Ivrea Mantle Wedge, Arc of the Western Alps, and Kinematic Evolution of the Alps–Apennines Orogenic System

Total Page:16

File Type:pdf, Size:1020Kb

Ivrea Mantle Wedge, Arc of the Western Alps, and Kinematic Evolution of the Alps–Apennines Orogenic System Swiss J Geosci DOI 10.1007/s00015-016-0237-0 Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system 1 1 1 2 Stefan M. Schmid • Eduard Kissling • Tobias Diehl • Douwe J. J. van Hinsbergen • Giancarlo Molli3 Received: 6 June 2016 / Accepted: 9 December 2016 Ó Swiss Geological Society 2017 Abstract The construction of five crustal-scale profiles related to the lateral indentation of the Ivrea mantle slice across the Western Alps and the Ivrea mantle wedge towards WNW by some 100–150 km. (4) The final stage of integrates up-to-date geological and geophysical informa- arc formation (25–0 Ma) is associated with orogeny in the tion and reveals important along strike changes in the Apennines leading to oroclinal bending in the southern- overall structure of the crust of the Western Alpine arc. most Western Alps in connection with the 50° counter- Tectonic analysis of the profiles, together with a review of clockwise rotation of the Corsica-Sardinia block and the the existing literature allows for proposing the following Ligurian Alps. Analysis of existing literature data on the multistage evolution of the arc of the Western Alps: (1) Alps–Apennines transition zone reveals that substantial exhumation of the mantle beneath the Ivrea Zone to shal- parts of the Northern Apennines formerly suffered Alpine- low crustal depths during Mesozoic is a prerequisite for the type shortening associated with an E-dipping Alpine sub- formation of a strong Ivrea mantle wedge whose strength duction zone and were backthrusted to the NE during exceeds that of surrounding mostly quartz-bearing units, Apenninic orogeny that commences in the Oligocene. and consequently allows for indentation of the Ivrea mantle wedge and eastward back-thrusting of the western Alps Keywords Western Alps Á Apennines Á Ivrea mantle Á during Alpine orogeny. (2) A first early stage (pre-35 Ma) Teleseismic tomography Á Arcuate mountain belts of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260 km displacement of internal Western Alps 1 Introduction and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to The Western Alps represent a prime example of a very stable Europe. (3) The second stage (35–25 Ma), further arcuate mountain belt curving around from an E-W strike accentuating the arc, is associated with top-WNW thrusting with dominant top-N nappe stacking in the Eastern Alps to a in the external zones of the central portion of the arc and is N-S strike in the northern Western Alps and finally into an E-W strike with top-S nappe stacking in the Ligurian Alps straddling the Mediterranean coast (Fig. 1). The question Editorial handling: C. Sue and A. G. Milnes. after the mechanisms of arc formation is an old and much debated issue in many orogens (Marshak 1988) involving, in & Stefan M. Schmid the case of the Alps, elements of oroclinal bending of an [email protected] initially straight orogen (Carey 1955; van der Voo 2004), 1 Institute of Geophysics, ETH Zu¨rich, Sonneggstrasse 5, induced by rigid body rotation of the hinterland (Vialon 8092 Zurich, Switzerland et al. 1989) and/or by W-directed indentation of the Adria 2 Department of Earth Sciences, Utrecht University, microplate (Laubscher 1971; Schmid and Kissling 2000). Heidelberglaan 2, 3584 CS Utrecht, The Netherlands Transpressional movements associated with large top NNW 3 Dipartimento di Scienze della Terra, Universita` di Pisa, Pisa, displacements of portions of the inner zone of the Western Italy Alps that occur at a small angle to the present-day N-S strike S. M. Schmid et al. Cenozoic basins Tectonic map of the Western Alps Cenozoic in general 6° 7° 8° 9° 10° 11° Cenozoic of Piedmontese basin Basel Lower Plate Units of the Alps European continental margin Zürich St. Gallen Dijon Cenozoic flysch Besançon (Dauphinois and Helvetic Nappes) 4 NFP 20 West 5 T Innsbruck European Mesozoic undeformed 47° icino European Mesozoic deformed 47° Bern Allochthonous Mesozoic & Cenozoic (Helvetic Nappes) Chur European basement (External Massifs) European upper crust of the Subpenninic Units High-pressure Subpenninic Units 3 Ec Bolzano Valaisan partly oceanic domain ors CROP Sion RSL Valaisan Genève PL 46° Locarno Briançonnais micro-continent GB 46° Sub-Briançonnais PF Briançonnais Aosta High-pressure Briançonnais Pre-Piemontais Acceglio Moûtiers Ivrea Sesia-Dent Blanche Extensional Allochthons Milano Verona Sesia, Dent Blanche, Margna, Sella Units Grenoble Piedmont-Liguria Ocean 45° 2 Pelvoux Torino TH Lower Plate Piedmont-Liguria MH 45° VVL Upper Plate Units of the Alps Briançon AFSV Upper Plate Piedmont-Liguria and distal continental margin of Adria Adria Permo-Mesozoic Gap PF Bologna Adria upper crust Cuneo Argentera Genova Adria lower crust ACL LA Austroalpine Permo-Mesozoic 44° Digne Austroalpine basement 44° 020100 km Cenozoic plutons 1 Argentera Apennines Nice Apenninic Units in general 6° 7° 8° 9° 10° 11° Fig. 1 Tectonic map of the arc of the Western Alps after Schmid Front, ACL Argentera-Cuneo Line, AFSV front of the metamorphic et al. (2004) and Bousquet et al. (2012b) with indication of the traces core of the Alps and Sestri-Voltaggio line, VVL Villalvernia-Varzi of the profiles depicted in Fig. 2. The selected faults indicated in red line. Abbreviations in black are: LA Ligurian Alps, TH Torino hills, are: RSL Rhone-Simplon Line, PL Periadriatic Line, PF Penninic MH Monferrato hills, GB Giudicarie transpressive belt of the Western Alps were also invoked for being responsible substantial recent improvements in revealing the deep for explaining the curvature from the Eastern Alps into the structure of the arc of the Western Alps. The new geo- N-S striking Western Alps (Ricou and Siddans 1986). There physical data set of unprecedented quality calls for inte- have also been attempts to explain diverging kinematic gration with a wealth of geological data collected over many indicators along the arc of the Western Alps ranging from decades to elucidate the formation of the arc of the Western top-N Western Switzerland to top-SW in southern France Alps that also demands to analyze the Alps–Apennines without taking resort to a multi-stage evolution allowing for transition area located in the Ligurian Alps and the Northern strike-slip movements and/or large rotations (Platt et al. Apennines (Molli et al. 2010). 1989; their group 3 kinematic indicators formed in the This contribution integrates the new results of crustal 40–15 Ma time interval). However, as pointed out by Butler tomography and improved knowledge on Moho depth (1986; his Figure 2), strongly divergent thrust transport (Spada et al. 2013) with a geological interpretation of five directions over large distances inevitably result in excessive crustal-scale transects across the Western Alps. Thereby orogen-parallel stretching. we focus on the role of the Ivrea mantle wedge. Another In the Western Alps many previous workers (e.g. Laub- important aim of our geological-geophysical interpreta- scher 1971; Butler 1983) recognized the crucial role of the tions is to put new constraints on the question as to how Ivrea mantle wedge residing at relatively shallow crustal much continental crust was subducted in the Alps and what levels and locally reaching the surface. Novel geophysical the variations in pre-orogenic crustal thickness might have methods such as teleseismic tomography aiming at the been (see discussions by, e.g., Me´nard and Molnar 1991; structure of the earth’s mantle (Lippitsch et al. 2003)and Butler 2013; Mohn et al. 2014). crustal tomography based on local earthquake data (Diehl Two transects are revised versions of previously pub- et al. 2009), together with older information based on con- lished profiles (Schmid et al. 2004) while three of them trolled source seismology (Blundell et al. 1992), led to were newly constructed. Special emphasis is given to Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines… improved mapping of the outlines of the Ivrea mantle When comparing the velocity contours with the geological wedge based on geophysical data. This is then followed by interpretation it has to be kept in mind, however, that these an analysis of the complex multi-stage evolution of the arc contours have a low spatial resolution since they are based of the Western Alps and an attempt to map the associated on assigning a given velocity to a sizable cell volume of 20 displacement history of geological units of the Western 9 20 km (horizontal) and 15 km (vertical). Secondly, we Alps–Northern Apennines system using plate reconstruc- complemented these tomographic data by geophysical data tion methodology (GPlates free software of Boyden et al. better constraining Moho-depth. Where available we took 2011) embedded in the global plate kinematic reconstruc- Moho depths from Spada et al. (2013; their Figure 11; see tion of Seton et al. 2012. Finally, we provide a review-type also Wagner et al. 2012 regarding the methodology) who discussion of the Alps–Apennines transition area and dis- combined results of controlled-source seismology with cuss controversial issues concerning questions of multi- local receiver functions Moho depth maps and local stage vs. single subduction systems in the Apennines. earthquake tomography-derived Moho maps. Comparison between Moho depth compiled by Spada et al. (2013), characterized by a P-wave velocity jump, and 2 Crustal-scale profiles across the Western Alps the velocity model of Diehl et al. (2009) that defines Moho and the Ivrea mantle wedge integrating depth in terms a high velocity gradient in the range of geological and geophysical information 6.5–8.0 km s-1, noticeable over large parts of the profiles, shows that on average the Moho as defined by Spada et al.
Recommended publications
  • The Structure of the Alps: an Overview 1 Institut Fiir Geologie Und Paläontologie, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
    Carpathian-Balkan Geological pp. 7-24 Salzburg Association, XVI Con ress Wien, 1998 The structure of the Alps: an overview F. Neubauer Genser Handler and W. Kurz \ J. 1, R. 1 2 1 Institut fiir Geologie und Paläontologie, Hellbrunnerstr. 34, A-5020 Salzburg, Austria. 2 Institut fiir Geologie und Paläontologie, Heinrichstr. 26, A-80 10 Graz, Austria Abstract New data on the present structure and the Late Paleozoic to Recent geological evolution ofthe Eastem Alps are reviewed mainly in respect to the distribution of Alpidic, Cretaceous and Tertiary, metamorphic overprints and the corresponding structure. Following these data, the Alps as a whole, and the Eastem Alps in particular, are the result of two independent Alpidic collisional orogens: The Cretaceous orogeny fo rmed the present Austroalpine units sensu lato (including from fo otwall to hangingwall the Austroalpine s. str. unit, the Meliata-Hallstatt units, and the Upper Juvavic units), the Eocene-Oligocene orogeny resulted from continent­ continent collision and overriding of the stable European continental lithosphere by the Austroalpine continental microplate. Consequently, a fundamental difference in present-day structure of the Eastem and Centrai/Westem Alps resulted. Exhumation of metamorphic crust fo rmed during Cretaceous and Tertiary orogenies resulted from several processes including subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional denudation. Original paleogeographic relationships were destroyed and veiled by late Cretaceous sinistral shear, and Oligocene-Miocene sinistral wrenching within Austroalpine units, and subsequent eastward lateral escape of units exposed within the centrat axis of the Alps along the Periadriatic fault system due to the indentation ofthe rigid Southalpine indenter.
    [Show full text]
  • Present-Day Uplift of the European Alps Evaluating Mechanisms And
    Earth-Science Reviews 190 (2019) 589–604 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Present-day uplift of the European Alps: Evaluating mechanisms and models T of their relative contributions ⁎ Pietro Sternaia, ,1, Christian Sueb, Laurent Hussonc, Enrico Serpellonid, Thorsten W. Beckere, Sean D. Willettf, Claudio Faccennag, Andrea Di Giulioh, Giorgio Spadai, Laurent Jolivetj, Pierre Vallac,k, Carole Petitl, Jean-Mathieu Nocquetm, Andrea Walpersdorfc, Sébastien Castelltorta a Département de Sciences de la Terre, Université de Genève, Geneva, Switzerland b Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France c Université Grenoble Alpes, CNRS, IRD, IFSTAR, ISTERRE, Université Savoie Mont Blanc, Grenoble 38000, France d Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti, Bologna, Italy e Institute for Geophysics, Department of Geological Sciences, Jackson School of Geosciences, The University Texas at Austin, Austin, TX, USA f Erdwissenschaften, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland g Dipartimento di Scienze, Università di Roma III, Rome, Italy h Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Pavia, Italy i Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy j Sorbonne Université, Paris, France k Institute of Geological Sciences, Oeschger Center for Climate Research, University of Bern, Switzerland l Geoazur, IRD, Observatoire de la Côte d'Azur, CNRS, Université de Nice Sophia-Antipolis, Valbonne, France m Institut de Physique du Globe de Paris, Paris, France ARTICLE INFO ABSTRACT Keywords: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical European Alps velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western Vertical displacement rate and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps.
    [Show full text]
  • The Tectonic and Rheological Evolution of An
    The tectonic and rheological evolution of an attenuated cross section of the continental crust: Ivrea crustal section, southern Alps, northwestern Italy and southern Switzerland M. R. HANDY Geologisches Institut, Universität Bern, Baltzerstrasse 1, 3012 Bern, Switzerland A. ZINGG Geologisches Institut, Universität Basel Bernoullistrasse 32, 4056 Basel Switzerland ABSTRACT The tectonic and rheological evolution of the southern Alpine The Ivrea crustal cross section in northwestern Italy and southern continental crust is reconstructed from structural, petrological, and Switzerland (Fig. 1) is an excellent area to test geophysical models of the radiometric studies in the Ivrea and Strona-Ceneri basement units. continental crust. The section actually consists of two basement units, the The deep crust of the southern Alps acquired its present compositional Ivrea zone and the Strona-Ceneri zone, which represent thinned lower to and metamorphic zonation during Paleozoic magmatism and amphib- intermediate continental crust of the southern Alps (reviews in Zingg, olite-to granulite-facies regional metamorphism. Inferred strength con- 1983; Boriani and Origoni Giobbi, 1984; Zingg and others, 1990). The trasts between lower crustal and upper mantle rocks in the Ivrea zone Permian-Mesozoic sedimentary cover of the Strona-Ceneri zone crops out are low at the high temperatures of regional metamorphism. Late to the south of the basement section (Fig. 1). The history of the Ivrea and Paleozoic transtension and basic to intermediate magmatism in all Strona-Ceneri zones is loosely subdivided into three tectonometamorphic crustal levels preceded extensional faulting associated with the forma- episodes (Fig. 2). Large-scale magmatism and regional metamorphism tion of a passive continental margin during early Mesozoic time.
    [Show full text]
  • Maps of Aegidius Tschudi
    146 The Alpin~ Maps of Aegidius Tschudi. We arrived at 4.30 at the tents and after hot drinks soon recovered our strength. Also Kesar's eyesight became normal again. At 7.30 we arrived down at Camp I, evacuated everything to the Base Camp on 22nd, and on 27th arrived at Tapoban. p ACHMARHI, INDIA, C.P. 2-10-33. DEAR DocTOR LoNGSTAFF, The mistake about times was due to my carelessness in the account I sent you. I suppose I did not look it through with thoroughness. The actual times were these: Left Camp II (ca. 19,000 ft.) . 7.45 A.M. At the site we meant to have Camp III (about 11.15 , 21,000 ft.) 11.30 " Summit 2.45 P.M. • • • • • • • • 2.52 " ' Camp III ' (ca. 21,000 ft.) . 4.30 " • . 5.00 '' Camp II . • • • . .. 6.00 " ' Camp I (ca. 17,000 ft.) • • . 7.30 '' This gives my times: Of. [T. G. L.] ' A.J.' 24, 120 : Up: 4500 ft. in 7 hrs. 6000 ft. in 10 hrs. 650 ft. per hour. 600 ft. per hr. Down : 6500 ft. in 4! hrs. 7000 ft. in 3 hrs. 1440 ft. per hour. 2333 ft. per hr. These times are incI uding rests. Ditto. p. R. OLIVER . • [Lieut. Oliver followed our 1907 route except perhaps at the commencement. There is no doubt at all that he attained the summit, which is the first (N.) . small flattish dome : the very slightly lower and corniched S. top, across a small gap, would have been invisible in such weather.
    [Show full text]
  • Figures Are Shown in Italics; Tables in Bold Accretion 307 Accretion Wedge
    Index Figures are shown in italics; tables in bold accretion 307 geochemistry 10–18 accretion wedge 132, 189, 286, 330 geodynamics 32–36 Apennine 421, 429, 430, 431, 432, 433 intrusive history 28–32 actinolite 290 lithology 6 Adriatic (Apulian) Plate 5–36, 134, 146, 157, 403 magmatic evolution 9–18 Adula nappe 4, 264, 266–271 metamorphic age 7–9 deformation 377–383 metamorphism 18–28 lithology and structure 369–371 age 27–28 petrology 371–377 Alpine 35–36 Tertiary subduction 365–387 pre-Alpine 23–27 age data 2, 8, 9, 70 structural evolution 18–28 Austroalpine basement 14–17,27 post-collision 28–32 Carpathians 103–106 Avalonia 5 Rieserferner pluton 29 Tauern Window 94–97 backthrust 425, 430 age of deformation backthrusting 252, 253, 274, 365, 367, 368 Dinarides 353–354 Barrovian metamorphism (HT metamorphism) 371, Monte Rosa nappe 265–266 373–377, 394, 396 Valstrona di Omega 46, 48, 54, 59–61, 62 basalt, sub-greenschist facies 298–300 age of magmatic rock–suite 12–13 biostratigraphy 335–359 age of metamorphism 424 bituminite reflectance 285, 294, 295 age, nannofossil 337–339, 348, 350 blueschist 118, 120, 128, 129, 134, 424, 400 age, petrology and isotopic age 117–136 Carpathians 101, 104, 105, 106, 110 age, Eocene–Miocene revised 335–359 boudinage 50, 52, 53 Ahorn shear zone 199–204, 206–216 Brenner Fault 197, 214 Ahrntal Fault 199, 214 Brianc¸onnais ALCAPA see Alpine–Carpathian–Pannonian unit basement 400, 401 Alpine Austroalpine–Penninic suture 8 metamorphism 125, 129 Alpine deformation phases 211 subduction 132, 136, 383 Alpine Tethys
    [Show full text]
  • Zermatt, Switzerland)
    Institut für Geologie Media release / 6 June 2018 Water transport to the Earth’s interior: Clues from high-pressure Alpine rocks (Zermatt, Switzerland) Water in the Earth’s interior influences many geological processes. The evolution of our planet and the development of life is tightly linked to the deep water cycle. Rocks from Zermatt (Switzerland) document formation at the ocean floor, followed by subduction to 80 km depth prior their incorporation into the Alpine belt. The detailed investigation of these rocks by researchers from the University of Bern provides evidence how and how much water can be incorporated in minerals at these subduction zone conditions and how water might be transported to even greater depth. The results are published in the journal “Geology”. The shallow water cycle that links atmosphere and hydrosphere is crucial for life on Earth. However, there exists also a deep water cycle in which water is transported over millions of years through the Earth’s interior. Hydrothermal alteration of oceanic crust results in the formation of minerals that incorporate water into the crystal structure. Through plate tectonics and subduction of such oceanic crust, the hydrous minerals are transported to increasingly greater depths. As the rocks are heated up during burial, the hydrous minerals break down at 50-100 km depth and are replaced by anhydrous minerals resulting in the liberation of the stored water. Would it be possible that traces of water are still incorporated into these newly formed minerals? Would this provide a mechanism to transport water to even greater depth and how would this influence the very long term, hundred million years water cycle? To answer these questions, PhD student Elias Kempf and Prof.
    [Show full text]
  • The Eastern Alps: Result of a Two-Stage Collision Process
    © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Mil. Cteto-r. Goo GOG. ISSN 02hl 7-193 92 11999; 117 13-1 Wen Jui 2000 The Eastern Alps: Result of a two-stage collision process FRANZ NEUBAUER1, JOHANN GENSER1, ROBERT HANDLER1 8 Figures Abstract The present structure and the Late Paleozoic to Recent geological evolution of the Alps are reviewed mainly with respect to the distribution of Alpidic, metamorphic overprints of Cretaceous and Tertiary age and the corresponding ductile structure. According to these data, the Alps as a whole, and the Eastern Alps in particular, are the result of two independent Alpidic collisional orogenies: The Cretaceous orogeny formed the present Austroaipine units sensu lato (extending from bottom to top of the Austroaipine unit s. str., the Meliata unit, and the Upper Juvavic unit) including a very low- to eclogite-grade metamorphic overprint. The Eocene-Oligocene orogeny resulted from an oblique continent-continent collision and overriding of the stable European continental lithosphere by the combined Austroalpine/Adriatic continental microplate. A fundamental difference seen in the present-day structure of the Eastern and Central/ Western Alps resulted as the Austroaipine units with a pronounced remnants of a Oligocene/Neogene relief are mainly exposed in the Eastern Alps, in contrast to the Central/Western Alps with Penninic units, which have been metamorphosed during Oligocene. Exhumation of metamorphic crust, formed during Cretaceous and Tertiary orogenies, arose from several processes including subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional denudation. Original paleogeographic relationships were destroyed and veiled by late Cretaceous sinistral shear, Oligocene-Miocene sinistral wrenching along ENE-trending faults within eastern Austroaipine units and the subsequent eastward lateral escape of units exposed within the central axis of the Alps.
    [Show full text]
  • Alps the Role of the Periadriatic Line in the Tectonic Evolution of The
    Geological Society, London, Special Publications The role of the Periadriatic Line in the tectonic evolution of the Alps S. M. Schmid, H. R. Aebli, F. Heller and A. Zingg Geological Society, London, Special Publications 1989; v. 45; p. 153-171 doi:10.1144/GSL.SP.1989.045.01.08 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 30 May 2007 © 1989 Geological Society of London The role of the Periadriatic Line in the tectonic evolution of the Alps S. M. Schmid, H. R. Aebli, F. Heller & A. Zingg SUMMARY: The Periadriatic Line and related lineaments formed as a result of post- collisional deformations which severely modified the Alpine chain. This post-late Oligocene deformation is the result of dextral transpression between the Adriatic sub-plate and the European foreland. Indentation of the western edge of the southern Alps caused uplift, related to backthrusting and associated deformations of the Lepontine region combined with E-directed escape of the central Alps. In the eastern Alps the response to dextral transpression is mainly by lateral escape along conjugate strike slip zones with minor or no vertical movements. Older deformations along this essentially late Alpine lineament can still be inferred locally and include: extension and transfer faulting in the late Palaeozoic to early Mesozoic, Cretaceous deformations, and Tertiary phases of compression (Eocene) and possibly extension (Oligocene).
    [Show full text]
  • An Overview of Glacier Lakes in the Western Italian Alps from 1927 To
    Geogr. Fis. Dinam. Quat. DOI 10.4461/GFDQ.2016.39.19 39 (2016). 203-214, 9 figg., 3 tabb. CRISTINA VIANI (*), MARCO GIARDINO (*,**), CH RISTIAN GLHUG E (***), LUIGI PEROTTI (*,**) & GIO VANNI MORTARA (**) AN OVERVIEW OF GLACIER LAKES IN THE WESTERN ITALIAN ALPS FROM 1927 TO 2014 BASED ON MULTIPLE DATA SOURCES (HISTORICAL MAPS, ORTHOPHOTOS AND REPORTS OF THE GLACIOLOGICAL SURVEYS) ABSTRT AC : VIANI C., GIARDINO M., HUGLG E C., PEROTTI L. & MOR- Alps (Monte Rosa Group). Moreover, in a dedicated database, we collect- TARA G., An overview of glacier lakes in the Western Italian Alps form ed information (descriptions, photos, maps) about glacier lakes from the 1927 to 2014 based on multiple data sources (historical maps, orthophotos reports of the annual glaciological surveys published by the Italian Gla- and reports of the glaciological surveys). (IT ISSN 0391-9839, 2016) ciological Committee (CGI) since 1928. Finally, we reported two cases of glacier lakes at the Tzére Glacier (Monte Rosa Group, Pennine Alps) Since the end of the Little Ice Age (LIA, ca. 1850 AD) a general and at the Ban Glacier (Monte Leone-Blinnenhorn Chain, Lepontine and progressive retreat of glaciers started in the European Alps, causing Alps), in order to demonstrate the importance of integrating data from a important environmental changes in this high mountain region. The ap- diversity of sources (historical maps, orthophotos and reports of the gla- pearance of glacier lakes is one of the most evident environmental effects ciological surveys) for better detailed reconstructions of the condition of in the Alps as well as in newly deglaciated areas worldwide.
    [Show full text]
  • Monitoraggio Dei Pops Sul Territorio Alpino Monitoring Pops in the Alps
    Agenzia Regionale per la Protezione dell’Ambiente della Lombardia Dipartimento di Sondrio C. A. Belis - T. Magnani Editors C. A. Belis - T. Magnani C. A. Belis - T. Monitoraggio dei POPs S P sul territorio alpino IN THE AL Monitoring POPs RING POPS O in the Alps NIT O M - - O IN P AL O RI ATTI DELLA CONFERENZA O Monitoraggio degli inquinanti organici persistenti sul territorio alpino: uno sguardo sulla situazione europea, italiana e lombarda UL TERRIT UL S PROCEEDINGS OF THE CONFERENCE S Monitoring persistent organic pollutants in the Alps: An overview on the situation in Europe, Italy and Lombardy DEI POP DEI O ISBN 978-88-903167-0-8 RAGGI O NIT O 9 788890 316708 > M 31 ottobre 2007 - Bormio (SO) - 31st october 2007 C. A. Belis - T. Magnani Editors Monitoraggio dei POPs sul territorio alpino Monitoring POPs in the Alps Agenzia Regionale per la Protezione dell’Ambiente della Lombardia Dipartimento di Sondrio Copyright © 2007 Agenzia Regionale per la Protezione dell’Ambiente Lombardia ISBN 978-88-903167-0-8 Finito di stampare nel mese di ottobre 2007 dalla Tipografia Polaris di Sondrio INDICE GLI INQUINANTI ORGANICI PERSISTENTI IN UNA PROSPETTIVA NAZIONALE ED EUROPEA Le Alpi e i progetti transnazionali 7 Environmental protection and transnational cooperation in the alpine space: results and perspectives 11 Present and future in the risk assessment of chemicals with PBT properties 13 I RISULTATI DEL PROGETTO MONARPOP Synthesis of the findings of the project MONARPOP 21 Idrocarburi policiclici aromatici negli ecosistemi alpini (progetto
    [Show full text]
  • Geologic Map of the Southern Ivrea-Verbano Zone, Northwestern Italy
    •usGsscience for a changing world Geologic Map of the Southern Ivrea-Verbano Zone, Northwestern Italy By James E. Quick,1 Silvano Sinigoi,2 Arthur W. Snoke,3 Thomas J. Kalakay,3 Adriano Mayer,2 and Gabriella Peressini2·4 Pamphlet to accompany Geologic Investigations Series Map I- 2776 1U. S. Geological Survey, Reston, VA 20192- 0002. 2Uni versita di Trieste, via Weiss 8, 341 27 Trieste, ltalia. 3Uni versity of Wyoming, Larami e, WY 8207 1- 3006. 4Max-Planck-lnstitut ft.ir Chemi e, J.J. Becherweg 27, 55 128 Mainz, Germany. 2003 U.S. Department of the Interi or U.S. Geological Survey COVER: View of the Ponte della Gula, an ancient bridge spanning the Torrente Mastellone approximately 2 kilometers north of the village of Varallo. Diorite of Valsesia crops out beneath the bridge. Photograph by ADstudia, Silvana Ferraris, photographer, Pizza Calderini, 3-13019 Varallo Sesia ([email protected]) INTRODUCTION REGIONAL SETTING The intrusion of mantle-derived magma into the deep conti­ The Ivrea-Verbano Zone (fig. 1) is a tectonically bounded sliver nental crust, a process commonly referred to as magmatic of plutonic and high-temperature, high-pressure metamorphic underplating, is thought to be important in shaping crustal com­ rocks in the southern Alps of northwestern Italy (Mehnert, position and structure. However, most evidence for this process 1975; Fountain, 1976). To the northwest, it is faulted against is indirect. High P-wave velocities and seismic-reflection profiles the basement of the Austro-Alpine Domain by the lnsubric Line, reveal that much of the deep continental crust is dense and a major suture zone that separates the European and Apulian strongly layered, consistent with the presence of layered mafic plates (Schmid and others, 1987; Nicolas and others, 1990).
    [Show full text]
  • Paleotectonic Evolution of the Central and Western Alps
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 71, PP. 843-908, 14 FIGS.. 2 PLS. JUNE 1960 PALEOTECTONIC EVOLUTION OF THE CENTRAL AND WESTERN ALPS BY RUDOLF TRUMPY ABSTRACT This paper deals with the general features of Mesozoic and Tertiary rock sequences and paleogeography in the Alps. It seeks to outline the paleotectonic significance of the rocks and to discuss the structural evolution of the Alpine geosyncline up to the main deformation, with special reference to the sector between the rivers Rhine and Durance. Accent is placed on the relative independence of Alpine structures involving the pre-Triassic basement rocks and of cover nappes consisting only of Mesozoic and Tertiary formations. Normal shallow-water deposits of platform or miogeosynclinal type were laid down over the whole area before eugeosynclinal conditions set in. The typical eugeosynclinal sediments in the central, Penninic belt of the Alps are the Schistes lustres and Bundner- schiefer, with sills and submarine lava flows of basic volcanic rocks (ophiolites). Before metamorphism they consisted mainly of shales and of impure arenaceous and argillaceous limestones. The bathymetric environment of radiolarian cherts and associated rocks is examined, and their deep-water origin is upheld for the Alpine occurrences. Marine polygenic breccias are characteristic of geosynclinal slopes (commonly fault scarps) and not of a particular depth zone. The Alpine Flysch is a particularly significant sediment. Flysch is a thick marine deposit of predominantly detrital rocks, in part turbidites, generally without volcanic rocks, and laid down during compressional deformation of the geosyncline. Of the many different kinds of Flysch some represent transitions to either Bundnerschiefer or Molasse.
    [Show full text]