Paleotectonic Evolution of the Central and Western Alps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Present-Day Uplift of the European Alps Evaluating Mechanisms And
Earth-Science Reviews 190 (2019) 589–604 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Present-day uplift of the European Alps: Evaluating mechanisms and models T of their relative contributions ⁎ Pietro Sternaia, ,1, Christian Sueb, Laurent Hussonc, Enrico Serpellonid, Thorsten W. Beckere, Sean D. Willettf, Claudio Faccennag, Andrea Di Giulioh, Giorgio Spadai, Laurent Jolivetj, Pierre Vallac,k, Carole Petitl, Jean-Mathieu Nocquetm, Andrea Walpersdorfc, Sébastien Castelltorta a Département de Sciences de la Terre, Université de Genève, Geneva, Switzerland b Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France c Université Grenoble Alpes, CNRS, IRD, IFSTAR, ISTERRE, Université Savoie Mont Blanc, Grenoble 38000, France d Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti, Bologna, Italy e Institute for Geophysics, Department of Geological Sciences, Jackson School of Geosciences, The University Texas at Austin, Austin, TX, USA f Erdwissenschaften, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland g Dipartimento di Scienze, Università di Roma III, Rome, Italy h Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Pavia, Italy i Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy j Sorbonne Université, Paris, France k Institute of Geological Sciences, Oeschger Center for Climate Research, University of Bern, Switzerland l Geoazur, IRD, Observatoire de la Côte d'Azur, CNRS, Université de Nice Sophia-Antipolis, Valbonne, France m Institut de Physique du Globe de Paris, Paris, France ARTICLE INFO ABSTRACT Keywords: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical European Alps velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western Vertical displacement rate and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. -
Maps of Aegidius Tschudi
146 The Alpin~ Maps of Aegidius Tschudi. We arrived at 4.30 at the tents and after hot drinks soon recovered our strength. Also Kesar's eyesight became normal again. At 7.30 we arrived down at Camp I, evacuated everything to the Base Camp on 22nd, and on 27th arrived at Tapoban. p ACHMARHI, INDIA, C.P. 2-10-33. DEAR DocTOR LoNGSTAFF, The mistake about times was due to my carelessness in the account I sent you. I suppose I did not look it through with thoroughness. The actual times were these: Left Camp II (ca. 19,000 ft.) . 7.45 A.M. At the site we meant to have Camp III (about 11.15 , 21,000 ft.) 11.30 " Summit 2.45 P.M. • • • • • • • • 2.52 " ' Camp III ' (ca. 21,000 ft.) . 4.30 " • . 5.00 '' Camp II . • • • . .. 6.00 " ' Camp I (ca. 17,000 ft.) • • . 7.30 '' This gives my times: Of. [T. G. L.] ' A.J.' 24, 120 : Up: 4500 ft. in 7 hrs. 6000 ft. in 10 hrs. 650 ft. per hour. 600 ft. per hr. Down : 6500 ft. in 4! hrs. 7000 ft. in 3 hrs. 1440 ft. per hour. 2333 ft. per hr. These times are incI uding rests. Ditto. p. R. OLIVER . • [Lieut. Oliver followed our 1907 route except perhaps at the commencement. There is no doubt at all that he attained the summit, which is the first (N.) . small flattish dome : the very slightly lower and corniched S. top, across a small gap, would have been invisible in such weather. -
The Eastern Alps: Result of a Two-Stage Collision Process
© Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Mil. Cteto-r. Goo GOG. ISSN 02hl 7-193 92 11999; 117 13-1 Wen Jui 2000 The Eastern Alps: Result of a two-stage collision process FRANZ NEUBAUER1, JOHANN GENSER1, ROBERT HANDLER1 8 Figures Abstract The present structure and the Late Paleozoic to Recent geological evolution of the Alps are reviewed mainly with respect to the distribution of Alpidic, metamorphic overprints of Cretaceous and Tertiary age and the corresponding ductile structure. According to these data, the Alps as a whole, and the Eastern Alps in particular, are the result of two independent Alpidic collisional orogenies: The Cretaceous orogeny formed the present Austroaipine units sensu lato (extending from bottom to top of the Austroaipine unit s. str., the Meliata unit, and the Upper Juvavic unit) including a very low- to eclogite-grade metamorphic overprint. The Eocene-Oligocene orogeny resulted from an oblique continent-continent collision and overriding of the stable European continental lithosphere by the combined Austroalpine/Adriatic continental microplate. A fundamental difference seen in the present-day structure of the Eastern and Central/ Western Alps resulted as the Austroaipine units with a pronounced remnants of a Oligocene/Neogene relief are mainly exposed in the Eastern Alps, in contrast to the Central/Western Alps with Penninic units, which have been metamorphosed during Oligocene. Exhumation of metamorphic crust, formed during Cretaceous and Tertiary orogenies, arose from several processes including subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional denudation. Original paleogeographic relationships were destroyed and veiled by late Cretaceous sinistral shear, Oligocene-Miocene sinistral wrenching along ENE-trending faults within eastern Austroaipine units and the subsequent eastward lateral escape of units exposed within the central axis of the Alps. -
Ivrea Mantle Wedge, Arc of the Western Alps, and Kinematic Evolution of the Alps–Apennines Orogenic System
Swiss J Geosci DOI 10.1007/s00015-016-0237-0 Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system 1 1 1 2 Stefan M. Schmid • Eduard Kissling • Tobias Diehl • Douwe J. J. van Hinsbergen • Giancarlo Molli3 Received: 6 June 2016 / Accepted: 9 December 2016 Ó Swiss Geological Society 2017 Abstract The construction of five crustal-scale profiles related to the lateral indentation of the Ivrea mantle slice across the Western Alps and the Ivrea mantle wedge towards WNW by some 100–150 km. (4) The final stage of integrates up-to-date geological and geophysical informa- arc formation (25–0 Ma) is associated with orogeny in the tion and reveals important along strike changes in the Apennines leading to oroclinal bending in the southern- overall structure of the crust of the Western Alpine arc. most Western Alps in connection with the 50° counter- Tectonic analysis of the profiles, together with a review of clockwise rotation of the Corsica-Sardinia block and the the existing literature allows for proposing the following Ligurian Alps. Analysis of existing literature data on the multistage evolution of the arc of the Western Alps: (1) Alps–Apennines transition zone reveals that substantial exhumation of the mantle beneath the Ivrea Zone to shal- parts of the Northern Apennines formerly suffered Alpine- low crustal depths during Mesozoic is a prerequisite for the type shortening associated with an E-dipping Alpine sub- formation of a strong Ivrea mantle wedge whose strength duction zone and were backthrusted to the NE during exceeds that of surrounding mostly quartz-bearing units, Apenninic orogeny that commences in the Oligocene. -
Kinematics and Extent of the Piemont-Liguria Basin
https://doi.org/10.5194/se-2020-161 Preprint. Discussion started: 8 October 2020 c Author(s) 2020. CC BY 4.0 License. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, R. Dietmar Müller5 5 1Department of Earth Sciences, Freie Universität Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Germany 10 5EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia Correspondence to: Eline Le Breton ([email protected]) Abstract. Assessing the size of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont- Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of 15 the Western Mediterranean-Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modelling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e. ages of syn-rift sediments, rift-related fault activity and mafic rocks) and shows that the PL Basin opened in four stages: (1) Rifting of the proximal continental margin in Early Jurassic (200-180 Ma), (2) Hyper- extension of the distal margin in Early-Middle Jurassic (180-165 Ma), (3) Ocean-Continent Transition (OCT) formation with 20 mantle exhumation and MORB-type magmatism in Middle-Late Jurassic (165-154 Ma), (4) Break-up and “mature” oceanic spreading mostly in Late Jurassic (154-145 Ma). -
Field Trip - Alps 2013
Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010). -
An Overview of Glacier Lakes in the Western Italian Alps from 1927 To
Geogr. Fis. Dinam. Quat. DOI 10.4461/GFDQ.2016.39.19 39 (2016). 203-214, 9 figg., 3 tabb. CRISTINA VIANI (*), MARCO GIARDINO (*,**), CH RISTIAN GLHUG E (***), LUIGI PEROTTI (*,**) & GIO VANNI MORTARA (**) AN OVERVIEW OF GLACIER LAKES IN THE WESTERN ITALIAN ALPS FROM 1927 TO 2014 BASED ON MULTIPLE DATA SOURCES (HISTORICAL MAPS, ORTHOPHOTOS AND REPORTS OF THE GLACIOLOGICAL SURVEYS) ABSTRT AC : VIANI C., GIARDINO M., HUGLG E C., PEROTTI L. & MOR- Alps (Monte Rosa Group). Moreover, in a dedicated database, we collect- TARA G., An overview of glacier lakes in the Western Italian Alps form ed information (descriptions, photos, maps) about glacier lakes from the 1927 to 2014 based on multiple data sources (historical maps, orthophotos reports of the annual glaciological surveys published by the Italian Gla- and reports of the glaciological surveys). (IT ISSN 0391-9839, 2016) ciological Committee (CGI) since 1928. Finally, we reported two cases of glacier lakes at the Tzére Glacier (Monte Rosa Group, Pennine Alps) Since the end of the Little Ice Age (LIA, ca. 1850 AD) a general and at the Ban Glacier (Monte Leone-Blinnenhorn Chain, Lepontine and progressive retreat of glaciers started in the European Alps, causing Alps), in order to demonstrate the importance of integrating data from a important environmental changes in this high mountain region. The ap- diversity of sources (historical maps, orthophotos and reports of the gla- pearance of glacier lakes is one of the most evident environmental effects ciological surveys) for better detailed reconstructions of the condition of in the Alps as well as in newly deglaciated areas worldwide. -
Monitoraggio Dei Pops Sul Territorio Alpino Monitoring Pops in the Alps
Agenzia Regionale per la Protezione dell’Ambiente della Lombardia Dipartimento di Sondrio C. A. Belis - T. Magnani Editors C. A. Belis - T. Magnani C. A. Belis - T. Monitoraggio dei POPs S P sul territorio alpino IN THE AL Monitoring POPs RING POPS O in the Alps NIT O M - - O IN P AL O RI ATTI DELLA CONFERENZA O Monitoraggio degli inquinanti organici persistenti sul territorio alpino: uno sguardo sulla situazione europea, italiana e lombarda UL TERRIT UL S PROCEEDINGS OF THE CONFERENCE S Monitoring persistent organic pollutants in the Alps: An overview on the situation in Europe, Italy and Lombardy DEI POP DEI O ISBN 978-88-903167-0-8 RAGGI O NIT O 9 788890 316708 > M 31 ottobre 2007 - Bormio (SO) - 31st october 2007 C. A. Belis - T. Magnani Editors Monitoraggio dei POPs sul territorio alpino Monitoring POPs in the Alps Agenzia Regionale per la Protezione dell’Ambiente della Lombardia Dipartimento di Sondrio Copyright © 2007 Agenzia Regionale per la Protezione dell’Ambiente Lombardia ISBN 978-88-903167-0-8 Finito di stampare nel mese di ottobre 2007 dalla Tipografia Polaris di Sondrio INDICE GLI INQUINANTI ORGANICI PERSISTENTI IN UNA PROSPETTIVA NAZIONALE ED EUROPEA Le Alpi e i progetti transnazionali 7 Environmental protection and transnational cooperation in the alpine space: results and perspectives 11 Present and future in the risk assessment of chemicals with PBT properties 13 I RISULTATI DEL PROGETTO MONARPOP Synthesis of the findings of the project MONARPOP 21 Idrocarburi policiclici aromatici negli ecosistemi alpini (progetto -
New Aspects on the Timing of Deformation Along the South
Originally published as: Bachmann, R., Glodny, J., Oncken, O., Seifert, W. (2009): Abandonment of the South Penninic-Austroalpine palaeosubduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology. - Journal of the Geological Society London, 166, 2, 217-231 DOI: 10.1144/0016-76492008-024. Abandonment of the South Penninic-Austroalpine palaeo-subduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology Raik Bachmann Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany. [email protected] Present address: Horizon Energy Partners, Prinses Margrietplantsoen 81, 2595 BR The Hague, The Netherlands [email protected] Johannes Glodny Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Onno Oncken Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Wolfgang Seifert Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Corresponding author: Raik Bachmann 1 Abstract We present new age data for the evolution of the suture zone between lower-plate South Penninic and upper-plate Austroalpine units in the Central European Alps. Rb/Sr deformation ages for mylonitized rocks of the South Penninic palaeo-subduction mélange and for deformed Austroalpine basement (Eastern Switzerland) shed light on the pre-Alpine and Alpine deformation history along the suture, as well as on syn-subduction interplate mass transfer. Rb/Sr age data define two age groups. The first group reflects pre-Alpine events within the upper plate basement, with varying degree of resetting by subsequent Alpine overprints. The second group marks the waning of subduction-related deformation along the South Penninic-Austroalpine suture zone, at around 50 Ma, and termination at ~47 Ma. -
Dating the Tethyan Ocean in the Western Alps with Radiolarite
Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France) Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz To cite this version: Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz. Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France). Swiss Journal of Geosciences, Springer, 2012, 105 (1), pp.39-48. 10.1007/s00015-012-0090-8. hal-02178343 HAL Id: hal-02178343 https://hal.archives-ouvertes.fr/hal-02178343 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Dating the Tethyan ocean in the Western Alps with radiolarite pebbles from 2 synorogenic Oligocene molasse basins (southeast France) 3 4 5 Running title: Radiolarite pebbles from Alpine Oligocene molasses 6 7 8 Fabrice Cordey1*, Pierre Tricart2, Stéphane Guillot2, Stéphane Schwartz2 9 10 11 12 1Département des Sciences de la Terre, CNRS UMR 5276 Laboratoire de Géologie de Lyon, 13 Université Lyon 1, 69622 Villeurbanne, France 14 2IsTerre, CNRS, Université de Grenoble I, 38041 Grenoble, cedex 9, France 15 16 *corresponding author: [email protected] 17 18 19 20 21 22 23 Keywords: Western Alps, radiolarite, Jurassic, molasse, Oligocene, subduction wedge. -
Climate Change and the Future of Endemic Flora in The
Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk Davide Dagnino, Maria Guerrina, Luigi Minuto, Mauro Giorgio Mariotti, Frédéric Médail, Gabriele Casazza To cite this version: Davide Dagnino, Maria Guerrina, Luigi Minuto, Mauro Giorgio Mariotti, Frédéric Médail, et al.. Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Regional Environmental Change, Springer Verlag, 2020, 20 (4), pp.121. 10.1007/s10113-020-01708-4. hal-02975100 HAL Id: hal-02975100 https://hal-amu.archives-ouvertes.fr/hal-02975100 Submitted on 22 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License https://doi.org/10.1007/s10113-020-01708-4 Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk Davide Dagnino1 & Maria Guerrina1 & Luigi Minuto1 & Mauro Giorgio Mariotti1 & Frédéric Médail2 & Gabriele Casazza2 Received: 12 February 2020 /Accepted: 3 October 2020 Abstract Climate change seriously threatens biodiversity, particularly in mountain ecosystems. However, studies on climate change effects rarely consider endemic species and their niche properties. -
8. the Changing Italian Glaciers
8. The changing Italian glaciers Baroni C. 1,2,3, Salvatore M.C.1,2,3, Alderighi L.1,4, Gennaro S.1, Zanoner T.3,4,6, Carton A.3,6, Carturan L.3,5, Zorzi M.1,3, Giardino M.3,7, Bertotto S.4,7, Perotti L.3,7 1University of Pisa, Dipartimento di Scienze della Terra, Pisa, Italy 2CNR-IGG, National Research Council, Institute of Geosciences and Earth Resources, Pisa, Italy 3Comitato Glaciologico Italiano, Italian Glaciological Committee 4CNR-IRPI, National Research Council, Research institute for Geo-hydrological Protection, Turin, Italy 5University of Padua, Dipartimento Territorio e Sistemi Agro Forestali, Padua, Italy 6University of Padua, Dipartimento di Geoscienze, Padua, Italy 7University of Turin, Dipartimento di Scienze della Terra, Turin, Italy 8.1 State of Italian glaciers in 1988-89, 2006-07, 2014-15 Glaciers are among the most impressive elements of the Alpine landscape, providing a precious renewable freshwater resource. They are among the most sensitive climatic indicators, and mountain glacier variations are considered one of the best natural proxies to investigate climate changes and to predict future scenarios (Zemp et al., 2006; IPCC 2007, 2013; Haeberli et al., 2007; Winkler et al., 2010). Knowledge of the entity of spatial and volumetric glacial changes represents one of the most important tools for investigating environmental and climate changes. Ongoing climatic warming has been particularly significant in the Alps since the late Little Ice Age (ca. 1850 AD) and it dramatically accelerated after the end of the 20th century (IPCC, 2007, 2013; Brunetti et al., 2009; Büntgen et al., 2011).