Molecular Transport Properties Through Carbon Nanotube Membranes

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Transport Properties Through Carbon Nanotube Membranes University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2007 MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES Mainak Majumder University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Majumder, Mainak, "MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES" (2007). University of Kentucky Doctoral Dissertations. 557. https://uknowledge.uky.edu/gradschool_diss/557 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Mainak Majumder The Graduate School University of Kentucky 2007 MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky By Mainak Majumder Lexington, Kentucky Director: Dr. Bruce J. Hinds, William Bryan Professor of Materials Engineering Lexington, Kentucky 2007 Copyright © Mainak Majumder 2007 ABSTRACT OF DISSERTATION MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES Molecular transport through hollow cores of crystalline carbon nanotubes (CNTs) are of considerable interest from the fundamental and application point of view. This dissertation focuses on understanding molecular transport through a membrane platform consisting of open ended CNTs with ~ 7 nm core diameter and ~ 1010 CNTs/cm2 encapsulated in an inert polymer matrix. While ionic diffusion through the membrane is close to bulk diffusion expectations, gases and liquids were respectively observed to be transported ~ 10 times faster than Knudsen diffusion and ~ 10000-100000 times faster than hydrodynamic flow predictions. This phenomenon has been attributed to the non-interactive and frictionless graphitic interface. Functionalization of the CNT tips was observed to change selectivity and flux through the CNT membranes with analogy to ‘gate-keeper’ functionality in biological membranes. An electro-chemical diazonium grafting chemistry was utilized for enhancing the functional density on the CNT membranes. A strategy to confine the reactions at the CNT tips by a fast flowing liquid column was also designed. Characterization using electrochemical impedance spectroscopy and dye assay indicated ~ 5-6 times increase in functional density. Electrochemical impedance spectroscopy experiments on CNT membrane/electrode functionalized with charged macro-molecules showed voltage-controlled conformational change. Similar chemistry has been applied for realizing ‘voltage-gated’ transport channels with potential application in trans-dermal drug delivery. Electrically-facilitated transport ( a geometry in which an electric field gradient acts across the membrane) through the CNT and functionalized CNT membranes was observed to be electrosmotically controlled. Finally, a simulation framework based on continuum electrostatics and finite elements has been developed to further the understanding of transport through the CNT membranes. KEYWORDS: carbon nanotube membrane, nano-scale hydrodynamics, diazonium grafting, voltage- gated membrane, finite element analysis Mainak Majumder Date: 12th November, 2007 MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANE By Mainak Majumder Dr. Bruce J. Hinds Director of Dissertation Dr. Douglass Kalika Director of Graduate Studies 12th November, 2007 RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor's degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgements. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date p p p p p p p p p p p DISSERTATION Mainak Majumder The Graduate School University of Kentucky 2007 MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANE DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky By Mainak Majumder Lexington, Kentucky Director: Dr.Bruce J. Hinds, William Bryan Professor of Materials Engineering Lexington, Kentucky 2007 Copyright © Mainak Majumder 2007 Dedicated to my grand-father,‘dada’, who guided and inspired me during my formative years. He passed away on 25th July 2007, after a prolonged battle with Alzheimer’s disease. ACKNOWLEDGEMENTS First and foremost, I am indebted to my advisor, Professor Bruce J. Hinds, for his guidance, enthusiasm and excellent problem selection. I gratefully acknowledge the funding provided by the National Science Foundation (NSF), National Institutes of Health (NIH), ARO Advanced Carbon Nanotechnology Program and the dissertation year fellowship from the University of Kentucky. I also acknowledge Central Glass and Ceramic Research Institute, a CSIR laboratory in Kolkata, India for allowing me a leave of absence for the first two years of my Ph.D. studies. I thank Dr. Nitin Chopra, a former graduate student of our laboratory for realizing the synthesis of the CNT membranes, without which this dissertation would not have reached the present form. Other collaborators from our laboratory include Xin Zhan, Dr. Karin Keis and Xin Su. Dr. Karin Keis was particularly involved in much of the electrochemistry work discussed in Chapter 5. Undergraduate students who helped me were Corey Meadows, Jeggan Cole and Wendy Satterwhite. A person very special to my academic growth and support at the University of Kentucky is Professor Dibakar Bhattacharrya (Department of Chemical Engineering). In fact, he was responsible for recruiting me to this university and has been a strong mentor. Members of the Bachas lab (Chemistry Department, University of Kentucky), Dr. Vasilis Gavalas, Dr. Pramod Nednoor, and Professor Leonidas Bachas, are acknowledged for some very fruitful discussions. Professor Audra Stinchomb at the Department of Pharmacy, University of Kentucky, is acknowledged for some preliminary drug diffusion studies through functionalized carbon nanotube membranes. My collaborators from the Center for Applied Energy Research, Drs. Rodney Andrews and Dali Qian, are also credited for supplying the aligned carbon nanotube samples. iii My sincere thanks to Bing Hu, who often helped me in Scanning Electron Microscopy experiments and obtaining clear and beautiful pictures of the nanotubes or membranes; Professor Steven Rankin (Chemical Engineering, University of Kentucky) for using the FTIR Spectrometer (Chapter 4); Professor Todd Hastings (Electrical Engineering, University of Kentucky) for the use of EIS simulation software (Chapter 5); and Professor Pinar Menguic (Mechanical Engineering, University of Kentucky) and members of his laboratory for allowing me to use the finite element software FEMLAB (Chapter 7). The infrastructure provided by the Department of Chemical and Materials Engineering and the Center for Nano-scale Science and Engineering at the University of Kentucky is beneficial for undertaking cutting edge research and is, therefore, acknowledged. There are many friends, including Kaustav Ghosh, Dr. Sumod Kalakkunath, Dr. Venkat Koganti., Pawan Tyagi, and Saurav Dutta, who made my stay in Lexington a memorable one. My mother has been a tower of strength, braving every crisis that came my way. Her faith and devotion have strengthened me and made me what I am today. My wife, Amrita, has not only provided me emotional support, but also brought structure and enrichment to my life. iv TABLE OF CONTENTS Acknowledgements . iii Table of Contents . v List of Tables . ix List of Figures . xi Preview . xx Chapter 1: Introduction . 1 1.1 Discovery of Fullerene and Carbon Nanotubes . 1 1.2 Carbon Nanotubes as Nano-scale Containers or Mass Transport Channels . 4 1.3 Synthesis of Aligned Carbon Nanotube Structures . 7 1.4 Vertically Aligned and Ordered Membranes . 9 1.4.1 What are membranes? . 9 1.4.2 Anodization of Aluminium . 10 1.4.3 Track-etch Membranes . 12 1.4.4 Template Synthesis Approach . 14 1.4.5 Fabrication of Vertically Aligned Carbon Nanotube Membrane 15 1.5 Goals of the Dissertation . 18 Chapter 2: Experimental Methods . 20 2.1 Synthesis of CNT Membranes. 20 2.2. Ionic Transport Measurements. 20 2.3. Electrochemical Impedance Sectroscopy Measurements. 23 2.4. Liquid Transport Measurements . 23 2.5 Gas Transport Measurement . 25 2.6.KCl Diffusion Experiments for Estimation of Porosity . 27 2.7 Functionalization of CNT Membranes . 28 2.8 FTIR Studies . 30 2.9 U-tube Permeation Experiment. 30 2.10 Synthesis of 4-carboxy phenyl diazonium tetra fluoroborate . 32 2.11 Electrochemical Grafting. 32 v 2.12 Dye Adsorption-Desorption Assay . 34 2.13 Functionalization of CNT Membrane/Electrodes. 36 2.14 Estimation of Porosity of Membranes from Methyl Viologen flux . 39
Recommended publications
  • Contents Part a Nanocarbons
    Contents Foreword by Claes-Goran Granqvist V Foreword by Neal Lane VII List of Abbreviations XXIX 1 Science and Engineering of Nanomaterials Robert Vajtai 1 1.1 History and Definition of Nanomaterials 2 1.2 Formation of Nanomaterials 6 1.3 Properties of Nanomaterials 10 1.k Typical Applications of Nanomaterials 22 1.5 Concluding Remarks 31 1.6 About the Contents of the Handbook 31 References 31 Part A NanoCarbons 2 Graphene - Properties and Characterization Aravind Vijayaraghavan 39 2.1 Methods of Production k2 2.2 Properties 50 2.3 Characterization 58 2.k Applications 69 2.5 Conclusions and Outlook 1W References 74 3 Fullerenes and Beyond: Complexity, Morphology, and Functionality in Closed Carbon Nanostructures Humberto Terrones 83 3.1 Geometry and Structural Features of Fullerenes 85 3.2 Methods of Synthesis of Fullerenes and Proposed Growth Models.... 88 3.3 Physicochemical Properties of Fullerenes 90 3.4 Applications of Fullerenes and Beyond 92 3.5 Conclusions 99 References 99 k Single-Walled Carbon Nanotubes Sebastien Nanot, Nicholas A. Thompson, Ji-Hee Kim, Xucin Wang, William D. Rice, Erik H. Haroz, Yogeeswaran Ganesan, Cary L. Pint, Junichiro Kono 105 4.1 History 106 4.2 Crystallographic and Electronic Structure 106 http://d-nb.info/1012138798 4.3 Synthesis Ill 4.4 Optical Properties 115 4.5 Transport Properties 123 4.6 Thermal and Mechanical Properties 128 4.7 Concluding Remarks 135 References 135 5 Multi-Walled Carbon Nanotubes Akos Kukovecz, Gabor Kozma, Zoltan Kdnya 147 5.1 Synthesis 148 5.2 Chemistry of MWCNTs 153 5.3 Properties 157 5.4 Selected Applications 163 References 169 6 Modified Carbon Nanotubes Aaron Morelos-Gomez, Ferdinando Tristan Lopez, Rodolfo Cruz-Silva, Sofia M.
    [Show full text]
  • Graphene.Vortex Fluidics.Final
    Vortex fluidic exfoliation of graphite and boron nitride Author Chen, Xianjue, Dobson, John F, Raston, Colin L Published 2012 Journal Title Chemical Communications DOI https://doi.org/10.1039/C2CC17611D Copyright Statement © 2012 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/47070 Griffith Research Online https://research-repository.griffith.edu.au Dynamic Article Links ► Journal Name Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Vortex fluidic exfoliation of graphite and boron nitride Xianjue Chen,a John F. Dobson,b and Colin L. Rastona,* Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Graphite is exfoliated into graphene sheets by the shearing in vortex fluidic films of N-methyl-pyrrolidone (NMP), as a (a) (c) (d) controlled process for preparing oxide free graphene with minimal defects, and for the exfoliation of the corresponding boron nitride sheets. (b) 10 Solution based methods have been widely used for the synthesis !"#$%&'()*+, of graphene from graphite or graphite oxide,1 using high energy '-%.", sonication for the exfoliation process in generating mono- or 2-8 multi-layer structures. However, the associated cavitation process can result in damage to the graphene,2 which can affect Figure 1. (a) Schematic of the vortex fluidic device (10 mm diameter 9,10 o 15 its properties. Developing facile methods for accessing viable tube, 16 cm long, inclined at 45 , operating at 7000 and 8000 rpm for quantities of graphene devoid of such defects, and also of graphite and BN respectively).
    [Show full text]
  • DRAFT Nanotechnology Roadmap Technology Area 10
    National Aeronautics and Space Administration DRAFT NANoTechNology RoADmAp Technology Area 10 Michael A. Meador, Chair Bradley Files Jing Li Harish Manohara Dan Powell Emilie J. Siochi November • 2010 DRAFT This page is intentionally left blank DRAFT Table of Contents Foreword Executive Summary TA10-1 1. General Overview TA10-6 1.1. Technical Approach TA10-6 1.2. Benefits TA10-6 1.3. Applicability/Traceability to NASA Strategic Goals, AMPM, DRMs, DRAs TA10-7 1.4. Top Technical Challenges TA10-7 2. Detailed Portfolio Discussion TA10-8 2.1. Summary Description TA10-8 2.2. WBS Description TA10-8 2.2.1. Engineered Materials TA10-8 2.2.1.1. Lightweight Materials and Structures. TA10-8 2.2.1.2. Damage Tolerant Systems TA10-9 2.2.1.3. Coatings TA10-10 2.2.1.4. Adhesives TA10-10 2.2.1.5. Thermal Protection and Control TA10-10 2.2.1.6. Key Capabilities TA10-11 2.2.2. Energy Generation and Storage TA10-12 2.2.2.1. Energy Generation TA10-13 2.2.2.2. Energy Storage TA10-13 2.2.2.3. Energy Distribution TA10-14 2.2.2.4. Key Capabilities TA10-14 2.2.3. Propulsion TA10-14 2.2.3.1. Nanopropellants TA10-14 2.2.3.2. Propulsion Systems TA10-15 2.2.3.3. In-Space Propulsion TA10-16 2.2.3.4. Key Capabilities TA10-17 2.2.4. Electronics, Devices and Sensors TA10-17 2.2.4.1. Sensors and Actuators TA10-17 2.2.4.2. Electronics TA10-17 2.2.4.3.
    [Show full text]
  • A Study of the Decomposition of Some Aromatic Diazonium Hexafluorophosphate Salts
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1964 A study of the decomposition of some aromatic diazonium hexafluorophosphate salts. William A. Redmond University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Redmond, William A., "A study of the decomposition of some aromatic diazonium hexafluorophosphate salts." (1964). Electronic Theses and Dissertations. 6038. https://scholar.uwindsor.ca/etd/6038 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. A STUDY OF THE DECOMPOSITION OF SOME AROMATIC DIAZONIUM HEXAFLUOROPHOSPHATE SALTS BY WILLIAM A. REDMOND A Thesis Submitted to the Faculty of Graduate Studies through' the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario 1964 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • Nanomedicine and Medical Nanorobotics - Robert A
    BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging.
    [Show full text]
  • Computational Investigations of Molecular Transport
    COMPUTATIONAL INVESTIGATIONS OF MOLECULAR TRANSPORT PROCESSES IN NANOTUBULAR AND NANOCOMPOSITE MATERIALS A Dissertation Presented to The Academic Faculty by Suchitra Konduri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Chemical Engineering in the School of Chemical & Biomolecular Engineering Georgia Institute of Technology May 2009 COMPUTATIONAL INVESTIGATIONS OF MOLECULAR TRANSPORT PROCESSES IN NANOTUBULAR AND NANOCOMPOSITE MATERIALS Approved by: Dr. Sankar Nair, Advisor Dr. Carson J. Meredith School of Chemical & Biomolecular School of School of Chemical & Engineering Biomolecular Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. William J. Koros Dr. Yonathan S. Thio School of Chemical & Biomolecular School of Polymer, Textile & Fiber Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Peter J. Ludovice Dr. Min Zhou School of Chemical & Biomolecular School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Date Approved: Februay 05, 2009 ACKNOWLEDGEMENTS This thesis is the result of not just my efforts, but is influenced directly or indirectly by a number of people, whom I would like to acknowledge here. Firstly, I express my sincere thanks to my advisor, Prof. Sankar Nair, for providing me an opportunity to work with him, and for extending his unwavering support, guidance and commitment to help me develop my scientific skills and become a better researcher that I believe I am now. His trust and help in times of need are greatly appreciated. I am grateful to my committee members Prof. William J. Koros, Prof. Peter J. Ludovice, Prof. Carson J. Meredith, Prof. Yonathan S. Thio, and Prof. Min Zhou for providing valuable suggestions and for their critical reading of this thesis.
    [Show full text]
  • Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions
    membranes Review Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions Pei Sean Goh *, Kar Chun Wong and Ahmad Fauzi Ismail Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; [email protected] (K.C.W.); [email protected] (A.F.I.) * Correspondence: [email protected]; Tel.: +60-7-553-5812 Received: 26 September 2020; Accepted: 19 October 2020; Published: 21 October 2020 Abstract: One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
    [Show full text]
  • Nanotechnology Publications: Leading Countries and Blocs
    Date: January 29, 2010 Author Note: I provide links and a copy of my working paper (that you may make freely available on your website) and a link to the published paper. Link to working paper: http://www.cherry.gatech.edu/PUBS/09/STIP_AN.pdf Link to published paper: http://www.springerlink.com/content/ag2m127l6615w023/ Page 1 of 1 Program on Nanotechnology Research and Innovation System Assessment Georgia Institute of Technology Active Nanotechnology: What Can We Expect? A Perspective for Policy from Bibliographical and Bibliometric Analysis Vrishali Subramanian Program in Science, Technology and Innovation Policy School of Public Policy and Enterprise Innovation Institute Georgia Institute of Technology Atlanta, GA 30332‐0345, USA March 2009 Acknowledgements: This research was undertaken at the Project on Emerging Nanotechnologies (PEN) and at Georgia Tech with support by the Project on Emerging Nanotechnologies (PEN) and Center for Nanotechnology in Society at Arizona State University ( sponsored by the National Science Foundation Award No. 0531194). The findings contained in this paper are those of the author and do not necessarily reflect the views of Project on Emerging Nanotechnologies (PEN) or the National Science Foundation. For additional details, see http://cns.asu.edu (CNS‐ASU) and http://www.nanopolicy.gatech.edu (Georgia Tech Program on Nanotechnology Research and Innovation Systems Assessment).The author wishes to thank Dave Rejeski, Andrew Maynard, Mihail Roco, Philip Shapira, Jan Youtie and Alan Porter. Executive Summary Over the past few years, policymakers have grappled with the challenge of regulating nanotechnology, whose novelty, complexity and rapid commercialization has highlighted the discrepancies of science and technology oversight.
    [Show full text]
  • Preparation of 5-Bromo-2-Naphthol: the Use of a Sulfonic Acid As a Protecting and Activating Group
    Molbank 2009, M602 OPEN ACCESS molbank ISSN 1422-8599 www.mdpi.com/journal/molbank Short Note Preparation of 5-Bromo-2-naphthol: The Use of a Sulfonic Acid as a Protecting and Activating Group Renata Everett, Jillian Hamilton and Christopher Abelt * Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 2 June 2009 / Accepted: 25 June 2009 / Published: 29 June 2009 Abstract: The preparation of 5-bromo-2-naphthol (4) in three steps from 5-amino-2- naphthol (1) is described. A sulfonic acid group is introduced at the 1-position as an activating and protecting group for the Sandmeyer reaction. The sulfonate group allows for the use of only water and sulfuric acid as solvents. The sulfonic acid is introduced with three equivalents of sulfuric acid, and it is removed in 20% aq. sulfuric acid. Keywords: Sandmeyer reaction; protecting group; sulfonation; desulfonation 1. Introduction Regioselective synthesis of disubstituted naphthalenes can be challenging especially when the substituents are on different rings. We needed 5-bromo-2-naphthol (4) as a starting material for a multistep synthesis. This simple derivative is virtually unknown [1,2]. The most direct route to 4 is from 5-amino-2-naphthol (1) using the Sandmeyer reaction. Unfortunately, the Sandmeyer reaction fails with 1 because the hydroxyl group is too activating. Even when the hydroxyl group is protected as a methyl ether, the normal solution-phase Sandmeyer reaction employing cuprous salts is still problematic. In their preparation of 5-bromo-2-methoxynaphthalene, Dauben and co-workers resorted to pyrolysis of the diazonium ion double salt with HgBr2, but this procedure gives just a 30% yield of the bromide [3].
    [Show full text]
  • Scaling the Mass Transport Enhancement Through Carbon Nanotube Membranes Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park
    Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park To cite this version: Seul Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Park. Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes. 2018. hal-01890716 HAL Id: hal-01890716 https://hal.archives-ouvertes.fr/hal-01890716 Preprint submitted on 8 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scaling the Mass Transport Enhancement through Carbon Nanotube Membranes Seul Ki Youn, Jakob Buchheim, Mahesh Lokesh, Hyung Gyu Park* Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Tannenstrasse 3, Zurich CH-8092, Switzerland *Corresponding author: [email protected] ABSTRACT Measuring and controlling enhanced mass transport in carbon nanotube (CNT) and membranes thereof have been of great interest and importance in fundamental studies of nanofluidics as well as practical applications including desalination and gas separation. Experiments and simulations have claimed nearly frictionless transport and attributed it to tight graphitic confinement. Nevertheless, rare and scattered experimental data are obscuring the transport efficiency limit and the mechanistic understanding of fluid transport through CNTs.
    [Show full text]
  • The Electrical Properties of Graphene Modified by Bromophenyl Groups
    CARBON 50 (2012) 1517– 1522 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound Xiaochen Dong a, Qing Long a, Ang Wei a, Wenjing Zhang c, Lain-Jong Li c, Peng Chen b,*, Wei Huang a,* a Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210046, China b School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore c Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan ARTICLE INFO ABSTRACT Article history: Graphene field-effect transistors were fabricated with mechanically exfoliated single-layer Received 30 June 2011 graphene (SLG) and bilayer graphene (BLG) sheets and the functionalization effects of Accepted 15 November 2011 bromophenyl groups derived from a diazonium compound on its transfer properties were Available online 25 November 2011 explored. Spectroscopic and electrical studies reveal that the bromophenyl grafting imposes p-doping to both SLG and BLG. The modification of SLG by bromophenyl groups significantly reduces the hole carrier mobility and the saturation current in SLG transistors, suggesting an increase in both long-range impurity and short-range defect scattering. Unexpectedly, the bromophenyl group functionalization on BLG does not obviously increase both types of scattering, indicating that the BLG is relatively more resistant to charge- or defect-induced scattering. The results indicate that chemical modification is a simple approach to tailor the electrical properties of graphene sheets with different num- bers of layers.
    [Show full text]
  • Science & Technology Trends 2020-2040
    Science & Technology Trends 2020-2040 Exploring the S&T Edge NATO Science & Technology Organization DISCLAIMER The research and analysis underlying this report and its conclusions were conducted by the NATO S&T Organization (STO) drawing upon the support of the Alliance’s defence S&T community, NATO Allied Command Transformation (ACT) and the NATO Communications and Information Agency (NCIA). This report does not represent the official opinion or position of NATO or individual governments, but provides considered advice to NATO and Nations’ leadership on significant S&T issues. D.F. Reding J. Eaton NATO Science & Technology Organization Office of the Chief Scientist NATO Headquarters B-1110 Brussels Belgium http:\www.sto.nato.int Distributed free of charge for informational purposes; hard copies may be obtained on request, subject to availability from the NATO Office of the Chief Scientist. The sale and reproduction of this report for commercial purposes is prohibited. Extracts may be used for bona fide educational and informational purposes subject to attribution to the NATO S&T Organization. Unless otherwise credited all non-original graphics are used under Creative Commons licensing (for original sources see https://commons.wikimedia.org and https://www.pxfuel.com/). All icon-based graphics are derived from Microsoft® Office and are used royalty-free. Copyright © NATO Science & Technology Organization, 2020 First published, March 2020 Foreword As the world Science & Tech- changes, so does nology Trends: our Alliance. 2020-2040 pro- NATO adapts. vides an assess- We continue to ment of the im- work together as pact of S&T ad- a community of vances over the like-minded na- next 20 years tions, seeking to on the Alliance.
    [Show full text]