2 Redefining Viruses

Total Page:16

File Type:pdf, Size:1020Kb

2 Redefining Viruses 2 Redefining viruses The development and reception of the virus concept in the Netherlands The [tobacco mosaic] infection is not caused by microbes, but by a contagium vivum fluidum. − Martinus Beijerinck (1898) Viruses are viruses. − André Lwoff (1957) In the previous chapter we considered the history of viral disease in the Netherlands in an era before anyone knew what a virus really was. Such an approach naturally begs the question as to when such a thing became known, but the answer is not straightforward at all. Much has been written on this subject, and for full expositions, we refer readers to the classic works of Sally Smith Hughes (1977) and A.P. Waterson and Lise Wilkinson (1978). In this chapter we offer but a brief tour, highlighting those aspects of the discovery and understanding of viruses that are most relevant to the history of understanding viral disease in the Netherlands. The word virus has been in use for a very long time, long before anything was known about the existence of any sort of ultramicroscopic or even microscopic, agent of infectious disease was discovered. It appears to have been imported into the English language from Latin as a word for ‘poison’ or ‘venom’ or noxious substance, sometime in the fifteenth or sixteenth centuries (Waterson and Wilkinson, 1978, p. 3). Perhaps the best-known reference is Edward Jenner’s famous exposition on the prevention of smallpox in 1798. The term ‘virus’ appears multiple times in this treatise, variously representing the ‘morbid matter’ of the disease – i.e., the material from the pustules of the pox – or the causative disease agent itself. After the advent of the germ theory in the nineteenth century the word was used rather non-specifically to denote agents of infectious disease. This idea is implicit, for example, in Louis Pasteur’s 1890 declaration: ‘En résumé, tout virus est un microbe.’ This statement, which translates as ‘In summary, every virus is a microbe,’ conveys his opinion that all infectious agents were microscopic living entities. Since that time the term ‘virus’ has undergone multiple ‘variances’ in meaning until various aspects were consolidated 68 LEEUWENHOEK’S LEGATEES AND BEIJERINCK’S BENEFICIARIES Figure 5 M.W. Beijerinck (1859-1931) M. W. Beijerinck (1859-1931) shortly before his retirement from the chair in Delft, at the age of 70 Photo reproduced from G. van Iterson, L.E. den Dooren de Jong, A.J. Kluyver (eds), Verzamelde Geschriften van M.W. Beijerinck, Zesde Deel, 1940 by the French microbiologist André Lwoff to denote an entity that was an Aristotelian natural kind in its own right: an obligate parasite of living ReI DEF NING VIRUSES 69 host cells composed of a core of a single species of nucleic acid encased in a proteinaceous coat (Lwoff, 1957; Lwoff and Tournier, 1966; Löwy, 1990, p. 88; Van Helvoort and Sankaran, 2019). The discovery of a remarkable anomaly The Netherlands can justly claim a place of pride in the foundational chapter of the history of virology – not just medical virology but the discipline in its entirety – because the first person who suggested that viruses were different from other disease agents was Dutch. In 1886, German agricultural scientist Adolf Mayer, director of the Agricultural Experimental Station in Wageningen, the Netherlands, described a new ‘mosaic’ disease of tobacco plants (TMD), which he was investigating upon the request of Dutch farmers affected by losses due to this disease. Although he was unable to find the causative agent, he believed it to be an infectious disease of bacterial cause (Mayer, 1942/1886). A few years later a Russian graduate student studying the same disease reported that it appeared to be caused by an invisible and filter- able entity, but like Mayer, was unable to isolate a causative bacterial agent (Ivanowski, 1942/1892).22 Then in 1898, the Dutch microbiologist, Martinus Willem Beijerinck, Mayer’s former colleague, by then in Delft, proposed an entirely new type of causative agent for the disease. He first presented his experiments and ideas in 1898 to the Koninklijke Nederlandse Akademie van Wetenschappen (the Royal Netherlands Academy of Sciences) – an enlarged23 version of this lecture was published in German the following year – where he announced: ‘We were dealing here with a disease which was caused by a contagium which was not a contagium fixum in the usual sense of the words’ (Beijerinck, 1961/1899, p. 154). Instead, he described the tobacco mosaic agent as a contagium vivum fluidum, a Latin phrase conveying the meaning of a living and fluid infectious agent. Beijerinck’s phrase was something of a contradiction in terms. At the time, the conception of life entailed that any being deemed living – vivum – had 22 This researcher’s name has been variously translated into English by different authors in different ways, e.g., Ivanovski, Ivanovsky, Ivanowski, and Iwanowsky. For the sake of convenience and consistency, the version used in the text here is Ivanowski, which was the spelling used in the Phytopathological Classics translation by J. Johnson, 1942. Direct quotes and titles of papers bearing his name, however, use the spelling used by the author of the publication quoted. 23 The English translation of the proceedings published by the KNAW was a verbal translation of the Dutch text. In contrast, the German version contained a translation of an enlarged text that was used by J. Johnson for the translation published in Phytopathological Classics 7 (1942). 70 LEEUWENHOEK’S LEGATEES AND BEIJERINCK’S BENEFICIARIES to be organized, which meant it was corpuscular or particulate (fixum) and therefore certainly not fluid! Although the translation for the word fluidum is fluid or liquid in English, Beijerinck used the expressions ‘liquid state’ and ‘dissolved state’ interchangeably in his original Dutch paper to describe the contagium (Kluyver, 1983, p. 119; Bos, 1999, p. 678). His ideas were heterodox for his times, but Beijerinck had experimental and theoretical back-ups for different elements of conception. For instance, he designed a series of experiments to test his hypothesis regarding the solubility of the infectious agent. First, he spread some material (extracts of crushed leaves) from diseased plants on the surface of a thick layer of agar and allowed a diffusion time of about ten days. After washing the surface of the plate, he infected healthy new plants with material extracted from the deeper layers of agar, taking great care to avoid contamination from the upper layers. By his reasoning: A virus, consisting of discrete particles, would need remain on the surface of the agar and consequently be in the impossibility of rendering the agar virulent; a virus, really dissolved in water would, on the contrary, be able to penetrate to a certain depth into the agar. (Beijerinck, 1899b, pp. 171-172) If the material from the deeper layers did indeed produce an infection identical to the original disease when injected into healthy new plants, Beijerinck felt justified in concluding that it contained a soluble, disease- producing agent, i.e. a contagium fluidum. As for the living nature of the agent, Beijerinck was quite clear. To him, the fact that a soluble agent retained its infectivity through serial transfers from a diseased plant to an unaffected one was evidence of multiplication. And, as he responded to a question from the famous botanist Hugo de Vries about the appropriateness of the adjective vivum at the Royal Academy meeting, he ‘considered the ability to reproduce to be the major characteristic of life’ (Beijerinck, 1898a; Bos, 1999, p. 678). In addition, he proposed a completely new mechanism for the multiplication of the disease agent. ‘Propagation results only when the virus is connected with the living and growing protoplasm of the host plant,’ he reported, noting too that the replication occurred only in young, dividing cells of the tobacco plant: The method of reproduction of the virus reminds one in certain ways of that of the amyloplasts and chloroplasts, which also grow only with the growing cell protoplasm, but can also exist and function independently. (Beijerinck, 1942/1898, p. 39) ReI DEF NING VIRUSES 71 Given the novelty of his ideas, it was not to be expected that Beijerinck would be allowed to present them uncontested. One of his main opponents was none other than Ivanowski, the first person who had demonstrated the filterability of the tobacco mosaic agent in 1892, but whose interpretation of the results had been quite different. His own conclusion was that the tobacco mosaic disease was ‘explained most simply by the assumption of a toxin secreted by the bacteria present, which is dissolved in the filtered sap’ (Ivanowski, 1942/1892, p. 30). His ideas were drawn from the example of the French bacteriologists Émile Roux and Alexandre Yersin, who had demonstrated that the major symptoms of diphtheria were caused by a toxin produced by the bacteria, rather than the live bacteria themselves (Roux and Yersin, 1888). Upon reading Beijerinck’s reports, Ivanowski was not only understandably piqued that the latter had made no mention of his own earlier discoveries, but also critical of the idea of a soluble contagion. He repeated the agar diffusion experiments and obtained similar results, but extended the studies by testing the infectivity of material from different stages of a fractionated filtration, due to which he maintained his belief that the agent was particulate: We see that there is not a single fact which supports the hypothesis on the soluble character of the infectious agent of mosaic disease. On the contrary, the experiment with the diffusion into agar and especially the fractionated filtration clearly indicates that we are dealing with a contagium fixum. (Ivanowski, 1903, quoted in Lechevalier, 1972, pp.
Recommended publications
  • Plant Viruses
    Western Plant Diagnostic Network1 First Detector News A Quarterly Pest Update for WPDN First Detectors Spring 2015 edition, volume 8, number 2 In this Issue Page 1: Editor’s Note Dear First Detectors, Pages 2 – 3: Intro to Plant Plant viruses cause many important plant diseases and are Viruses responsible for huge losses in crop production and quality in Page 4: Virus nomenclature all parts of the world. Plant viruses can spread very quickly because many are vectored by insects such as aphids and Page 5 – Most Serious World Plant Viruses & Symptoms whitefly. They are a major pest of crop production as well as major pests of home gardens. By mid-summer many fields, Pages 6 – 7: Plant Virus vineyards, orchards, and gardens will see the effects of plant Vectors viruses. The focus of this edition is the origin, discovery, taxonomy, vectors, and the effects of virus infection in Pages 7 - 10: Grapevine plants. There is also a feature article on grapevine viruses. Viruses And, as usual, there are some pest updates from the West. Page 10: Pest Alerts On June 16 – 18, the WPDN is sponsoring the second Invasive Snail and Slug workshop at UC Davis. The workshop Contact us at the WPDN Regional will be recorded and will be posted on the WPDN and NPDN Center at UC Davis: home pages. Have a great summer and here’s hoping for Phone: 530 754 2255 rain! Email: [email protected] Web: https://wpdn.org Please find the NPDN family of newsletters at: Editor: Richard W. Hoenisch @Copyright Regents of the Newsletters University of California All Rights Reserved Western Plant Diagnostic Network News Plant Viruses 2 Ag, Manitoba Photo courtesy Photo Food, and Rural Initiatives and Food, of APS Photo by Giovanni Martelli, U of byBari Giovanni Photo Grapevine Fanleaf Virus Peanut leaf with Squash Mosaic Virus tomato spotted wilt virus Viruses are infectious pathogens that are too small to be seen with a light microscope, but despite their small size they can cause chaos.
    [Show full text]
  • Genome Evolution of a Bee- Associated Bacterium
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1953 Genome evolution of a bee- associated bacterium ANDREA GARCÍA-MONTANER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0986-6 UPPSALA urn:nbn:se:uu:diva-416847 2020 Dissertation presented at Uppsala University to be publicly examined in A1:111a, Biomedicinskt centrum (BMC), Husargatan 3, Uppsala, Thursday, 24 September 2020 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Matthias Horn (Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology). Abstract García-Montaner, A. 2020. Genome evolution of a bee-associated bacterium. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1953. 80 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0986-6. The use of large-scale comparative genomics allows us to explore the genetic diversity and mechanisms of evolution of related organisms. This thesis has focused on the application of such approaches to study Lactobacillus kunkeei, a bacterial inhabitant of the honeybee gut. We produced 102 novel complete genomes from L. kunkeei, which were used in four large comparative studies. In the first study, 41 bacterial strains were isolated from the crop of honeybees whose populations were geographically isolated. Their genome sequences revealed differences in gene contents, including the mobilome, which were mostly phylogroup- specific. However, differences in strain diversity and co-occurrence between both locations were observed. In the second study, we obtained 61 bacterial isolates from neighboring hives at different timepoints during the summer.
    [Show full text]
  • Marine Microbiology at Scripps
    81832_Ocean 8/28/03 7:18 PM Page 67 Special Issue—Scripps Centennial Marine Microbiology at Scripps A. Aristides Yayanos Scripps Institution of Oceanography, University of California, • San Diego, California USA Marine microbiology is the study of the smallest isolated marine bioluminescent bacteria, isolated and organisms found in the oceans—bacteria and archaea, characterized sulfate-reducing bacteria, and showed many eukaryotes (among the protozoa, fungi, and denitrifying bacteria could both produce and consume plants), and viruses. Most microorganisms can be seen nitrous oxide, now known to be an important green- only with a microscope. Microbes pervade the oceans, house gas. Beijerinck also founded the field of virology its sediments, and some hydrothermal fluids and through his work on plant viruses (van Iterson et al., exhibit solitary life styles as well as complex relation- 1983). Mills (1989) describes the significance of the ships with animals, other microorganisms, and each work of Beijerink and Winogradsky to plankton other. The skeletal remains of microorganisms form the research and marine chemistry. largest component of sedimentary fossils whose study Around 1903, bacteriology in California was reveals Earth’s history. The enormous morphological, emerging in the areas of medicine and public health physiological, and taxonomic diversity of marine and accordingly was developing into an academic dis- microorganisms remains far from adequately cipline in medical schools (McClung and Meyer, 1974). described and studied. Because the sea receives terres- Whereas the branch of microbiology dealing with bac- trial microorganisms from rivers, sewage outfalls, and teria and viruses was just beginning, the branch con- other sources, marine microbiology also includes the cerning protozoa and algae was a relatively more estab- study of alien microorganisms.
    [Show full text]
  • Lecture 7 Introduction to Viruses Introduction
    Lecture 7 Introduction to Viruses Introduction Virus, parasite with a noncellular structure composed mainly of nucleic acid within a protein coat. Most viruses are too small (100–2,000 Angstrom units) to be seen with the light microscope and thus must be studied by electron microscopes. In one stage of their life cycle, in which they are free and infectious, virus particles do not carry out the functions of living cells, such as respiration and growth; in the other stage, however, viruses enter living plant, animal, or bacterial cells and make use of the host cell's chemical energy and its protein- and nucleic acid–synthesizing ability to replicate themselves. Over 5,000 species of viruses have been discovered. Discovery of Viruses In 1884 the French microbiologist Charles Chamberland invented a filter, known today as the Chamberland filter or Chamberland–Pasteur filter that has pores smaller than bacteria. Thus he could pass a solution containing bacteria through the filter and completely remove them from the solution. In the early 1890s the Russian biologist Dmitri Ivanovsky used this filter to study what became known as the tobacco mosaic virus. His experiments showed that extracts from the crushed leaves of infected tobacco plants remain infectious after filtration. At the same time several other scientists proved that, although these agents (later called viruses) were different from bacteria, they could still cause disease, and they were about one hundredth the size of bacteria. In 1899 the Dutch microbiologist Martinus Beijerinck observed that the agent multiplied only in dividing cells. Having failed to demonstrate its particulate nature he called it a "contagium vivum fluidum", a "soluble living germ".
    [Show full text]
  • Module1: General Concepts
    NPTEL – Biotechnology – General Virology Module1: General Concepts Lecture 1: Virus history The history of virology goes back to the late 19th century, when German anatomist Dr Jacob Henle (discoverer of Henle’s loop) hypothesized the existence of infectious agent that were too small to be observed under light microscope. This idea fails to be accepted by the present scientific community in the absence of any direct evidence. At the same time three landmark discoveries came together that formed the founding stone of what we call today as medical science. The first discovery came from Louis Pasture (1822-1895) who gave the spontaneous generation theory from his famous swan-neck flask experiment. The second discovery came from Robert Koch (1843-1910), a student of Jacob Henle, who showed for first time that the anthrax and tuberculosis is caused by a bacillus, and finally Joseph Lister (1827-1912) gave the concept of sterility during the surgery and isolation of new organism. The history of viruses and the field of virology are broadly divided into three phases, namely discovery, early and modern. The discovery phase (1886-1913) In 1879, Adolf Mayer, a German scientist first observed the dark and light spot on infected leaves of tobacco plant and named it tobacco mosaic disease. Although he failed to describe the disease, he showed the infectious nature of the disease after inoculating the juice extract of diseased plant to a healthy one. The next step was taken by a Russian scientist Dimitri Ivanovsky in 1890, who demonstrated that sap of the leaves infected with tobacco mosaic disease retains its infectious property even after its filtration through a Chamberland filter.
    [Show full text]
  • Beijerinck, Martinus Willem
    414 BIOGRAPHIES MARTINUS WILLEM BEIJERINCK 1851-1931 Beijerinck was bom in 1851 in Amsterdam, the son of a railway employee. He received his secondary education at the HBS in Haar­ lem and from 1868 to 1872 studied chemical technology at die Delft Polytechnic School. Together with his fellow students J.H. van 't Hoff and A.A.W. Hubrecht, Beijerinck was exempted, in 1872, from an additional examination in Greek and Latin required for university study. Wliile he was teacher in various schools Beijerinck studied botany at Leiden from 1872 onwards. In 1877 he received his doctor­ ate, cum laude, on a dissertation entitled Bijdrage tot de morpholoffe der plankgallen (Contribution to the Morphology of Plant Galls). In 1884 Beijerinck became a member of the Royal Academy of Arts and Sciences in Amsterdam, and a year later he was hired as a microbiologist by the Nederlandsche Gist- en Spiritusfabriek (Dutch Yeast and Methylated Spirits Factoiy) in Delft. In this capacity he got his own microbiological laboratoiy, where he carried out many origi­ nal studies, especially on the metabolism of various species of bacteria and lichens. He discovered the small nitrogen-fixing tubers at the roots of leguminous plants and a group of anaerobic bacteria that were important for the production of acetone and butyl alcohol. In 1895 the Delft Polytechnic School appointed Beijerinck as pro­ fessor of biology and bacteriology. Two years later a new micro­ biological laboratory, built especially for him and his students, was opened. Here Beijerinck continued his microbiological studies with great success. In 1896 he discovered the bacterium that was reponsible for the bad smell of polluted canal water in Dutch cities; he and his students did important work on the microbes that were active in acetic-acid and alcohol fermentations; and in 1898 Beije­ rinck was the first to postulate the existence of a filterable living principle, a 'contagium vivum fluidum', responsible for the mosaic disease in tobacco plants.
    [Show full text]
  • PART I Foundations of Microbiology
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORPART SALE OR DISTRIBUTION I FoundationsNOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC of MicrobiologyNOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER 1 Microbiology: Then and Now CHAPTER© Jones 2& BartlettThe Chemical Learning, Building LLC Blocks of Life © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER 3 Concepts and Tools for Studying Microorganisms CHAPTER 4 Structure and Organization of Prokaryotic Cells CHAPTER 5 Microbial Growth and Nutrition © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION 6 Microbial Metabolism NOT FOR SALE OR DISTRIBUTION The six chapters in Part I embrace several aspects of the six principal (overarching) concepts as described in the ASM Fundamental Statements for a concept-based microbiology curriculum. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC © M.I.T. Case No. 17683C, “C Food ,” by Roman Stocker, Steven Paul Smriga, and Vincente Igancio Fernandez. Paul Steven Roman Stocker, by ,” Case No. 17683C, “C Food © M.I.T. NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION PRINCIPAL CONCEPTS Evolution • Cells, organelles (e.g., mitochondria and chloroplasts), and all major metabolic pathways © Jones & Bartlettevolved Learning, from early LLC prokaryotic cells. Chapters 3 ©and Jones 4 & Bartlett Learning, LLC • The evolutionary relatedness of organisms is best reflected in phylogenetic trees. Chapter 3 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Cell Structure and • The structure and function of microorganisms have been revealed by the use of microscopy Function (including bright field, phase contrast, fluorescent, and electron).
    [Show full text]
  • University of Groningen Lignocellulose-Degrading Microbial Consortia Cortes Tolalpa, Larisa
    University of Groningen Lignocellulose-degrading microbial consortia Cortes Tolalpa, Larisa IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Cortes Tolalpa, L. (2018). Lignocellulose-degrading microbial consortia: Importance of synergistic interactions. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 23-09-2021 Chapter 1 General introduction Larisa Cortés Tolalpa Chapter 1. General Introduction Lignocellulose biomass composition During the past century, world energy consumption has mostly depended on the utilization of fossil fuels, which has provoked negative changes in our climate and increased the emission of greenhouse gases in the atmosphere. An important emerging trend in the 21th century is the switch from non-renewable fossil resources to renewable ones for the production of biofuels and other valuable compounds.
    [Show full text]
  • Milestones in Microbiology from the Science of Microbes Teacher’S Guide by Nancy P
    Activity: Milestones in Microbiology from The Science of Microbes Teacher’s Guide by Nancy P. Moreno, Ph.D., Barbara Z. Tharp, M.S., Deanne B. Erdmann, M.S., Sonia Rahmati Clayton, Ph.D., and James P. Denk, M.A. RESOURCES Free, online presentations of each activity, downloadable activities in PDF format, and annotated slide sets for classroom use are available at www.bioedonline.org/ or www.k8science.org/. © 2012 by Baylor College of Medicine All rights reserved. © 2012 by Baylor College of Medicine SOURCE URLs All rights reserved. BAYLOR COLLEGE OF MEDICINE Printed in the United States of America BIOED ONLINE | K8 SCIENCE ISBN-13: 978-1-888997-54-5 www.bioedonline.org | www.k8science.org ISBN-10: 1-888997-54-0 BAYLOR-UT CENTER FOR AIDS RESEARCH www.bcm.edu/cfar TEACHER RESOURCES FROM THE CENTER FOR EDUCATIONAL OUTREACH MOLECULAR VIROLOGY AND MICROBIOLOGY AT BAYLOR COLLEGE OF MEDICINE www.bcm.edu/molvir The mark “BioEd” is a service mark of Baylor College of Medicine. The information contained in this publication is for educational BAYLOR-UT CENTER FOR AIDS RESEARCH purposes only and should in no way be taken to be the provision or practice of medical, nursing or professional healthcare advice www.bcm.edu/cfar or services. The information should not be considered complete and should not be used in place of a visit, call, consultation or advice of a physician or other health care provider. Call or see a physician or other health care provider promptly for any health care-related questions. BROOKHAVEN NATIONAL LABORATORY BIOLOGY - STEM FACILITY Development of The Science of Microbes educational materials is supported, in part, by a Science Education Partnership Award www.biology.bnl.gov from the National Center for Research Resources (NCRR) of the National Institutes of Health (NIH), grant number 5R25 RR018605.
    [Show full text]
  • The Discovery of the Causal Agent of the Tobacco Mosaic Disease
    From the book Discoveries in Plant Biology, 1998, pp.: 105-110. S.D Kung and S. F. Yang (eds). Reprinted with permission from the World Publishing Co., Ltd. Hong Kong. Chapter 7 The Discovery of the Causal Agent of the Tobacco Mosaic Disease Milton Zaitlin Cornell University Ithaca, New York 14853, USA ABSTRACT The discovery of the causal agent of the disease causing mosaic and distortion on tobacco plants, with the concomitant realization that the etiologic agent was something unique - a virus - came at the end of the 19th century. This marked the beginning of the science of virology, although many diseases now known to be caused by viruses were described much earlier. This review documents the contributions of the three men who were the pioneers in this work, namely, Adolph Mayer, Dmitrii Iwanowski and Martinus Beijerinck. To appreciate the discovery of the new infectious agent, the virus, at the end of the 19th century, we must think within the context of what was known about disease etiology at that time. It had only been appreciated for a short time that many diseases were caused by infectious entities. The work of pioneers like Pasteur, Lister and Koch had brought an appreciation of the causal agents of anthrax and tuberculosis. The dogma of the day was firmly entrenched in the postulates of Koch, who described in detail what was essential in order to establish the causal organism for a disease: 1) The organism must be associated with the pathological relationship to the disease and its symptoms; 2) The organism must be isolated and obtained in pure culture; 3) Inoculation of the organism from the pure culture must reproduce the disease; and 4) The organism must be recovered once again from the lesions of the host.
    [Show full text]
  • Rdpg Symposium
    2017 RDPG SYMPOSIUM GUT MICROBIOME BASICS AND TRANSLATION INTO CONSUMER PRODUCTS Dr Gilbert opened the symposium by explaining how unique each individual gut microbiome is and said, “The microbiome is essentially a fingerprint.” LEARNING OBJECTIVES • Untangle the taxonomy and vast array of bacteria present in the GUT MICROBIOME BASICS human gut microbiota • Elucidate the diversity of fiber AND TRANSLATION INTO and its role in fueling human gut microbes • Establish a connection between CONSUMER PRODUCTS human health and the gut microbiota • Demonstrate how industry is n October 21, 2017, the Research Dietetic Practice Group of the Academy of Nutrition translating the science into Oand Dietetics hosted a continuing education symposium sponsored by the Abbott consumer products Nutrition Health Institute. The symposium, which was held in Chicago, featured four speakers The goals for the symposium were: who study different aspects of the human gut microbiome and how these bacteria affect health 1) to define the role of the gut throughout the lifespan. microbiome and to describe dietary fibers that the bacteria use as fuel SYMPOSIUM OVERVIEW sources, and 2) to demonstrate how industry is translating the Jack Gilbert, PhD, University of Chicago, reviewed basic microbiology and bacterial scientific findings into products. nomenclature, and introduced the importance of gut bacteria in clinical applications. Bruce The learning objectives presented Hamaker, PhD, Purdue University, discussed the vast array of fibers that bacteria use as fuel the latest scientific findings with sources. Hannah Holscher, PhD, RD, University of Illinois, focused on science translation and clinical applications for patient the ways fiber may be used to modulate gut microbes for human health.
    [Show full text]
  • The History of Virology – the Scientific Study of Viruses and Therefore the Infections- Research Analysis of Virology and Retr
    Current research in Virology & Retrovirology 2021, Vol.2, Issue 3 Short Communication The history of virology – the scientific study of viruses and therefore the infections- Research Analysis of Virology and Retrovirology Kwanighee Yonsei University, South Korea cholerae. Bacteriophages were heralded as a possible treatment for Copyright: 2021 Kwanighee . This is an open-access article distributed diseases like typhoid and cholera, but their promise was forgotten under the terms of the Creative Commons Attribution License, which with the event of penicillin. Since the early 1970s, bacteria have permits unrestricted use, distribution, and reproduction in any medium, continued to develop resistance to antibiotics such as penicillin, provided the original author and source are credited. and this has led to a renewed interest in the use of bacteriophages to treat serious infections. Early research 1920–1940, D'Herelle Abstract travelled widely to market the utilization of bacteriophages within the treatment of bacterial infections. In 1928, he became professor The history of virology – the scientific study of viruses and therefore of biology at Yale and founded several research institutes. He was the infections they cause – began within the closing years of the convinced that bacteriophages were viruses despite opposition 19th century. Although Pasteur and Jenner developed the primary from established bacteriologists such as the Nobel Prize winner vaccines to guard against viral infections, they didn't know that Jules Bordet (1870–1961). Bordet argued that bacteriophages viruses existed. The first evidence of the existence of viruses came from experiments with filters that had pores sufficiently small to were not viruses but just enzymes released from "lysogenic" retain bacteria.
    [Show full text]