Caracterização Molecular Do Isolado Viral AR115: Evidência Da Circulação De Vírus Do Sorogrupo Gamboa No Sudeste Do Brasil

Total Page:16

File Type:pdf, Size:1020Kb

Caracterização Molecular Do Isolado Viral AR115: Evidência Da Circulação De Vírus Do Sorogrupo Gamboa No Sudeste Do Brasil 14 INSTITUTO EVANDRO CHAGAS NÚCLEO DE ENSINO E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM VIROLOGIA Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil ANANINDEUA 2018 15 Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil Dissertação apresentada ao Programa de Pós- Graduação em Virologia do Instituto Evandro Chagas, para obtenção do título de Mestre em Virologia Orientadora: Prof.ª Dr.ª Ana Cecília Ribeiro Cruz ANANINDEUA 2018 16 Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca do Instituto Evandro Chagas Costa, Aline Gonçalves da. Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil./ Aline Gonçalves da Costa. – Ananindeua, 2018. 54 f.: il.; 30 cm Orientadora: Dra. Ana Cecília Ribeiro Cruz Dissertação (Mestrado em Virologia) – Instituto Evandro Chagas, Programa de Pós-Graduação em Virologia, 2018. 1. Classificação. 2. Arbovírus. 3. Ortobunyavírus. 4. Artropodes. I. Cruz, Ana Cecília Ribeiro, orient. II. Instituto Evandro Chagas. III. Título. CDD: 579.2562 17 Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil Dissertação apresentada ao Programa de Pós- Graduação em Virologia do Instituto Evandro Chagas, para obtenção do título de Mestre em Virologia Aprovado em: 10/01/2018 BANCA EXAMINADORA Profa. Dra. Daniele Barbosa de Almeida Medeiros Instituto Evandro Chagas Prof. Dr. Carlos Alberto Marques de Carvalho Instituto Evandro Chagas Dra. Adriana Ribeiro Carneiro Folador Universidade Federal do Pará Dr. Sandro Patroca da Silva (Suplente) Instituto Evandro Chagas 18 Dedico esta dissertação aos meus amados pais (Hilda e Antônio), aos meus irmãos (Alan, Anderson e Adrian), meu namorado (Allan) e minha vó (Maria de Nazaré). 19 AGRADECIMENTOS Agradeço todas as minhas conquistas aos meus pais, meus maiores incentivadores. Obrigada também, aos melhores irmãos do mundo que acreditam tanto em mim. À minha vó e minha tia-madrinha Rosa que choraram comigo no dia da aprovação no processo seletivo deste mestrado, vocês são maravilhosas e as amo. Ao meu namorado Allan, agradeço por permanecer ao meu lado em todas as minhas escolhas e ser meu aconchego em todos os momentos. As amigas que ganhei no mestrado, Tatiana e Mônica, e na residência, Marília e Priscila, por dividirmos risadas, lanches, artigos e boas vibrações. Aos meus queridos amigos do laboratório – Rafaella, Carlos, Thadeu, Gustavo, Samir, Karla, Walter, Jardel e Paloma – a convivência, aprendizado e compartilhamento ao longo desses anos foram incríveis. Ao mesmo tempo em que falávamos de assuntos científicos importantíssimos também ríamos de coisas engraçadas. Meu muito obrigada também ao Sandro por toda paciência e ajuda na conclusão deste trabalho. Obrigada por tudo que aprendi com cada um de vocês! À todas as amigas, amigos, familiares e vizinhos que torceram por mim e contribuíram indiretamente para a conclusão desta etapa de minha vida. À minha orientadora Dra Ana Cecília por me escolher como sua orientada e me confiar o desafio deste trabalho. Muito obrigada! Ao IEC, na pessoa inicial do professor Drº. Nelson Ribeiro, que me convidou e fez apaixonar pelo mundo da pesquisa científica há mais de 6 anos. Além da insituição disponibilizar todo o material necessário para o desenvolvimento desta dissertação na Seção de Arbovirologia e Febres Hemorrágicas (SAARB). À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), disponibilizando recursos financeiros (Bolsa de mestrado), permitindo assim que eu me dedicasse inteiramente às atividades propostas nesta dissertação. Aos membros da banca examinadora Profa. Dra. Daniele Barbosa de Almeida Medeiros, Prof. Dr. Carlos Alberto Marques de Carvalho, Dra. Adriana Ribeiro Carneiro Folador e Dr. Sandro Patroca da Silva, que aceitaram o convite para participarem da banca de avaliação. Obrigada, meu Deus, por estar sempre à frente de meus obstáculos e vitórias, me proporcionando conviver, conhecer e aprender com os melhores. Ensina-me a ter fé e acreditar sempre que tudo tem um momento certo para acontecer. Tudo que eu possa conquistar não se compara a tua presença minha vida e minhas realizações agradecerei eternamente a ti. 20 “Dias assim São bons para me encontrar E entender que a vida muda de lugar Tempos assim São bons para me relembrar Que só você comigo (Mãe, Pai, Amor e Deus) consigo suportar” (Rosa de Saron) 21 RESUMO Os vírus do sorogrupo Gamboa (VGAM) são denominados arbovírus pelo fato de sua transmissão aos seres humanos e outros animais ocorrer através da picada de artrópodes hematófagos. O primeiro isolamento da cepa do VGAM foi de mosquitos fêmeos adultas da espécie Aedeomyia squamipennis, em 1962, na cidade de Gamboa na República do Panamá. Desde então, muitos isolamentos de vírus pertencentes ao sorogrupo Gamboa vêm sendo realizados em vários países da América Latina. Sendo assim, o presente estudo objetivou realizar a caracterização taxonômica da cepa de arbovírus AR115 isolada de artrópodes da espécie Phoniomyia theobald (Sabethini) capturados no Estado do Rio de Janeiro no ano de 1989. Para isso, realizou-se isolamento das amostras virais em linhagens celulares Vero e C6/36; seguida de caracterização molecular com as técnicas de concentração viral com polietilenoglicol (PEG), extração e quantificação do RNA viral, preparação da biblioteca genômica e sequenciamento; e posterior análise bioinformática. No isolamento em cultivos celulares de Vero, foi observada presença de acentuados efeitos citopáticos, alterações morfológicas, durante a infecção pelo vírus em estudo. Enquanto que nos cultivos de C6/36 não se observou efeito citopático durante o período de infecção. A análise filogenética dos três segmentos (S, M e L) da cepa AR115 claramente demonstrou que o vírus pertence à família Peribunyaviridae, gênero Orthobunyavirus. Ressalta-se, ainda, que a amostra deste estudo foi isolada de espécie de mosquitos com hábitos diurnos, diferente de outros achados já divulgados. Inferindo-se, assim, que a sazonalidade e os fatores climáticos interferem na dinâmica populacional dos arbovírus. Palavras-chave: Classificação; Arbovírus; Orthobunyavirus; Ártrópodes; Brasil. 22 ABSTRACT Os vírus do sorogrupo Gamboa (VGAM) são denominados arbovírus pelo fato de sua transmissão aos seres humanos e outros animais ocorrer através da picada de artrópodes hematófagos. O primeiro isolamento da cepa do VGAM foi de mosquitos fêmeos adultas da espécie Aedeomyia squamipennis, em 1962, na cidade de Gamboa na República do Panamá. Desde então, muitos isolamentos de vírus pertencentes ao sorogrupo Gamboa vêm sendo realizados em vários países da América Latina. Sendo assim, o presente estudo objetivou realizar a caracterização taxonômica da cepa de arbovírus AR115 isolada de artrópodes da espécie Phoniomyia theobald (Sabethini) capturados no Estado do Rio de Janeiro no ano de 1989. Para isso, realizou-se isolamento das amostras virais em linhagens celulares Vero e C6/36; seguida de caracterização molecular com as técnicas de concentração viral com polietilenoglicol (PEG), extração e quantificação do RNA viral, preparação da biblioteca genômica e sequenciamento; e posterior análise bioinformática. No isolamento em cultivos celulares de Vero, foi observada presença de acentuados efeitos citopáticos, alterações morfológicas, durante a infecção pelo vírus em estudo. Enquanto que nos cultivos de C6/36 não se observou efeito citopático durante o período de infecção. A análise filogenética dos três segmentos (S, M e L) da cepa AR115 claramente demonstrou que o vírus pertence à família Peribunyaviridae, gênero Orthobunyavirus. Ressalta-se, ainda, que a amostra deste estudo foi isolada de espécie de mosquitos com hábitos diurnos, diferente de outros achados já divulgados. Inferindo-se, assim, que a sazonalidade e os fatores climáticos interferem na dinâmica populacional dos arbovírus. Keywords: Classification; Arbovirus; Orthobunyavirus; Arthropods; Brazil. 23 LISTA DE FIGURAS Figura 1 – Estrutura dos orthobunyavírus. Envelopado, esférico, diâmetro de 80 a 120 nm……………..………………………………..………………......… 18 Figura 2 – Genoma dos orthobunyavírus. Genoma linear de RNA de cadeia negativa segmentada, segmento S entre 1 e 3 kb, segmento M entre 3,2 e 4,9 kb e segmento L entre 6,8 e 12 kb. Codifica de quatro a seis proteínas 19 (VBUN)...................…..….….…..….….….….…..….….….…..…...…..………... Figura 3 – Esquema do ciclo de replicação dos vírus da família Peribunyaviridae.............................................................................................. 21 Figura 4 – Mosquito do gênero Wyeomyia..................................................... 27 Figura 5A – Efeitos citopáticos causados pela replicação do vírus (AR115) em culturas de células Vero (rim de macaco).……..……..……..……..……..... 33 Figura 5B – Efeitos citopáticos causados pela replicação do vírus (AR158) em culturas de células Vero (rim de macaco).……..…..……..…..…..……..…. 34 Figura 6A – Células C6/36 infectadas com vírus AR115. Imagens obtidas na ampliação de 100X..…..…….……..……..…….……..…..…….…………….. 35 Figura 6B – Células C6/36 infectadas com vírus AR158. Imagens obtidas na ampliação de 100X..…..…….…..…..…..…….…….…….…….…….………. 36 Figura 7 – Árvore filogenética com base na sequência aminoacídica do SRNA do isolado
Recommended publications
  • Health Risk Assessment for the Introduction of Eastern Wild Turkeys (Meleagris Gallopavo Silvestris) Into Nova Scotia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Canadian Cooperative Wildlife Health Centre: Wildlife Damage Management, Internet Center Newsletters & Publications for April 2004 Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis F.A. Leighton Follow this and additional works at: https://digitalcommons.unl.edu/icwdmccwhcnews Part of the Environmental Sciences Commons Neimanis, A.S. and Leighton, F.A., "Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia" (2004). Canadian Cooperative Wildlife Health Centre: Newsletters & Publications. 48. https://digitalcommons.unl.edu/icwdmccwhcnews/48 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Canadian Cooperative Wildlife Health Centre: Newsletters & Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis and F.A. Leighton 30 April 2004 Canadian Cooperative Wildlife Health Centre Department of Veterinary Pathology Western College of Veterinary Medicine 52 Campus Dr. University of Saskatchewan Saskatoon, SK Canada S7N 5B4 Tel: 306-966-7281 Fax: 306-966-7439 [email protected] [email protected] 1 SUMMARY This health risk assessment evaluates potential health risks associated with a proposed introduction of wild turkeys to the Annapolis Valley of Nova Scotia. The preferred source for the turkeys would be the Province of Ontario, but alternative sources include the northeastern United States from Minnesota eastward and Tennessee northward.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Biology and Control of Aquatic Plants
    BIOLOGY AND CONTROL OF AQUATIC PLANTS A Best Management Practices Handbook Lyn A. Gettys, William T. Haller and Marc Bellaud, editors Cover photograph courtesy of SePRO Corporation Biology and Control of Aquatic Plants: A Best Management Practices Handbook First published in the United States of America in 2009 by Aquatic Ecosystem Restoration Foundation, Marietta, Georgia ISBN 978-0-615-32646-7 All text and images used with permission and © AERF 2009 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, by photocopying, recording or otherwise, without prior permission in writing from the publisher. Printed in Gainesville, Florida, USA October 2009 Dear Reader: Thank you for your interest in aquatic plant management. The Aquatic Ecosystem Restoration Foundation (AERF) is pleased to bring you Biology and Control of Aquatic Plants: A Best Management Practices Handbook. The mission of the AERF, a not for profit foundation, is to support research and development which provides strategies and techniques for the environmentally and scientifically sound management, conservation and restoration of aquatic ecosystems. One of the ways the Foundation accomplishes the mission is by providing information to the public on the benefits of conserving aquatic ecosystems. The handbook has been one of the most successful ways of distributing information to the public regarding aquatic plant management. The first edition of this handbook became one of the most widely read and used references in the aquatic plant management community. This second edition has been specifically designed with the water resource manager, water management association, homeowners and customers and operators of aquatic plant management companies and districts in mind.
    [Show full text]
  • Pesticide Discharge Management Plan
    Pesticide Discharge Management Plan 1. PDMP Team a. Person(s) responsible for managing pests in relation to pest management area: All operational and biological support staff along with the Director of Mosquito Management Services (Wade Brennan, 5531 Pinkney Ave. Sarasota, FL. 34233) b. Person(s) responsible for developing and revising PDMP John Eaton, Operations Supervisor, and Wade Brennan Environmental Scientist III, are the individuals responsible for monitoring changes in Federal and State regulatory agencies that govern mosquito control operations. c. John Eaton, and Wade Brennan, are the individuals responsible for developing, revising and implementing corrective actions and other effluent requirements d. Person(s) responsible for pesticide applications Persons (supervisors and above) who direct applicators these include: All Operational staff employed by Sarasota County Mosquito Management Services that hold a Public Health Pest Control License administered by Florida Department of Agriculture and Consumer Services are directly responsible for pesticide applications (because they can oversee uncertified applicators) additionally, Sarasota County’s awarded Contractors must have required state certification (s). 2. Pest Management Area Description Overview Sarasota County Mosquito Management Services (SCMMS) has been mitigating pestiferous nuisance host seeking mosquitoes of public health importance for over 60 years. A total of forty- four mosquito species are found in Sarasota County of which a dozen are in need of management through a typical peak mosquito season, April through November. When intervention action plans are developed and implemented more than one species is usually involved. Past and current mitigation strategies for both larval and adult mosquitoes have always been in full compliance with FIFRA conditions which have met water quality standards.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • S12936-018-2325-2.Pdf
    Valkiūnas et al. Malar J (2018) 17:184 https://doi.org/10.1186/s12936-018-2325-2 Malaria Journal RESEARCH Open Access Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria Gediminas Valkiūnas1* , Mikas Ilgūnas1, Dovilė Bukauskaitė1, Karin Fragner2, Herbert Weissenböck2, Carter T. Atkinson3 and Tatjana A. Iezhova1 Abstract Background: Microscopic research has shown that Plasmodium relictum is the most common agent of avian malaria. Recent molecular studies confrmed this conclusion and identifed several mtDNA lineages, suggesting the existence of signifcant intra-species genetic variation or cryptic speciation. Most identifed lineages have a broad range of hosts and geographical distribution. Here, a rare new lineage of P. relictum was reported and information about biological characters of diferent lineages of this pathogen was reviewed, suggesting issues for future research. Methods: The new lineage pPHCOL01 was detected in Common chifchaf Phylloscopus collybita, and the parasite was passaged in domestic canaries Serinus canaria. Organs of infected birds were examined using histology and chro- mogenic in situ hybridization methods. Culex quinquefasciatus mosquitoes, Zebra fnch Taeniopygia guttata, Budgeri- gar Melopsittacus undulatus and European goldfnch Carduelis carduelis were exposed experimentally. Both Bayesian and Maximum Likelihood analyses identifed the same phylogenetic relationships among diferent, closely-related lineages pSGS1, pGRW4, pGRW11, pLZFUS01, pPHCOL01 of P. relictum. Morphology of their blood stages was com- pared using fxed and stained blood smears, and biological properties of these parasites were reviewed. Results: Common canary and European goldfnch were susceptible to the parasite pPHCOL01, and had markedly variable individual prepatent periods and light transient parasitaemia. Exo-erythrocytic and sporogonic stages were not seen.
    [Show full text]
  • Public Health Pest Control Manual (Currently with the South Walton Mosquito Control Was Prepared by Elisabeth Beck of the Florida District)
    Public Health Pest Control APPLICATOR TRAINING MANUAL NICOLE “NIKKI” FRIED, Commissioner Florida Department of Agriculture and Consumer Services 3125 Conner Boulevard Tallahassee, Florida 32399-1650 Public Health Pest Control APPLICATOR TRAINING MANUAL Nicole “Nikki” Fried, Commissioner Florida Department of Agriculture and Consumer Services 3125 Conner Boulevard Tallahassee, Florida 32399-1650 Acknowledgements In accordance with Florida Administrative Code and to extension specialists in neighboring states for Chapter 5E-13.040, all persons who apply or supervise valuable ideas and visual aids. Credit is due to the late the application of a pesticide intended to control Paul J. Hunt, and John Gamble, East Volusia Mosquito arthropods on property other than their own individual Control District, and Thomas M. Loyless, Bureau of residential or agricultural property must be licensed to Entomology and Pest Control (BEPC) of FDACS for do so with a Public Health Pest Control (PHPC) license photographs of equipment and habitats. or work under the supervision of a licensed applicator. Thanks are due to Dr. Carlyle B. Rathburn, In order to obtain the PHPC license, applicants must retired, John A. Mulrennan, Sr. Public Health score 70% or above on two exams administered by the Entomology Research and Education Center for the Florida Department of Agriculture and Consumer section on calibration of equipment, Dr. Philip Koehler, Services (FDACS): the General Standards (Core) exam Department of Entomology and Nematology, IFAS, and the Public Health Pest Control exam. This Public University of Florida, and William R. Opp, retired, Lee Health Pest Control Manual, in conjunction with the County Mosquito Control District for additional Core Manual “Applying Pesticides Correctly” published technical assistance.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • 5 WATERLETTUCE PEST STATUS of WEED Nature of Damage 65
    5 WATERLETTUCE F. Allen Dray, Jr. and Ted D. Center U.S. Department of Agriculture, Agricultural Research Service, Invasive Plant Research Laboratory, Fort Lauderdale, Florida, USA PEST STATUS OF WEED Waterlettuce, Pistia stratiotes L., (Fig. 1) is a floating, herbaceous hydrophyte first recorded from Florida during the 18th century (Stuckey and Les, 1984). It forms extensive mats (Fig. 2) capable of blocking navi- gational channels, impeding water flow in irrigation and flood control canals, and disrupting submersed animal and plant communities (Sculthorpe, 1967; Attionu, 1976; Bruner, 1982; Sharma, 1984). Waterlettuce is among the world’s worst weeds (Holm et al., 1977). It has been placed on prohibited Figure 2. A severe waterlettuce (Pistia stratiotes plant lists in Florida (FDEP, 2000), Louisiana L.) infestation on Lake Okeechobee in (LDWF, 2000), Mississippi (MDAC, 1997), and Texas southern Florida. (Photograph courtesy of (TPWD, 2000), and is considered a noxious species USDA, ARS Invasive Plant Research Laboratory.) (an invasive species of concern, but not regulated) in South Carolina (SCDNR, 2000) and Delaware Nature of Damage (DDFW, 2000). Economic damage. Waterlettuce is a serious weed of rice crops in other countries (Suasa-Ard, 1976), but has not been reported as interfering with production in the United States. It also can interfere with hy- droelectric operations (Napompeth, 1990), but has not done so in the United States. Consequently, di- rect losses attributable to waterlettuce result prima- rily from restricted water flow in irrigation and flood control canals in Florida. Unfortunately, the eco- nomic costs associated with such damage have not been quantified, but federal and state waterlettuce control operations in Florida cost nearly $650,000 annually (Center, 1994).
    [Show full text]
  • What Is Your Skill Level?
    What is your skill level? • Beginner • No training yet • Never identified mosquitoes • Just beginning to learn to identify mosquitoes • Intermediate • Identify local species easily • Use of taxonomic keys • Would easily recognize something “new” • Advanced • Can identify all species in the region • Teaches others to identify mosquitoes • Can figure out “new” species by using a taxonomic key Mosquito Identification Skills assessment Name the three major body parts of the adult female mosquito Adult Female Mosquito Thorax Head Abdomen Mosquito Identification Skills assessment True or false: Mosquitoes have scales on their wings Non-mosquito Mosquito Identification Skills assessment Which is male? Which is female? Extra – what species? Culex nigripalpus Florida Medical Entomology Laboratory Mosquito Identification Skills assessment •What mosquito is this? Mosquito Identification Skills assessment Mosquito Identification Skills assessment On which major body part of the adult female mosquito would you find the post-spiracular setae? Classification of Mosquitoes Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Diptera Family: Culicidae Genus: Culex Species: nigripalpus Family •Culicidae •All mosquitoes are in this family •Only mosquitoes are in this family Genus (genera) - North America, North of Mexico • Aedes • Mansonia • Anopheles • Orthopodomyia • Coquillettidia • Psorophora • Culex • Toxorhynchites • Culiseta • Uranotaenia • Deinocerites • Wyeomyia How do we know we are looking at an adult mosquito? • 3 major body parts • Head,
    [Show full text]
  • Bacillus Sphaericus Taxonomy
    B Babesia Bacillus sphaericus A genus of Protozoa that is transmitted to animals colin berry by ticks. Cardiff University, Cardiff, Wales, United Babesiosis Kingdom Piroplasmosis The bacterium Bacillus sphaericus is best-known to entomologists because of the toxicity of some Babesiosis strains to the larval stages of mosquitoes. This tox- icity will be examined below but first, some con- Several related diseases caused by infection sideration of the taxonomic group that is known with Babesia protozoans, and transmitted by as “Bacillus sphaericus” is necessary. ticks. Piroplasmosis Taxonomy Identification of a bacterium as aB. sphaericus iso- Bacillary Paralysis late is based on relatively few morphological fea- tures (e.g., the possession of a spherical terminal A disease of silkworm larvae caused by ingestion spore) and a limited number of biochemical tests of spores and parasporal crystals of Bacillus (e.g., inability to ferment sugars). As a result, the thuringiensis. classification contains a heterogeneous collection of strains and it has been shown that, at the DNA level, these can be divided into five major homol- Bacillus larvae (=Paenibacillus ogy groups (groups I-V), each of which could be larvae; Bacteria) considered as a separate species. All of the insecti- cidal strains of B. sphaericus are found within a The bacterium responsible for causing American subdivision of one of these groups – Group IIA; foulbrood in honey bees; it is now known as however, not all strains that fall within this group Paenibacillus larvae. are insecticidal. It is the insecticidal strains of American Foulbrood B. sphaericus and their properties that will be con- Paenibacillus sidered further below.
    [Show full text]
  • Plasmodium) and Haemoproteids (Haemoproteus) in Vectors
    VILNIUS UNIVERSITY NATURE RESERCH CENTRE RITA ŽIEGYTĖ THE EXPERIMENTAL STUDY ON DEVELOPMENT OF AVIAN MALARIA PARASITES (PLASMODIUM) AND HAEMOPROTEIDS (HAEMOPROTEUS) IN VECTORS Doctoral Dissertation Biomedical Sciences, Zoology (05 B) Vilnius, 2014 The research was carried out at Nature Research Centre during 2010 – 2014. Research Supervisor: dr. habil. Gediminas Valkiūnas (Nature Research Centre, Biomedical sciences, Zoology – 05 B) Consultant Supervisor: prof. dr. Staffan Bensch (Department of Animal Ecology of Lund University, Biomedical sciences, Zoology – 05 B) CONTENTS 1. LITERATURE REVIEW ......................................................................................12 1.1. Brief description of the life cycle of Haemoproteus and Plasmodium (Haemosporida) parasites in blood - sucking dipteran insects ..........................12 1.2. Review of studies of Haemoproteus and Plasmodium parasites in blood - sucking insects related to the dissertation ................................................15 1.2.1. Brief historical review on determining vectors of avian Haemoproteus and Plasmodium parasites ......................................................15 1.2.2. Investigation of sporogony of the Plasmodium relictum genetic lineages in mosquitoes Culex pipiens pipiens ....................................17 1.2.3. Investigation of sporogony of the Plasmodium relictum genetic lineages in mosquitoes Culex pipiens pipiens form molestus ..........18 1.2.4. Haemoproteus spp. sporogony in the biting midges ...........................18
    [Show full text]