooseneck light - external Tools for Mosquito Identification Tools for Mosquito Identification • Taxonomic Keys • READ THE TITLE! Shows you the limitations • Sex • Geographic Region • Life Stage • Other • Assumes you know you have a mosquito • Based on ideal specimens (not trap catches) http://www.wrbu.org/keys_tut/keys_tut00.html 1 2 3 1st – 4th Instar 4 Culex nigripalpus Florida Medical Entomology Laboratory Mosquito body parts and terminology BILATERAL SYMMETRY Scales and setae • Setae = hair, hair tufts, bristles • Round in cross section • Scales = flat in cross section, widen from base to apex • Pale = shades of white • White to brownish white to grayish white • Dark = black or brown • Golden, yellow, and dingy yellow Wing Veins C = Costa Sc = Subcosta C = Cubital R = Radial M - Medial A - Anal Abdomen blunt/rounded Abdomen pointed Aedes, Psorophora Sight Identifications and sorting trap collections Characters for broad sorting •Size •Legs – banded or no bands •Scaling patterns on the thorax •Proboscis – banded or no bands •Wings – “Salt and pepper”; patterned; plain Psorophora Uranotaenia Aedes taeniorhynchus Aedes sollicitans Coquillettidia perturbans Psorophora columbiae Mansonia dyari Orthopodomyia Aedes Aedes albopictus Aedes dorsalis Aedes vexans Anopheles quadrimaculatus Coquillettidia perturbans Culiseta melanura Culex pipiens/quinquefasciatus* *species complexes FIGURE 1. Distribution of the Culex pipiens complex and its sibling species based on maps of Dahl,35 Belkin,36 Mattingly and others,37 and available literature.12,38,39 Light gray Cx. pipiens; black Cx. quinquefasciatus; dark gray overlapping ranges of Cx. pipiens and Cx. quinquefasciatus; region marked by dotted line Cx. torrentium; region marked by solid line Cx. australicus; region marked by dashed line Cx. pipiens pallens; New Zealand marked by dotted and dashed line Cx. pervigilans. Culex tarsalis http://www.fcwp.org/pest%20pages/westnile01.html Psorophora columbiae Field ID of Adult Mosquitoes • Mainly for preliminary data – confirm with microscope when possible • First – you must be able to distinguish mosquitoes from other flies • Some can be ID’d to Species, some to Genera only • 1 Family = Culicidae • 12 Genera Field ID of Adult Mosquitoes • Learn key characters for species in your area • County-wide similar along east coast up to Georgia, down to Miami • Southeastern US – a few differences in AL, MS, GA, LA • Very different outside of Southeastern US Field ID of Adult Mosquitoes • Helps to know seasonality • Learn this on the job – from your own experience and experiences of co-workers • Example • Cs. inornata – “winter” • Cx. nigripalpus – annual • Cx. restuans - spring Field ID of Adult Mosquitoes • Know the larval habitats and flight ranges • Container mosquitoes don’t fly far from larval habitats • Saltmarsh mosquitoes have long distance flight ranges • Know the behavior • Day biters vs night biters • Resting habits (Anopheles) Best practices • Keep mosquitoes in the freezer or fridge as much as possible and only bringing them out to sort in small batches would be helpful as well. • Practice daily or as much as possible, including off-season • Don’t be afraid to touch the microscope and move the lights • Build a reference collection • Train new identifiers • Data recording – MOSQUITONET! • Know your local entomologists – for unknowns or send to me! Resources for mosquito identification keys and training Identification Keys Global US Department of Defense Walter Reed http://www.wrbu.org/VecID_MQ.html Biosystematics Unit http://www.wrbu.org/aors/aors_Keys.html Identification Keys to Medically Important Arthropod Species National Darsie, R.F., Jr., and R. A. Ward. 2005. Identification University Press of Florida and Geographical Distribution of the Mosquitoes of Amazon North America, North of Mexico. University Press of Other book sellers Florida. 398 pp Regional Burkett-Cadena, N. D. 2013. Mosquitoes of the University of Alabama Press Southeast Southeastern United States. University Alabama Amazon Press. 208 pp. Regional Harrison, B. A., B. D. Byrd, S. B. Sither, and P. B. Whitt. North Carolina Mosquito and Vector Control Association Mid- 2016. The Mosquitoes of the Mid-Atlantic Region: https://www.ncmvca.org/ Atlantic An Identification Guide. Mosquito and Vector-borne Infectious Diseases Laboratory Publication 2016-1. Western Carolina University, Cullowhee, NC. 201 pp. Regional – Craker C. L. E. and F. H. Collins. 2014. The Free download from the Indiana Vector Control Association: Ohio River mosquitoes of the Ohio River Basin: Illinois, Indiana, http://www.ivca.us/wp-content/uploads/2014/01/Mosquitoes-of-the- Basin Kentucky, Ohio and West Virginia. 114 pp. Ohio-River-Basin-Manual.pdf State - AZ State - CO Rose, D. A., B. C. Kondratieff, and M. J. Weissman. Order from: 2017. Insects of Western North American, 9. C. P. Gillette Museum of Arthropod Diversity, Department of Colorado Mosquitoes (Diptera: Culicidae). C. P. Bioagricultural Sciences and Pest Management, Colorado State Gillette Museum of Arthropod Diversity, Department University. Fort Collins, CO. 80523-1177 of Bioagricultural Sciences and Pest Management, Colorado State University. 104 pp. Terms for quick key • Palps • Proboscis • Abdomen • Wings • Subcostal vein • Setae Maxillary palps and proboscis Maxillary palps much shorter than about the same length proboscis Anopheles Tip of abdomen is Tip of abdomen rounded or squared ends in a point Base of subcostal wing vein Base of subcostal wing vein on Aedes does NOT have patch of underside of wing with patch of setae (hairs) on underside of setae (hairs) wing OR OR Wings extend beyond tip of Quick Guide to Genera of Wings extend just to tip of abdomen CONUS, limited to Aedes, abdomen Anopheles, Culiseta, and Culex Based on Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico by Richard F. Culex Culiseta Darsie, Jr. and Ronald A. Ward (2005) Maxillary palps and proboscis about the Maxillary palps much shorter same length than proboscis Anopheles Tip of abdomen is Tip of abdomen ends in a rounded or squared point Base of subcostal wing vein does NOT Base of subcostal wing vein on underside of have patch of setae (hairs) on underside wing with patch of setae (hairs) of wing Aedes OR OR Wings extend beyond tip of abdomen Wings extend just to tip of abdomen Quick Guide to Genera of CONUS, limited to Aedes, Anopheles, Culiseta, and Culex Based on Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico by Richard F. Culex Culiseta Darsie, Jr. and Ronald A. Ward (2005) From Darsie and Ward, 1981 For Quick Key: Palps Proboscis Abdomen Wings Subcostal vein – see next page From Belkin, 1962 [email protected] .
Recommended publications
  • Caracterização Molecular Do Isolado Viral AR115: Evidência Da Circulação De Vírus Do Sorogrupo Gamboa No Sudeste Do Brasil
    14 INSTITUTO EVANDRO CHAGAS NÚCLEO DE ENSINO E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM VIROLOGIA Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil ANANINDEUA 2018 15 Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil Dissertação apresentada ao Programa de Pós- Graduação em Virologia do Instituto Evandro Chagas, para obtenção do título de Mestre em Virologia Orientadora: Prof.ª Dr.ª Ana Cecília Ribeiro Cruz ANANINDEUA 2018 16 Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca do Instituto Evandro Chagas Costa, Aline Gonçalves da. Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil./ Aline Gonçalves da Costa. – Ananindeua, 2018. 54 f.: il.; 30 cm Orientadora: Dra. Ana Cecília Ribeiro Cruz Dissertação (Mestrado em Virologia) – Instituto Evandro Chagas, Programa de Pós-Graduação em Virologia, 2018. 1. Classificação. 2. Arbovírus. 3. Ortobunyavírus. 4. Artropodes. I. Cruz, Ana Cecília Ribeiro, orient. II. Instituto Evandro Chagas. III. Título. CDD: 579.2562 17 Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil Dissertação apresentada ao Programa de Pós- Graduação em Virologia do Instituto Evandro Chagas, para obtenção do título de Mestre em Virologia Aprovado em: 10/01/2018 BANCA EXAMINADORA Profa. Dra. Daniele Barbosa de Almeida Medeiros Instituto Evandro Chagas Prof. Dr. Carlos Alberto Marques de Carvalho Instituto Evandro Chagas Dra. Adriana Ribeiro Carneiro Folador Universidade Federal do Pará Dr.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • ARTHROPOD MONITORING: Mosquito Studies
    64 ARTHROPOD MONITORING: Mosquito Studies - Greenwoods, Summer 1995 Wi~~iam L. Butts Expanded sampling of the area inunediately adj acent to the large bog ("Cranberry Bog") for anthrophilic mosquitoes was the main focus of studies at Greenwoods. Initial plans to conduct biting/alighting sampling from a boat at selected sites around the margin of the impoundment were abandoned due to logistical difficulties. Emergent and submerged obstructions made it impossible to move about by boat at a rate that would allow for sampling at a sufficient number of sites within the hours of feeding activity. It was also evident that repeated sampling by boat would cause an unacceptable level of disruption to aquatic vegetation. A series of eight sampling sites marked with bicolored streamers was established along the west side of the bog from the point of access to the main dam northward. A similar series was laid out along the east side with three sampling stations south of the one at the dock site and four stations north of it. Biting/alighting collections were made by the author sitting for 20 minutes at each site with one forearm exposed. Mosquitoes alighting upon that arm or at other points on the body within reach of the other arm were collected by inverting a small killing vial over the mosquitoes. Sampling series were begun at approximately first light and in late evening beginning at a time estimated to terminate the series when unaided visual observation became difficult. In most instances one side of the bog was sampled in the evening and the other side the following morning.
    [Show full text]
  • The Mosquitoes of Minnesota
    Technical Bulletin 228 April 1958 The Mosquitoes of Minnesota (Diptera : Culicidae : Culicinae) A. RALPH BARR University of Minnesota Agricultural Experiment Station ~2 Technirnl Rull!'lin :z2g 1-,he Mosquitoes of J\ilinnesota (Diptera: Culicidae: Culicinae) A. llALPII R\lm University of Minnesota Agricultural Experiment Station CONTENTS I. Introduction JI. Historical Ill. Biology of mosquitoes ................................ Zoogeography Oviposition ......................................... Breeding places of larvae ................................... I) Larrnl p;rowth ....................................... Ill ,\atural factors in the control of larvae .................. JI The pupal stage ............................................... 12 .\lating .................................... _ ..... 12 Feeding of adults ......................................... 12 Hibernation 11 Seasonal distribution II I\ . Techniques Equipment Eggs ............................... · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Larvae Pupae Adults Colonization and rearing . IB \. Systematic treatment Keys to genera Adult females . l'J \fale terminalia . 19 Pupae ······················································· .... ········ 2.'i Larvae ····················································· ..... ········ 2S :-n Anopheles ········································· ··························· Anopheles (Anopheles) barberi .................... · · · · · · · · · · · · · · · · · · · · · · · · earlei ...•......................... · · · · ·
    [Show full text]
  • Biology and Control of Aquatic Plants
    BIOLOGY AND CONTROL OF AQUATIC PLANTS A Best Management Practices Handbook Lyn A. Gettys, William T. Haller and Marc Bellaud, editors Cover photograph courtesy of SePRO Corporation Biology and Control of Aquatic Plants: A Best Management Practices Handbook First published in the United States of America in 2009 by Aquatic Ecosystem Restoration Foundation, Marietta, Georgia ISBN 978-0-615-32646-7 All text and images used with permission and © AERF 2009 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, by photocopying, recording or otherwise, without prior permission in writing from the publisher. Printed in Gainesville, Florida, USA October 2009 Dear Reader: Thank you for your interest in aquatic plant management. The Aquatic Ecosystem Restoration Foundation (AERF) is pleased to bring you Biology and Control of Aquatic Plants: A Best Management Practices Handbook. The mission of the AERF, a not for profit foundation, is to support research and development which provides strategies and techniques for the environmentally and scientifically sound management, conservation and restoration of aquatic ecosystems. One of the ways the Foundation accomplishes the mission is by providing information to the public on the benefits of conserving aquatic ecosystems. The handbook has been one of the most successful ways of distributing information to the public regarding aquatic plant management. The first edition of this handbook became one of the most widely read and used references in the aquatic plant management community. This second edition has been specifically designed with the water resource manager, water management association, homeowners and customers and operators of aquatic plant management companies and districts in mind.
    [Show full text]
  • Pesticide Discharge Management Plan
    Pesticide Discharge Management Plan 1. PDMP Team a. Person(s) responsible for managing pests in relation to pest management area: All operational and biological support staff along with the Director of Mosquito Management Services (Wade Brennan, 5531 Pinkney Ave. Sarasota, FL. 34233) b. Person(s) responsible for developing and revising PDMP John Eaton, Operations Supervisor, and Wade Brennan Environmental Scientist III, are the individuals responsible for monitoring changes in Federal and State regulatory agencies that govern mosquito control operations. c. John Eaton, and Wade Brennan, are the individuals responsible for developing, revising and implementing corrective actions and other effluent requirements d. Person(s) responsible for pesticide applications Persons (supervisors and above) who direct applicators these include: All Operational staff employed by Sarasota County Mosquito Management Services that hold a Public Health Pest Control License administered by Florida Department of Agriculture and Consumer Services are directly responsible for pesticide applications (because they can oversee uncertified applicators) additionally, Sarasota County’s awarded Contractors must have required state certification (s). 2. Pest Management Area Description Overview Sarasota County Mosquito Management Services (SCMMS) has been mitigating pestiferous nuisance host seeking mosquitoes of public health importance for over 60 years. A total of forty- four mosquito species are found in Sarasota County of which a dozen are in need of management through a typical peak mosquito season, April through November. When intervention action plans are developed and implemented more than one species is usually involved. Past and current mitigation strategies for both larval and adult mosquitoes have always been in full compliance with FIFRA conditions which have met water quality standards.
    [Show full text]
  • Catalogo De Los Diptera De Nicaragua. 4. Culicidae (Nematocera)
    Rev Rev. Nica. Ent., (1990) 14:19-39. CATALOGO DE LOS DIPTERA DE NICARAGUA. 4. CULICIDAE (NEMATOCERA). Por Jean-Michel Maes * & Pedro Rivera Mendoza.** Resumen. Este catálogo presenta las 40 especies de Culicidae (Diptera : Nematocera) reportadas de Nicaragua. Para cada especie se cita la sinonimia, la distribución geográfica, los hospederos, las enfermedades transmitidas y los enemigos naturales. La bibliografía conocida está agregada. Abstract. This catalogue presents the 40 species of Culicidae (Diptera : Nematocera) reported from Nicaragua. The geographical distribution, synonyms, hosts, diseases transmitted and natural enemies are given for each species. A bibliography of the Nicaraguayan species is included. * Museo Entomológico, A.P. 527, León, Nicaragua. ** Director del Departamento de Entomología Médica del Centro Nacional de Higiene y Epidemiología, Villa Ruben Darío M-254, Managua - 14, Nicaragua. file:///C|/My%20Documents/REVISTA/REV%2014A/14A%20Culicidae.htm (1 of 25) [20/12/2002 03:34:12 p.m.] Rev Introducción. Los Culicidae forman una familia numerosa de Diptera Nematocera. Las larvas son acuáticas, los adultos pueden ser identificados por la venacion alar presentando escamas y la proboscis larga. Son importantes a nivel medico por ser vectores de muchas enfermedades tropicales. Las larvas de zancudos se encuentran en muchos tipos de aguas, por ejemplo en charcos, huecos o recipientos artificiales, cada especie tiene un tipo de agua característico donde se reproduce. Los huevos son dejados en paquetes sobre la superficie del agua. Las larvas comen algas y materia vegetal en decomposición. Las larvas respiran principalmente a la superficie, ayudandose muchas veces de un sifón. La pupas son acuáticas y al contrario de los otros insectos, son bastante activas.
    [Show full text]
  • Download the File
    HORIZONTAL AND VERTICAL TRANSMISSION OF A PANTOEA SP. IN CULEX SP. A University Thesis Presented to the Faculty of California State University, East Bay In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Science By Alyssa Nicole Cifelli September, 2015 Copyright © by Alyssa Cifelli ii Abstract Mosquitoes serve as vectors for several life-threatening pathogens such as Plasmodium spp. that cause malaria and Dengue viruses that cause dengue hemorrhagic fever. Control of mosquito populations through insecticide use, human-mosquito barriers such as the use of bed nets, and control of standing water, such as areas where rainwater has collected, collectively work to decrease transmission of pathogens. None, however, continue to work to keep disease incidence at acceptable levels. Novel approaches, such as paratransgenesis are needed that work specifically to interrupt pathogen transmission. Paratransgenesis employs symbionts of insect vectors to work against the pathogens they carry. In order to take this approach a candidate symbiont must reside in the insect where the pathogen also resides, the symbiont has to be safe for use, and amenable to genetic transformation. For mosquito species, Pantoea agglomerans is being considered for use because it satisfies all of these criteria. What isn’t known about P. agglomerans is how mosquitoes specifically acquire this bacterium, although given that this bacterium is a typical inhabitant of the environment it is likely they acquire it horizontally through feeding and/or exposure to natural waters. It is possible that they pass the bacteria to their offspring directly by vertical transmission routes. The goal of my research is to determine means of symbiont acquisition in Culex pipiens, the Northern House Mosquito.
    [Show full text]
  • Wing Variation in Culex Nigripalpus (Diptera: Culicidae) in Urban Parks
    de Carvalho et al. Parasites & Vectors (2017) 10:423 DOI 10.1186/s13071-017-2348-5 RESEARCH Open Access Wing variation in Culex nigripalpus (Diptera: Culicidae) in urban parks Gabriela Cristina de Carvalho1, Daniel Pagotto Vendrami2, Mauro Toledo Marrelli1,2 and André Barretto Bruno Wilke1* Abstract Background: Culex nigripalpus has a wide geographical distribution and is found in North and South America. Females are considered primary vectors for several arboviruses, including Saint Louis encephalitis virus, Venezuelan equine encephalitis virus and Eastern equine encephalitis virus, as well as a potential vector of West Nile virus. In view of the epidemiological importance of this mosquito and its high abundance, this study sought to investigate wing variation in Cx. nigripalpus populations from urban parks in the city of São Paulo, Brazil. Methods: Female mosquitoes were collected in seven urban parks in the city of São Paulo between 2011 and 2013. Eighteen landmark coordinates from the right wing of each female mosquito were digitized, and the dissimilarities between populations were assessed by canonical variate analysis and cross-validated reclassification and by constructing a Neighbor-Joining (NJ) tree based on Mahalanobis distances. The centroid size was calculated to determine mean wing size in each population. Results: Canonical variate analysis based on fixed landmarks of the wing revealed a pattern of segregation between urban and sylvatic Cx. nigripalpus, a similar result to that revealed by the NJ tree topology, in which the population from Shangrilá Park segregated into a distinct branch separate from the other more urban populations. Conclusion: Environmental heterogeneity may be affecting the wing shape variation of Cx.
    [Show full text]
  • A Classification System for Mosquito Life Cycles: Life Cycle Types for Mosquitoes of the Northeastern United States
    June, 2004 Journal of Vector Ecology 1 Distinguished Achievement Award Presentation at the 2003 Society for Vector Ecology Meeting A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States Wayne J. Crans Mosquito Research and Control, Department of Entomology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, U.S.A. Received 8 January 2004; Accepted 16 January 2004 ABSTRACT: A system for the classification of mosquito life cycle types is presented for mosquito species found in the northeastern United States. Primary subdivisions include Univoltine Aedine, Multivoltine Aedine, Multivoltine Culex/Anopheles, and Unique Life Cycle Types. A montotypic subdivision groups life cycle types restricted to single species. The classification system recognizes 11 shared life cycle types and three that are limited to single species. Criteria for assignments include: 1) where the eggs are laid, 2) typical larval habitat, 3) number of generations per year, and 4) stage of the life cycle that overwinters. The 14 types in the northeast have been named for common model species. A list of species for each life cycle type is provided to serve as a teaching aid for students of mosquito biology. Journal of Vector Ecology 29 (1): 1-10. 2004. Keyword Index: Mosquito biology, larval mosquito habitats, classification of mosquito life cycles. INTRODUCTION strategies that do not fit into any of the four basic temperate types that Bates described in his book. Two There are currently more than 3,000 mosquito of the mosquitoes he suggested as model species occur species in the world grouped in 39 genera and 135 only in Europe and one of his temperate life cycle types subgenera (Clements 1992, Reinert 2000, 2001).
    [Show full text]
  • A-Lovisolo.Vp:Corelventura
    Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50, Kraków, 15 Oct., 2003 Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina Osvaldo LOVISOLO and Oscar RÖSLER Received: 31 March, 2002 Accepted for publication: 17 Oct., 2002 LOVISOLO O., RÖSLER O. 2003. Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina. Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50. Abstract. Viruses are known to be agents of important diseases of Insecta and Acarina, and many vertebrate and plant viruses have arthropods as propagative vectors. There is fossil evidence of arthropod pathogens for some micro-organisms, but not for viruses. Iso- lated virions would be hard to detect but, in fossil material, it could be easier to find traces of virus infection, mainly virus-induced cellular structures (VICS), easily recognisable by electron microscopy, such as virions encapsulated in protein occlusion bodies, aggregates of membrane-bounded virus particles and crystalline arrays of numerous virus particles. The following main taxa of viruses that multiply in arthropods are discussed both for some of their evolutionary aspects and for the VICS they cause in arthropods: A. dsDNA Poxviridae, Asfarviridae, Baculoviridae, Iridoviridae, Polydnaviridae and Ascoviridae, infecting mainly Lepidoptera, Hymenoptera, Coleoptera, Diptera and Acarina; B. ssDNA Parvoviridae, infecting mainly Diptera and Lepidoptera; C. dsRNA Reoviridae and Bir- naviridae, infecting mainly Diptera, Hymenoptera and Acarina, and plant viruses also multiplying in Hemiptera; D. Amb.-ssRNA Bunyaviridae and Tenuivirus, that multiply in Diptera and Hemiptera (animal viruses) and in Thysanoptera and Hemiptera (plant vi- ruses); E. -ssRNA Rhabdoviridae, multiplying in Diptera and Acarina (vertebrate vi- ruses), and mainly in Hemiptera (plant viruses); F.
    [Show full text]
  • Diptera: Culicidae) Colombian Populations Cannot Be Differentiated by Isoenzymes
    Population genetics of Psorophora in Colombia 229 Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes Manuel Ruiz-Garcia1, Diana Ramirez1, Felio Bello2 and Diana Alvarez1 1Unidad de Genetica (Genetica de Poblaciones-Biologia Evolutiva), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana. CRA 7ª No. 43-82, Bogota DC, Colombia 2Departamento de Biología, Universidad de La Salle, Bogota DC, Colombia Corresponding author: M. Ruiz-Garcia E-mail: [email protected] Genet. Mol. Res. 2 (2): 229-259 (2003) Received November 8, 2002 Accepted May 30, 2003 Published June 30, 2003 ABSTRACT. Two populations of the mosquito Psorophora columbiae from the central Andean area of Colombia and one population of Ps. toltecum from the Atlantic coast of Colombia were analyzed for 11 isoen- zyme markers. Psorophora columbiae and Ps. toltecum are two of the main vectors of Venezuelan equine encephalitis. We found no conspicu- ous genetic differences between the two species. The relatively high gene flow levels among these populations indicate that these are not two different species or that there has been recent divergence between these taxa. In addition, no global differential selection among the loci was detected, although the α-GDH locus showed significantly less genetic heterogeneity than the remaining loci, which could mean that homogeniz- ing natural selection acts at this locus. No isolation by distance was de- tected among the populations, and a spatial population analysis showed opposite spatial trends among the 31 alleles analyzed. Multiregression analyses showed that both expected heterozygosity and the average num- ber of alleles per locus were totally determined by three variables: alti- tude, temperature and size of the human population at the locality.
    [Show full text]