Marine Microbiology at Scripps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activity-Release-Form-KLCC
Kingdom Life Community Church Activity Release Form For those 18 years of age or older, all parents, and all guardians: I consent for any of my children listed below to participate in any activity or trip sponsored by Kingdom Life Community Church. In case of medical need or injury, I authorize the church to arrange for medical or dental services for me and any of my children listed below. I agree that any such expense will be my obligation. I, individually, or in my capacities as parent or guardian of the below listed children, waive, release, and indemnify the church and all of its agents, directors, officers, employees and volunteers (collectively, “released parties”) from all demands, claims, liability, in law or in equity, that have arisen or may arise from any church activity or trip and that involve any damage, loss, or injury to me, my spouse, any of my children, my property, or the property of any of my children. In the same capacities, I promise not to sue any of the released parties for any such demands, claims, or liability. This waiver, release, indemnification, and promise not to sue do not apply to claims of criminal conduct or gross negligence. I understand that the church may take photographs of me and my family in the course of its activities, and I grant the church permission to publish such photographs in a manner the church deems appropriate. This activity release form is in effect for any activities that I, or any of my children, may participate in. This form is revocable, prospectively only, by a writing signed by me that bears the date that the revocation is delivered to the church. -
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy. -
Revised Glossary for AQA GCSE Biology Student Book
Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they -
Plant Viruses
Western Plant Diagnostic Network1 First Detector News A Quarterly Pest Update for WPDN First Detectors Spring 2015 edition, volume 8, number 2 In this Issue Page 1: Editor’s Note Dear First Detectors, Pages 2 – 3: Intro to Plant Plant viruses cause many important plant diseases and are Viruses responsible for huge losses in crop production and quality in Page 4: Virus nomenclature all parts of the world. Plant viruses can spread very quickly because many are vectored by insects such as aphids and Page 5 – Most Serious World Plant Viruses & Symptoms whitefly. They are a major pest of crop production as well as major pests of home gardens. By mid-summer many fields, Pages 6 – 7: Plant Virus vineyards, orchards, and gardens will see the effects of plant Vectors viruses. The focus of this edition is the origin, discovery, taxonomy, vectors, and the effects of virus infection in Pages 7 - 10: Grapevine plants. There is also a feature article on grapevine viruses. Viruses And, as usual, there are some pest updates from the West. Page 10: Pest Alerts On June 16 – 18, the WPDN is sponsoring the second Invasive Snail and Slug workshop at UC Davis. The workshop Contact us at the WPDN Regional will be recorded and will be posted on the WPDN and NPDN Center at UC Davis: home pages. Have a great summer and here’s hoping for Phone: 530 754 2255 rain! Email: [email protected] Web: https://wpdn.org Please find the NPDN family of newsletters at: Editor: Richard W. Hoenisch @Copyright Regents of the Newsletters University of California All Rights Reserved Western Plant Diagnostic Network News Plant Viruses 2 Ag, Manitoba Photo courtesy Photo Food, and Rural Initiatives and Food, of APS Photo by Giovanni Martelli, U of byBari Giovanni Photo Grapevine Fanleaf Virus Peanut leaf with Squash Mosaic Virus tomato spotted wilt virus Viruses are infectious pathogens that are too small to be seen with a light microscope, but despite their small size they can cause chaos. -
Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. -
Genome Evolution of a Bee- Associated Bacterium
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1953 Genome evolution of a bee- associated bacterium ANDREA GARCÍA-MONTANER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0986-6 UPPSALA urn:nbn:se:uu:diva-416847 2020 Dissertation presented at Uppsala University to be publicly examined in A1:111a, Biomedicinskt centrum (BMC), Husargatan 3, Uppsala, Thursday, 24 September 2020 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Matthias Horn (Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology). Abstract García-Montaner, A. 2020. Genome evolution of a bee-associated bacterium. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1953. 80 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0986-6. The use of large-scale comparative genomics allows us to explore the genetic diversity and mechanisms of evolution of related organisms. This thesis has focused on the application of such approaches to study Lactobacillus kunkeei, a bacterial inhabitant of the honeybee gut. We produced 102 novel complete genomes from L. kunkeei, which were used in four large comparative studies. In the first study, 41 bacterial strains were isolated from the crop of honeybees whose populations were geographically isolated. Their genome sequences revealed differences in gene contents, including the mobilome, which were mostly phylogroup- specific. However, differences in strain diversity and co-occurrence between both locations were observed. In the second study, we obtained 61 bacterial isolates from neighboring hives at different timepoints during the summer. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
Marine Microplankton Ecology Reading
Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B. -
Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton, -
Activity 3: Six Kingdoms Brochure
Activity 3: Six Kingdoms Brochure Objective: You will demonstrate your knowledge of the six kingdoms of organisms by gathering information (from your class notes, the internet, and the biology textook) and creating a brochure on the six kingdoms in which scientists classify organisms. Your brochure will be organized as follows: 1. Making the Brochure- the brochure is made of one piece of paper. Fold the paper into thirds. 2. Cover- your cover should have a picture and an appropriate title. Your name should be written in the bottom right corner of the cover. 3. Inside the Brochure- inside your brochure, you should have one section for each of six kingdoms. Use the front and back of the paper. Since there will only be five open sections left in the brochure, you should place both the Eubacteria Kingdom and Archaebacteria Kingdom in the same section. You must include the following information for each of the six kingdoms: • Are the organisms unicellular (one cell) or multicellular (many cells) or both? • Do they have a nucleus in their cells? • Do they make their own food or get it from other organisms? • Other important characteristics • A picture or a diagram of sample organisms (one or a few) The Kingdom Fungi The Kingdom Fungi includes some of the most important organisms, both in terms of their ecological and economic roles. By decomposing dead material, they continue the cycle of nutrients through ecosystems. In addition, most plants could not grow without the fungi, or mycorrhizae, that live in their roots and supply essential nutrients. Other fungi provide numerous drugs (such as penicillin and other antibiotics), foods like mushrooms, truffles and morels, and the bubbles in bread (yeast), champagne, and beer. -
Biological Oceanography
MEETINGS & WORKSHOPS BOOKS & VIDEOS COMPARISON OF BIOLOGICALOCEANOGRAPHY: TERRES ,C AN EARLY I--hSTOR¥, 1870 TO 1960 MARINE ECOLOGICAL SYSTEMS By Eric L. Mills A WORKSHOP on this subject 1989,378 pp., $42.50, Cloth, Cornell University Press, Ithaca, NY. was held in 1989 with partial National Reviewed by David J. Carlson Science Foundation support. The re- In the mid-nineteenth century, biologists dence), the initial biological oceanographers port (copies available from J. Steele) studying the oceans were mostly interested were male (Sheina Marshall of the Scottish discusses the various problems, lo- in discovering deep-sea organisms. Today Marine Biological Association laboratory gistic and conceptual, in making such biological oceanographers pay most atten- and Penelope Jenkin and Marie Lebour of the comparisons, but its main conclu- tion to processes in the surface ocean. In his Plymouth Laboratoryare notable exceptions). sion is that we should have work- latest volume of oceanographic history, Mills introduces us first to Victor Hensen, a shops or summer schools that focus published by Cornell University Press in its German biochemist, anatomist and physi- on specific topics where interactions History of Science Series, Eric Mills de- ologist who turned his attention to marine between the different sectors would scribes the period from 1870 to 1960 during subjects when nascent Germany formed a be most fruitful. A recent meeting of which focus shifted from deep-sea natural commission for the study of its seas. Hensen the Steering Committee (J. Cohen, P. history to upper ocean plankton dynamics recognized that small planktonic organisms Dayton, T. Kratz, S. Levin, R. and when, as a result, biological oceanogra- were important components of marine sys- Ricklefs and J. -
Interactions Between Marine Picoeukaryotes and Their Viruses One Cell at a Time
Interactions between marine picoeukaryotes and their viruses one cell at a time Interacciones entre picoeucariotas marinos y sus virus célula a célula Yaiza M. Castillo de la Peña Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons . Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons . This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License . Interactions between marine picoeukaryotes and their viruses one cell at a time (Interacciones entre picoeucariotas marinos y sus virus célula a célula) Yaiza M. Castillo de la Peña Tesis doctoral presentada por Dª Yaiza M. Castillo de la Peña para obtener el grado de Doctora por la Universitat de Barcelona y el Institut de Ciències del Mar, programa de doctorado en Biotecnología, Facultat de Farmàcia i Ciències de l’Alimentació . Directoras: Dra. Mª Dolors Vaqué Vidal y Dra. Marta Sebastián Caumel Tutora: Dra. Josefa Badía Palacín Universitat de Barcelona (UB) Institut de Ciències del Mar (ICM-CSIC) La doctoranda La directora La co -directora La tutora Yaiza M. Castillo Dolors Vaqué Marta Sebastián Josefa Badía En Barcelona, a 25 de noviembre de 2019 Cover design and images: © Yaiza M. Castillo. TEM images from Derelle et al ., 2008 This thesis has been funded by the Spanish Ministry of Economy and competitivity (MINECO) through a PhD fellowship to Yaiza M. Castillo de la Peña (BES-2014- 067849), under the program “Formación de Personal Investigador (FPI)”, and adscribed to the project: “Impact of viruses on marine microbial communities using virus-host models and metagenomic analyzes.” MEFISTO (Ref.