Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park To cite this version: Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park. Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes. 2018. hal-01890716 HAL Id: hal-01890716 https://hal.archives-ouvertes.fr/hal-01890716 Preprint submitted on 8 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes Seul Ki Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Gyu Park* Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Tannenstrasse 3, Zurich CH-8092, Switzerland *Corresponding author:
[email protected] ABSTRACT Measuring and controlling enhanced mass transport in carbon nanotube (CNT) and membranes thereof have been of great interest and importance in fundamental studies of nanofluidics as well as practical applications including desalination and gas separation. Experiments and simulations have claimed nearly frictionless transport and attributed it to tight graphitic confinement. Nevertheless, rare and scattered experimental data are obscuring the transport efficiency limit and the mechanistic understanding of fluid transport through CNTs.