Institute Ian Wark

Total Page:16

File Type:pdf, Size:1020Kb

Institute Ian Wark IAN WARK RESEARCH INSTITUTE ANNUAL REPORT 2007 The TM 2 Advisory Board Report 3 Director’s Report 4 Management Structure 6 Staff 8 Postgraduate Students 12 Major Research Sponsors 13 Research Funding 14 Research Highlights 45 Research Projects 50 Honours and Awards 53 Seminar Program 56 Visitors to the Institute 58 Conference Attendance and Invited Lectures 62 Publications 66 Graduates 68 International Collaborators Ian Wark Research Institute ARC Special Research Centre for Particle and Material Interfaces University of South Australia Mawson Lakes Campus Mawson Lakes Blvd Mawson Lakes South Australia 5095 Australia T +61 8 8302 3694 F + 61 8 8302 3683 E [email protected] W www.unisa.edu.au/iwri CRICOS provider number 00121B The TM Dr Tim Barnes using the Quartz Crystal Microbalance with Dissipation (QCM-D). This allows us to determine the kinetics of adsorption at a solid-liquid interface by monitoring changes in the sensor crystal oscillation frequency. For example, we are investigating PEG surface coatings to understand their resistance to protein adsorption, of interest for applications such as medical imaging and biodiagnostic devices Ian Wark Research Institute Annual Report 2007 Advisory Board Report The Advisory Board commends the thirteenth The membership of the Advisory Board will Annual Report of the Ian Wark Research Institute go through significant change in the coming (The WarkTM) to the Council of the University of year. Departing members - Prof Tom Healy, Dr South Australia. Brian Hickman, Dr Ray Shaw, Dr Megan Clark and Dr Jurgen Michaelis – all made outstanding Mineral processing research remains one of the contributions to The Wark’s progress. We gratefully mainstays of The Wark, and its outstanding quality acknowledge the support by them and their was highlighted in the fifth review of research by employers. Excellent replacements have agreed to the Research and Technology Advisory Committee join us. (RTAC). Our basic and applied research in other areas is also growing very strongly. The Wark has The Advisory Board continues to appreciate its developed a major strategic plan to 06, with the constructive relationship with the Director. full support of RTAC and the Advisory Board. Issues concerning future scientific leadership, the stability Our warmest congratulations go to the recipient of of funding, the necessity for senior appointments the IWRI Medal for 007, Dr Alan Kanta. and the formation of a substantial stabilization fund, are very important elements. Dr S M Richards, AM FTSE The Wark is a vital, even critical element in the Chair standing of the University of South Australia. The relationship is mutually beneficial, but both are June 008 affected by any funding adversity. The annual revenue for 007 was $7.5M. The Wark generated the bulk from external sources (43.4% from State/Federal Governments, .5% from industry). The cessation of major funding blocks (such as the Special Research Centre) without immediate replacement provides a significant challenge. Clearly we need the further support of the University, and our principal sponsors, to ensure the uninterrupted progress of The Wark. At another level, The Wark Fund is established under the chairmanship of Antony Simpson; it will take time to have a serious impact. Director’s Report It is a great pleasure to present my report for 007, the part of a national facility in nanofabrication and is thirteenth in the series. funded with contributions from the Federal and State Governments as well as from the University (see page In our complement of 5 staff and students, thirty 7 for further details). Excellent collaboration with seven different nationalities are represented. The the University of Tokyo enhances our capabilities in Wark attracts excellent postgraduate students and, in microfluidics in particular. addition, some twenty international visiting students spend periods of six to twelve months with us as part The second year of research under the Australian of their formal education. Some of these visitors return Mineral Science Research Institute (AMSRI) umbrella for formal PhD studies. We have many international has been excellent. The Wark is the headquarters researchers spending time with us and our research for AMSRI, a partnership with the Universities of staff frequently work in international laboratories and Melbourne, Newcastle and Queensland, with funding industrial operations. Our staff and students continue from the Australian Research Council, AMIRA to receive national and international recognition International, the four universities and the state for their efforts. Our immensely strong network of governments of South Australia and Victoria (for colleagues, scattered over all continents is a wonderful further information see page 4). resource. From an application perspective, our P60 project During 007 we welcomed the following new staff: funded since 988 and continuing even more strongly Mr Paul Byrne, Research Degrees/Project Officer; Mr today, has made a significant contribution to the Dom Davda, IT Officer; Mr Louie Del Castillo and efficiency of mineral sulphide flotation worldwide. Ms Maria Sinche Gonzalez who are both Research The Wark has been involved in this project since its Assistants within our Mineral Processing Sector; Dr inception. In 007, an evaluation study of the P60 Renate Fetzer from Saarland University, Germany, Ms series of projects was conducted by RMDSTEM Ltd, Tracy Greeneklee, Dr Marta Krasowska from the Polish a specialist management consulting group with Academy of Sciences and Dr Mihail Popescu from the capabilities in the evaluation of R&D predominately Max Planck Institute of Metals Research Stuttgart, in the resources sector. Results show $436 million who will all be working within AMSRI (for further has been added to the minerals industry through the information see page 4); Ms Kim Gauci, who will give research outcomes of P60. Our ARC SRC research much needed administrative support to our Mineral in soft and hard interfaces provides the intellectual Processing Sector; Mr Colin Hall from Advanced underpinning to allow our research across The Wark Manufacturing and Mechanical Engineering within to continue to blossom and be enriched. Our insights UniSA; Dr Dusan Losic, ARC Australian Research Fellow into antibacterial coatings, using nanoparticles for from Flinders University; Dr Hui Tan from the University immunotargetting, developing nanotube membranes of Melbourne; Dr Su Nee Tan a former PhD student for molecular separations, probing the colloid stability who rejoins us from BASF, France; Dr Eric Tavenner a of nanoparticles of gold, exploring the limits of fine recent graduate of University of Queensland and native and coarse particle flotation, understanding the slip of the USA and Ms Tosha Tichy who has joined us after conditions for liquid flow over surfaces, and exploring working in industry for many years. the composition of fuel cell membranes and studying liquid structure at interfaces all owe their impetus to We also acknowledge the fine contributions from our our Special Research Centre support. departing staff: Dr Holly Aiqun to industry; Dr Kristen Bremmell to the University of Adelaide, Dr Andrew We are now engaged in setting firm plans in place Lewis and Prof Peter Majewski to the Division of ITEE that will ensure a bright future for The Wark in the in UniSA; Mr Frank Peddie to the Division of Health decades to come. The University, Advisory Board and Sciences within UniSA; Dr Damyanti Sharma to the the Research and Technology Advisory Committee are University of Wollongong; Dr Krasimir Vasilev to the all playing a splendid role in ensuring that the future is Mawson Institute and Dr Marek Zbik to QUT. indeed a bright one. Our infrastructure base has expanded in 007 with the John Ralston opening of a new suite of laboratories (600 m) and Director offices (30m) to accommodate our new research thrusts. We now occupy two and a half buildings, June 008 including our highly sophisticated pilot plant and a joint surface engineering laboratory, the latter shared with the new Mawson Institute. We are constructing a new, state-of-the-art nanofabrication and microfluidics facility which will be completed in 008. This forms Ian Wark Research Institute Annual Report 2007 3 Management Structure The Ian Wark Research Institute’s management structure draws together four core research sectors along with a scientific services sector which supports all research activities. The Wark’s activities are overseen by an Advisory Board having strong industry representation and being responsible to the Council of the University of South Australia. The Research and Technology Advisory Committee is created by the Advisory Board and comprises internationally recognized academic researchers with strong industry experience and credibility. The Advisory Board reports directly to the University of South Australia Council and advises the Director on research activities and directions. l) University of South Australia Council Office of the Reseach and Deputy Vice-Chancellor Advisory Technology (Research Board Advisory Committee and Innovation) Director Laureate Professor John Ralston Corporate Services Executive Scientific Services Bio and Polymer Colloids and Materials and Mineral Processing Interfaces Nanostructures Environmental Sector Sector Sector Surface Science Co-ordinator Co-ordinator Co-ordinator Sector Co-ordinator A/Prof Stephen Grano Prof Clive Prestidge A/Prof Daniel Fornasiero A/Prof Bill
Recommended publications
  • Contents Part a Nanocarbons
    Contents Foreword by Claes-Goran Granqvist V Foreword by Neal Lane VII List of Abbreviations XXIX 1 Science and Engineering of Nanomaterials Robert Vajtai 1 1.1 History and Definition of Nanomaterials 2 1.2 Formation of Nanomaterials 6 1.3 Properties of Nanomaterials 10 1.k Typical Applications of Nanomaterials 22 1.5 Concluding Remarks 31 1.6 About the Contents of the Handbook 31 References 31 Part A NanoCarbons 2 Graphene - Properties and Characterization Aravind Vijayaraghavan 39 2.1 Methods of Production k2 2.2 Properties 50 2.3 Characterization 58 2.k Applications 69 2.5 Conclusions and Outlook 1W References 74 3 Fullerenes and Beyond: Complexity, Morphology, and Functionality in Closed Carbon Nanostructures Humberto Terrones 83 3.1 Geometry and Structural Features of Fullerenes 85 3.2 Methods of Synthesis of Fullerenes and Proposed Growth Models.... 88 3.3 Physicochemical Properties of Fullerenes 90 3.4 Applications of Fullerenes and Beyond 92 3.5 Conclusions 99 References 99 k Single-Walled Carbon Nanotubes Sebastien Nanot, Nicholas A. Thompson, Ji-Hee Kim, Xucin Wang, William D. Rice, Erik H. Haroz, Yogeeswaran Ganesan, Cary L. Pint, Junichiro Kono 105 4.1 History 106 4.2 Crystallographic and Electronic Structure 106 http://d-nb.info/1012138798 4.3 Synthesis Ill 4.4 Optical Properties 115 4.5 Transport Properties 123 4.6 Thermal and Mechanical Properties 128 4.7 Concluding Remarks 135 References 135 5 Multi-Walled Carbon Nanotubes Akos Kukovecz, Gabor Kozma, Zoltan Kdnya 147 5.1 Synthesis 148 5.2 Chemistry of MWCNTs 153 5.3 Properties 157 5.4 Selected Applications 163 References 169 6 Modified Carbon Nanotubes Aaron Morelos-Gomez, Ferdinando Tristan Lopez, Rodolfo Cruz-Silva, Sofia M.
    [Show full text]
  • Nanomedicine and Medical Nanorobotics - Robert A
    BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging.
    [Show full text]
  • Computational Investigations of Molecular Transport
    COMPUTATIONAL INVESTIGATIONS OF MOLECULAR TRANSPORT PROCESSES IN NANOTUBULAR AND NANOCOMPOSITE MATERIALS A Dissertation Presented to The Academic Faculty by Suchitra Konduri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Chemical Engineering in the School of Chemical & Biomolecular Engineering Georgia Institute of Technology May 2009 COMPUTATIONAL INVESTIGATIONS OF MOLECULAR TRANSPORT PROCESSES IN NANOTUBULAR AND NANOCOMPOSITE MATERIALS Approved by: Dr. Sankar Nair, Advisor Dr. Carson J. Meredith School of Chemical & Biomolecular School of School of Chemical & Engineering Biomolecular Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. William J. Koros Dr. Yonathan S. Thio School of Chemical & Biomolecular School of Polymer, Textile & Fiber Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Peter J. Ludovice Dr. Min Zhou School of Chemical & Biomolecular School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Date Approved: Februay 05, 2009 ACKNOWLEDGEMENTS This thesis is the result of not just my efforts, but is influenced directly or indirectly by a number of people, whom I would like to acknowledge here. Firstly, I express my sincere thanks to my advisor, Prof. Sankar Nair, for providing me an opportunity to work with him, and for extending his unwavering support, guidance and commitment to help me develop my scientific skills and become a better researcher that I believe I am now. His trust and help in times of need are greatly appreciated. I am grateful to my committee members Prof. William J. Koros, Prof. Peter J. Ludovice, Prof. Carson J. Meredith, Prof. Yonathan S. Thio, and Prof. Min Zhou for providing valuable suggestions and for their critical reading of this thesis.
    [Show full text]
  • Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions
    membranes Review Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions Pei Sean Goh *, Kar Chun Wong and Ahmad Fauzi Ismail Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; [email protected] (K.C.W.); [email protected] (A.F.I.) * Correspondence: [email protected]; Tel.: +60-7-553-5812 Received: 26 September 2020; Accepted: 19 October 2020; Published: 21 October 2020 Abstract: One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
    [Show full text]
  • Scaling the Mass Transport Enhancement Through Carbon Nanotube Membranes Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park
    Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park To cite this version: Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park. Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes. 2018. hal-01890716 HAL Id: hal-01890716 https://hal.archives-ouvertes.fr/hal-01890716 Preprint submitted on 8 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes Seul Ki Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Gyu Park* Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Tannenstrasse 3, Zurich CH-8092, Switzerland *Corresponding author: [email protected] ABSTRACT Measuring and controlling enhanced mass transport in carbon nanotube (CNT) and membranes thereof have been of great interest and importance in fundamental studies of nanofluidics as well as practical applications including desalination and gas separation. Experiments and simulations have claimed nearly frictionless transport and attributed it to tight graphitic confinement. Nevertheless, rare and scattered experimental data are obscuring the transport efficiency limit and the mechanistic understanding of fluid transport through CNTs.
    [Show full text]
  • Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment
    nanomaterials Review Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment Haleema Saleem and Syed Javaid Zaidi * Center for Advanced Materials (CAM), Qatar University, P.O. Box 2713 Doha, Qatar; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +974-44037723 Received: 5 August 2020; Accepted: 1 September 2020; Published: 7 September 2020 Abstract: Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components. Additionally, the nanomaterials have been added to membranes that can assist to improve the water treatment efficiency. In this paper, we have discussed the advantages of nanomaterials in applications such as adsorbents (removal of dyes, heavy metals, pharmaceuticals, and organic contaminants from water), membrane materials, catalytic utilization, and microbial decontamination. We discuss the different carbon-based nanomaterials (carbon nanotubes, graphene,
    [Show full text]
  • Carbon Nanotubes (Cnts): a Potential Nanomaterial for Water Purification
    Review ReviewCarbon Nanotubes (CNTs): A Potential CarbonNanomaterial Nanotubes for Water (CNTs): Purification A Potential Nanomaterial forBharti WaterArora 1,* and Purification Pankaj Attri 2,* Bharti1 Department Arora 1, *of and Applied Pankaj Sciences, Attri The2,* NorthCap University, Sector-23-A, Gurugram, Haryana-122017, 1 IndiaDepartment of Applied Sciences, The NorthCap University, Sector-23-A, Gurugram, Haryana 122017, India 2 2 CenterCenter of of Plasma Plasma Nano-Interface Nano-Interface Engineer Engineering,ing, Kyushu Kyushu University, University, Fukuoka Fukuoka 819-0395, 819-0395, Japan Japan ** Correspondence:Correspondence: [email protected] [email protected] (B.A.); (B.A.); [email protected] [email protected] (P.A.) (P.A.) Received: 23 July 2020; Accepted: 3 Sept Septemberember 2020; Published: 10 10 September September 2020 Abstract: Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, separation, adsorption adsorption and and disinfecti disinfectionon processes. processes. CNTs CNTs have have grabbed grabbed the the attention attention of ofthe the scientific scientific community community and and they they have have the potentia the potentiall to adsorb to adsorb most most of the of organic the organic compounds compounds from fromwater. water. Unlike, Unlike, reverse reverse osmosis osmosis (RO), nanofiltration (RO), nanofiltration (NF) and (NF) ultrafiltration and ultrafiltration (UF) membranes (UF) membranes aligned alignedCNT membranes CNT membranes can act canas high-flow act as high-flow desalination desalination membranes. membranes. CNTs CNTsprovide provide a relatively a relatively safer saferelectrode electrode solution solution for biosensors. for biosensors. The Thearticle article is of is ofthe the utmost utmost importance importance for for the the scientists scientists and technologists working in water purification purification technologies to eliminate the the water water crisis crisis in in the the future.
    [Show full text]
  • Molecular Transport Properties Through Carbon Nanotube Membranes
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2007 MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES Mainak Majumder University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Majumder, Mainak, "MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES" (2007). University of Kentucky Doctoral Dissertations. 557. https://uknowledge.uky.edu/gradschool_diss/557 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Mainak Majumder The Graduate School University of Kentucky 2007 MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky By Mainak Majumder Lexington, Kentucky Director: Dr. Bruce J. Hinds, William Bryan Professor of Materials Engineering Lexington, Kentucky 2007 Copyright © Mainak Majumder 2007 ABSTRACT OF DISSERTATION MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES Molecular transport through hollow cores of crystalline carbon nanotubes (CNTs) are of considerable interest from the fundamental and application point of view. This dissertation focuses on understanding molecular transport through a membrane platform consisting of open ended CNTs with ~ 7 nm core diameter and ~ 1010 CNTs/cm2 encapsulated in an inert polymer matrix. While ionic diffusion through the membrane is close to bulk diffusion expectations, gases and liquids were respectively observed to be transported ~ 10 times faster than Knudsen diffusion and ~ 10000-100000 times faster than hydrodynamic flow predictions.
    [Show full text]
  • High Permeability/High Diffusivity Mixed Matrix Membranes for Gas Separations
    High Permeability/High Diffusivity Mixed Matrix Membranes For Gas Separations By Sangil Kim Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemical Engineering _________________________ Dr. Eva Marand, Chair _________________________ _________________________ Dr. S. Ted Oyama Dr. Richey M. Davis _________________________ _________________________ Dr. Vadim V. Guliants March 22, 2007 Blacksburg, VA Keywords: Mixed Matrix Membrane, Carbon Nanotube, Mesoporous Silica, Poly(imide siloxane), Polysulfone, Gas Permeation, Gas Adsorption Copyright 2007 High Permeability/High Diffusivity Mixed Matrix Membranes For Gas Separations Sangil Kim (Abstract) The vast majority of commercial gas separation membrane systems are polymeric because of processing feasibility and cost. However, polymeric membranes designed for gas separations have been known to have a trade-off between permeability and selectivity as shown in Robeson’s upper bound curves. The search for membrane materials that transcend Robeson’s upper bound has been the critical issue in research focused on membranes for gas separation in the past decade. To that end, many researchers have explored the idea of mixed matrix membranes (MMMs). These membranes combine a polymer matrix with inorganic molecular sieves such as zeolites. The ideal filler material in MMMs should have excellent properties as a gas adsorbent or a molecular sieve, good dispersion properties in the polymer matrix of submicron thickness, and should form high quality interfaces with the polymer matrix. In order to increase gas permeance and selectivity of polymeric membranes by fabricating MMMs, we have fabricated mixed matrix membranes using carbon nanotubes (CNTs) and nano-sized mesoporous silica.
    [Show full text]
  • Manufacturing Nanocomposites with Highly-Aligned Carbon Nanotubes
    ABSTRACT Novel Material Behavior in Carbon Nanotube/Elastomer Composites by Brent J. Carey Composites are multiphasic materials with individual constituent parts that work cooperatively to produce some desired result. For the common case of structural composites, the use of nanoscale additives does not always yield a predictable outcome due to the complex interactions that occur in the interfacial region where a reinforcing filler meets the supporting matrix. It stands to reason, however, that the thoughtful and deliberate exploitation of unusual effects in this region could lead to the development of nanocomposite materials with extraordinary properties. In this thesis work, I will introduce two such responses in a compliant nanocomposite consisting of highly-aligned carbon nanotubes (CNTs) encased within a poly(dimethylsiloxane) (PDMS) matrix. It is first demonstrated that the material exhibits extremely anisotropic dynamic mechanical behavior. The composite will behave in a way that is evocative of the neat polymer when deformed orthogonal to the CNT alignment direction, yet will exhibit strain softening when cyclically compressed along their axis due to the collective buckling of the nanotube struts. Next, it is shown that this nanocomposite material has the ability to respond and adapt to applied loads. Independent, yet complimentary tests reveal that the structure of the polymer in the presence of nanoscale interstitials will evolve during dynamic stressing, an effect that was predicted nearly 50 years ago. With support from both recent and established literature, an updated mechanism is proposed. Collectively, these results provide insight into the complicated mechanics between polymer matrices and embedded nanoparticles, and assist in the design of advanced synthetic materials with unique physical properties .
    [Show full text]
  • Development News &Development News
    &development news water and development summary compilation Nanotechnology and Development News is a free daily news service covering the most important global developments at the nexus of nanotechnology, poverty alleviation, and the role of science and technology in development. Nanotechnology and Development News is available via e-mail, RSS newsfeed, and the Internet. More information is available at: http://www.merid.org/ndn/. Nanotechnology and Development News is an example of the tools and strategies developed by Meridian Institute to help people solve problems and make informed decisions. Support for Nanotechnology and Development News is provided by the United Kingdom's Department for International Development (http://www.dfid.gov.uk/ ). Nanotechnology and Development News provides a compilation of all our water-related news summaries. This compilation is intended as a resource for people interested in applications and implications of using nanotechnology to improve access to clean water and basic sanitation in developing countries. Please check the Nanotechnology and Development News homepage periodically for updated versions of this compilation (http://www.merid.org/ndn ). The water-related news summaries are provided in chronological order. In order to facilitate searches for specific types of applications and implications, or relevant developments in specific geographic regions, we provide a categorized index. The Nanotechnology and Development News Water Compilation is a preview of the topic-specific sorting capabilities that we will soon be offering through the Advanced Search Function. This function will allow users to perform customizable searches of Nanotechnology and Development News' archive of summaries according to geographic region, stakeholder group, applications, implications, and nanomaterial type.
    [Show full text]
  • UC Merced Electronic Theses and Dissertations
    UC Merced UC Merced Electronic Theses and Dissertations Title Ionic Transport through Carbon Nanotube Porins Permalink https://escholarship.org/uc/item/44z2w6p5 Author Yao, Yun-Chiao Publication Date 2021 License https://creativecommons.org/licenses/by-nc-sa/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California, Merced Ionic Transport through Carbon Nanotube Porins A Dissertation Submitted in Partial Satisfaction of the Requirement for the Degree of Doctor of Philosophy In Chemistry and Chemical Biology In School of Natural Sciences By Yun-Chiao Yao Committee in Charge: Professor Michael E. Colvin, Chair Professor Aleksandr Noy, Advisor Professor Tao Ye Professor Meni Wanunu Spring, 2021 The dissertation of Yun-Chiao Yao is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Date . Professor Michael E. Colvin Date . Professor Aleksandr Noy Date . Professor Tao Ye Date . Professor Meni Wanunu University of California, Merced 2021 Ionic Transport through Carbon Nanotube Porins Copyright © 2021 Yun-Chiao Yao All rights reserved. To My Family. What I cannot create, I do not understand. -Richard Feynman i Acknowledgement It has been a unique journey for me from studying peptide structures and functions at National Taiwan University to advancing the nanofluidic field using carbon nanotube porin channels at the University of California, Merced and Lawrence Livermore National Laboratory (LLNL). Lots of learning, trying, and some accomplishments along my path pursuing greater understanding in chemistry. I cannot be here, finishing my doctoral studies, without the many people guiding, helping, and supporting me over these years.
    [Show full text]