Computational Investigations of Molecular Transport
Total Page:16
File Type:pdf, Size:1020Kb
COMPUTATIONAL INVESTIGATIONS OF MOLECULAR TRANSPORT PROCESSES IN NANOTUBULAR AND NANOCOMPOSITE MATERIALS A Dissertation Presented to The Academic Faculty by Suchitra Konduri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Chemical Engineering in the School of Chemical & Biomolecular Engineering Georgia Institute of Technology May 2009 COMPUTATIONAL INVESTIGATIONS OF MOLECULAR TRANSPORT PROCESSES IN NANOTUBULAR AND NANOCOMPOSITE MATERIALS Approved by: Dr. Sankar Nair, Advisor Dr. Carson J. Meredith School of Chemical & Biomolecular School of School of Chemical & Engineering Biomolecular Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. William J. Koros Dr. Yonathan S. Thio School of Chemical & Biomolecular School of Polymer, Textile & Fiber Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Peter J. Ludovice Dr. Min Zhou School of Chemical & Biomolecular School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Date Approved: Februay 05, 2009 ACKNOWLEDGEMENTS This thesis is the result of not just my efforts, but is influenced directly or indirectly by a number of people, whom I would like to acknowledge here. Firstly, I express my sincere thanks to my advisor, Prof. Sankar Nair, for providing me an opportunity to work with him, and for extending his unwavering support, guidance and commitment to help me develop my scientific skills and become a better researcher that I believe I am now. His trust and help in times of need are greatly appreciated. I am grateful to my committee members Prof. William J. Koros, Prof. Peter J. Ludovice, Prof. Carson J. Meredith, Prof. Yonathan S. Thio, and Prof. Min Zhou for providing valuable suggestions and for their critical reading of this thesis. I thank Dr. Shaji Chempath (Los Alamos National Laboratory) for his collaboration in providing adsorption data using Monte Carlo simulations. I also thank Ashish Pande for helping me with Matlab coding, and Ji Zang for assistance with Fortran coding. My thanks are also due to Kevin Guger for periodically lending me IT support. Many thanks to all current and past Nair group members, especially Dr. Yeny Hudiono, Dr. Sanjoy Mukherjee, and Amir Ahmadi for making it a great place to work. Special thanks to my friends outside Georgia Tech – Krishna, Rajesh, Ashwini, Preeti, Tarun, Anand, Shabbir, Niket, Manish, Stephanie; and my friends at Georgia Tech- Mariefel, Krystle; for all the great times we spent together. iii My heartfelt thanks go to my parents to whom I dedicate this thesis; my brother and grandmother for constantly inspiring me to work hard with utmost sincerity and achieve all my goals; for their faith in me, and for providing me emotional and moral support over the years. My deepest thanks to my best friend, critic, and my husband, Chakradhar for being there for me and constantly providing me support and encouragement at all times. I gratefully acknowledge financial support of my thesis research by the ACS Petroleum Research Fund and the National Science Foundation. iv TABLE OF CONTENTS Acknowledgements............................................................................................................iii List of Tables ..................................................................................................................... ix List of Figures..................................................................................................................... x Summary.......................................................................................................................... xiv Chapter 1: Introduction and Background............................................................................ 1 1.1. Nanotechnology and Nanomaterials........................................................................ 1 1.2. Transport Phenomena in Porous Nanomaterials...................................................... 2 1.2.1. Polymer/Inorganic Layered Nanocomposites................................................... 4 1.2.1.1. Synthesis of Nanocomposite Membrane Materials ................................... 4 1.2.1.2. Transport in Nanocomposite Membrane Materials ................................... 6 1.2.2. Single-Walled Metal Oxide Nanotubes ............................................................ 9 1.2.2.1. Synthesis of Aluminosilicate Nanotubes ................................................. 11 1.2.2.2. Transport in Nanotubes............................................................................ 13 1.3. Molecular Modeling of Nanoscale Structure-Property Relations.......................... 16 1.4. Overall Objective and Strategy.............................................................................. 17 Chapter 2: Gas Transport in Polymer/Nanoporous Layered Silicate Nanocomposite Materials ........................................................................................................................... 20 2.1. Introduction............................................................................................................ 20 2.2. Computational Methodology ................................................................................. 23 2.2.1. The force field................................................................................................. 23 2.2.2. Model Construction ........................................................................................ 23 2.2.3. Diffusivity Calculations and Polymer Chain Vibration.................................. 26 2.2.4. Adsorption Isotherm and Diffusivity Calculations in MFI............................. 27 2.3. Results and Discussion .......................................................................................... 28 v 2.3.1. Model Evaluation............................................................................................ 28 2.3.2. Diffusion through PDMS/AMH-3 Nanocomposites ...................................... 33 2.3.3. Diffusion Selectivities..................................................................................... 37 2.3.4. PDMS Segmental Dynamics........................................................................... 41 2.4. Conclusions............................................................................................................ 43 Chapter 3: Development of a Force Field for Modeling Nanoporous Layered Aluminophosphates........................................................................................................... 45 3.1. Introduction............................................................................................................ 45 3.2. Methodology.......................................................................................................... 47 3.2.1. Computational Details .................................................................................... 47 3.2.1.1. Force field Parameterization.................................................................... 47 3.2.1.2. Molecular Dynamics (MD) simulations .................................................. 50 3.2.2. Experimental Details....................................................................................... 51 3.2.2.1. Fourier Transform Infrared Spectroscopy (FTIR) ................................... 51 3.3. Results and Discussion .......................................................................................... 52 3.3.1. Structural Property Evaluation........................................................................ 52 3.3.2. Vibrational spectra.......................................................................................... 56 3.3.3. X-ray Diffraction ............................................................................................ 63 3.4. Conclusions............................................................................................................ 65 Chapter 4: Gas Transport in Stiff Chain Polymer/Nanoporous Inorganic Layered Nanocomposite Materials ................................................................................................. 67 4.1. Introduction............................................................................................................ 67 4.2. Transition State Approach Methodology............................................................... 68 4.3. Computational Methodology ................................................................................. 71 4.4. Results and Discussion .......................................................................................... 73 4.4.1. Penetrant Probability Density Distribution..................................................... 73 vi 4.4.2. Resident Sites.................................................................................................. 75 4.4.3. Future Work.................................................................................................... 77 Chapter 5: Dimension Control of Single-Walled Metal Oxide Nanotubes ...................... 78 5.1. Introduction............................................................................................................ 78 5.2. Computational Methodology ................................................................................. 79 5.2.1. Force field Parameterization........................................................................... 79 5.2.2. Molecular Dynamics (MD) simulations ........................................................