Enhancement of Photocatalytic Activity by Site Poisoning

Total Page:16

File Type:pdf, Size:1020Kb

Enhancement of Photocatalytic Activity by Site Poisoning ENHANCEMENT OF PHOTOCATALYTIC ACTIVITY BY SITE POISONING PLATINUM DOPED TITANIUM DIOXIDE A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Yang Chu December, 2014 ENHANCEMENT OF PHOTOCATALYTIC ACTIVITY BY SITE POISONING PLATINUM DOPED TITANIUM DIOXIDE Yang Chu Thesis Approved: Accepted: _________________________________ _________________________________ Advisor Dean of the College Dr. Steven S.C. Chuang Dr. Eric J. Amis _________________________________ _________________________________ Faculty Reader Interim Dean of the Graduate School Dr. Xiong Gong Dr. Rex Ramsier _________________________________ _________________________________ Department Chair Date Dr. Coleen Pugh ii ABSTRACT Photoelectrochemical cell (PEC) is a device that could interconvert chemicals and electricity with the energy of light by the photovoltaic effect1. PEC is widely studied recently for hydrogen production and waste organics degradation2. The main structure is composed of photocatalyst, electrolyte, counter electrode and power supply. Water and organics are converted to hydrogen and carbon dioxide gases by irradiating the photocatalyst with ultraviolet radiation. The challenge for commercialization is mainly because of the low efficiency. Extensive research has been directed toward developing highly active photocatalysts by the doping of platinum. Platinum doped titanium dioxide 3, 4 (Pt-TiO2) has shown the ability to faster degrade organics than TiO2 . The mechanism is that the low potential of platinum that functions as a trap for the electrons and thus reduces the electron-hole recombination. However, there has not been a significant breakthrough that can lead PEC to commercialization. Recently, we hypothesize that selectively poisoning the electron generating site could significantly reduce the electron- hole recombination. Pt-TiO2 was treated with hydrogen sulfur (Pt-TiO2/H2S) at high temperature and H2S were converted to sulfur and completely covered the platinum. Characterization of TiO2, Pt-TiO2 and Pt-TiO2/H2S both in powder and thin film format was done by infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Ethanol and some other organics are added in electrolyte to increase the current density of the PEC and iii produce more hydrogen due to the lower oxidation potential than water5. Comparing the working electrode of TiO2, Pt-TiO2 and Pt-TiO2/H2S in PEC, we analyzed the different amount of gaseous products, the current density and the degradation of methylene blue. The results showed that Pt-TiO2/H2S has the best oxidative activity per unit thickness of catalyst. This research will lead us to find the applications of PEC in utilization of the shale gas that can provide the energy with high efficiency and environmental friendly in the future. iv ACKNOWLEDGEMENTS Firstly, I will thank my advisor, Dr. Steven Chuang for giving me this opportunity to do research in his group. He provided me this project and taught me how to think for the science and technology. I really appreciate Dr. Xiong Gong to be the reader for my master thesis. He is so busy but he still squeezes his time to help me improve my writing skill. I would like to thank the group members of the photocatalyst, who are Mehdi Lohrasbi, Piyapong Pattanapanishsawat, Dan Huang, Jie Yu. They taught me how to set up the experiment and the way to analyze the data. They are friends more than the colleagues. Secondly, I am very grateful for my parents. They give me all their love and understand to support me to finish my Master degree. They are always the strongest backup whatever I meet all the problems. I also need to thank all my friends. They helped me overcome the hardest time in USA and always encourage me to do my favorite things. Last, I am thankful to my wise, Yu Zhang. She did everything she could to help me finish my Master degree. She is the most important people to me and she will always be. v TABLE OF CONTENTS Page LIST OF FIGURES ......................................................................................................... viii LIST OF TALBES ........................................................................................................... xiii CHAPTER I. INTRODUCTION ........................................................................................................... 1 II. LITERATURE REVIEW ............................................................................................... 4 2.1. Photocatalysts .......................................................................................................... 4 2.2. Titanium dioxide ...................................................................................................... 4 2.3. Photoelectrochemical cell ........................................................................................ 7 III. EXPERIMENTAL ...................................................................................................... 12 3.1. Preparation and characterization of platinum doped titanium dioxide and platinum ....................................................................................................................................... 12 3.1.1. Preparation of platinum doped titanium dioxide ............................................ 12 3.1.2. Preparation of platinum doped titanium dioxide treated by hydrogen sulfide 13 3.1.3. Preparation of TiO2 thin film, Pt-TiO2 thin film and Pt-TiO2/H2S thin film ... 14 3.1.4 Characterization of catalysts in forms of powder and thin film ....................... 16 3.2. Setup of photoelectrochemical cell ........................................................................ 17 3.3. Characterization of gas products and solution in photoelectrochemical cell ......... 19 3.4. Experimental procedure of photoelectrochemical cell .......................................... 19 IV. RESULTS AND DISCUSSION .................................................................................. 22 4.1. Characterization of TiO2-based catalysts ............................................................... 22 4.1.1 TiO2-based catalysts in powder and thin film form ......................................... 22 vi 4.1.2 TEM analysis of TiO2-based catalyst in powder form ..................................... 23 4.1.3 SEM analysis of TiO2-based catalysts in thin film form.................................. 25 4.1.4 FTIR spectroscopy characterization of TiO2-based catalysts .......................... 25 4.1.5 UV-Vis spectroscopy characterization of TiO2-based catalysts ....................... 30 4.1.6 Two-dimensional wide angle X-ray diffraction spectroscopy of TiO2-based catalysts. .................................................................................................................... 32 4.1.7 Energy-dispersive X-ray spectroscopy of TiO2-based catalysts ...................... 33 4.2. Results of photoelectrochemical cell ..................................................................... 33 4.2.1 Photoelectrochemical reactions ....................................................................... 33 4.2.2 Electrical experimental results of photoelectrochemical cell .......................... 34 4.2.3 Gas production results of photoelectrochemical cell experiment. ................... 37 4.2.4 Photo oxidation of methylene blue in the photoelectrochemical cell experiment ................................................................................................................................... 39 4.2.5 pH change ........................................................................................................ 42 4.3. Conclusions ............................................................................................................ 45 REFERENCES ................................................................................................................. 46 APPENDICES .................................................................................................................. 51 APPENDIX A DYE-SENSITIZED SOLAR CELLS (DSSC) ..................................... 52 APPENDIX B INTENSITY OF UV LIGHT................................................................ 72 APPENDIX C PHOTO DEGRDATION OF PVC THIN FILMS ................................ 80 APPENDIX D NFPA AND HMIS RATING OF CHEMICALS ................................ 104 vii LIST OF FIGURES Figure Page 1. Organization of master project and thesis ....................................................................... 3 2. Band positions of several semiconductors in contact with aqueous electrolyte at pH 1. 5 3. Ball and stick model for three different forms of titanium dioxide. ............................... 6 4. (a) Chemical structure of methylene blue and the IR band assignment. (b) Variations of the IR intensity of MB bands at 1488 cm-1 during 240 min of the MB photocatalytic degradation. ................................................................................................................... 7 5. Current-voltage profile of the photoelectrochemical cell.. ............................................. 8 6. Experimental procedure of Pt-TiO2 preparation ........................................................... 13 7. Experimental procedure of Pt-TiO2/H2S preparation ...................................................
Recommended publications
  • Repoussé Work for Amateurs
    rf Bi oN? ^ ^ iTION av op OCT i 3 f943 2 MAY 8 1933 DEC 3 1938 MAY 6 id i 28 dec j o m? Digitized by the Internet Archive in 2011 with funding from Boston Public Library http://www.archive.org/details/repoussworkforamOOhasl GROUP OF LEAVES. Repousse Work for Amateurs. : REPOUSSE WORK FOR AMATEURS: BEING THE ART OF ORNAMENTING THIN METAL WITH RAISED FIGURES. tfjLd*- 6 By L. L. HASLOPE. ILLUSTRATED. LONDON L. UPCOTT GILL, 170, STRAND, W.C, 1887. PRINTED BY A. BRADLEY, 170, STRAND, LONDON. 3W PREFACE. " JjJjtfN these days, when of making books there is no end," ^*^ and every description of work, whether professional or amateur, has a literature of its own, it is strange that scarcely anything should have been written on the fascinating arts of Chasing and Repousse Work. It is true that a few articles have appeared in various periodicals on the subject, but with scarcely an exception they treated only of Working on Wood, and the directions given were generally crude and imperfect. This is the more surprising when we consider how fashionable Repousse Work has become of late years, both here and in America; indeed, in the latter country, "Do you pound brass ? " is said to be a very common question. I have written the following pages in the hope that they might, in some measure, supply a want, and prove of service to my brother amateurs. It has been hinted to me that some of my chapters are rather "advanced;" in other words, that I have gone farther than amateurs are likely to follow me.
    [Show full text]
  • The Use of Titanium in Dentistry
    Cells and Materials Volume 5 Number 2 Article 9 1995 The Use of Titanium in Dentistry Toru Okabe Baylor College of Dentistry, Dallas Hakon Hero Scandinavian Institute of Dental Materials, Haslum Follow this and additional works at: https://digitalcommons.usu.edu/cellsandmaterials Part of the Dentistry Commons Recommended Citation Okabe, Toru and Hero, Hakon (1995) "The Use of Titanium in Dentistry," Cells and Materials: Vol. 5 : No. 2 , Article 9. Available at: https://digitalcommons.usu.edu/cellsandmaterials/vol5/iss2/9 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Cells and Materials by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Cells and Materials, Vol. 5, No. 2, 1995 (Pages 211-230) 1051-6794/95$5 0 00 + 0 25 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA THE USE OF TITANIUM IN DENTISTRY Toru Okabe• and HAkon Hem1 Baylor College of Dentistry, Dallas, TX, USA 1Scandinavian Institute of Dental Materials (NIOM), Haslum, Norway (Received for publication August 8, 1994 and in revised form September 6, 1995) Abstract Introduction The aerospace, energy, and chemical industries have Compared to the metals and alloys commonly used benefitted from favorable applications of titanium and for many years for various industrial applications, tita­ titanium alloys since the 1950's. Only about 15 years nium is a rather "new" metal. Before the success of the ago, researchers began investigating titanium as a mate­ Kroll process in 1938, no commercially feasible way to rial with the potential for various uses in the dental field, produce pure titanium had been found.
    [Show full text]
  • Metals and Metal Products Tariff Schedules of the United States
    251 SCHEDULE 6. - METALS AND METAL PRODUCTS TARIFF SCHEDULES OF THE UNITED STATES SCHEDULE 6. - METALS AND METAL PRODUCTS 252 Part 1 - Metal-Bearing Ores and Other Metal-Bearing Schedule 6 headnotes: Materials 1, This schedule does not cover — Part 2 Metals, Their Alloys, and Their Basic Shapes and Forms (II chemical elements (except thorium and uranium) and isotopes which are usefully radioactive (see A. Precious Metals part I3B of schedule 4); B. Iron or Steel (II) the alkali metals. I.e., cesium, lithium, potas­ C. Copper sium, rubidium, and sodium (see part 2A of sched­ D. Aluminum ule 4); or E. Nickel (lii) certain articles and parts thereof, of metal, F. Tin provided for in schedule 7 and elsewhere. G. Lead 2. For the purposes of the tariff schedules, unless the H. Zinc context requires otherwise — J. Beryllium, Columbium, Germanium, Hafnium, (a) the term "precious metal" embraces gold, silver, Indium, Magnesium, Molybdenum, Rhenium, platinum and other metals of the platinum group (iridium, Tantalum, Titanium, Tungsten, Uranium, osmium, palladium, rhodium, and ruthenium), and precious- and Zirconium metaI a Iloys; K, Other Base Metals (b) the term "base metal" embraces aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, columbium, copper, gallium, germanium, Part 3 Metal Products hafnium, indium, iron, lead, magnesium, manganese, mercury, A. Metallic Containers molybdenum, nickel, rhenium, the rare-earth metals (Including B. Wire Cordage; Wire Screen, Netting and scandium and yttrium), selenium, silicon, strontium, tantalum, Fencing; Bale Ties tellurium, thallium, thorium, tin, titanium, tungsten, urani­ C. Metal Leaf and FoU; Metallics um, vanadium, zinc, and zirconium, and base-metal alloys; D, Nails, Screws, Bolts, and Other Fasteners; (c) the term "meta I" embraces precious metals, base Locks, Builders' Hardware; Furniture, metals, and their alloys; and Luggage, and Saddlery Hardware (d) in determining which of two or more equally specific provisions for articles "of iron or steel", "of copper", E.
    [Show full text]
  • Testing Gold Platinum Silver.Qxp
    PROCEDURES FOR TESTING GOLD, PLATINUM AND SILVER To test for the karat value of gold, platinum and silver, you will need the following materials and tools: • Black acid testing stone that is washed thoroughly with water prior to each test. • Acids. • Gold testing needles with gold tips - used for comparison with test pieces. Testing for 10K, 12K, 14K Scratch the gold piece to be tested on the stone. Next to this position, scratch the appropriate needle (10, 12 or 14K). Place a drop of the appropriate acid on the stone where the gold was rubbed off. If the gold is the same karat or higher, the color of the scratch mark for the gold piece will appear the same as the mark from the needle. If that gold piece is a lower karat, the scratched deposit will become fainter and eventually disappear. Testing for 18K Scratch the test piece on the stone and apply 18K acid. Any gold that is less than 18K will disappear in less than 30 seconds. Gold that remains on the stone is 18K or higher. Testing for 20K and 24K Scratch the gold piece on the stone. Next, scratch any item of know karat (coin or needle) on the stone. Apply one drop of acid to area. The material that starts to disappear has the lower karat. Testing for Platinum Scratch the test item on the stone and apply one drop of acid to the application on the stone. If the material is platinum, it should keep its white, bright color. White Gold The same procedure for platinum can be used for 18K white gold.
    [Show full text]
  • Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: a Review
    antibiotics Review Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review Masaya Shimabukuro Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; [email protected]; Tel.: +81-92-642-6346 Received: 3 October 2020; Accepted: 19 October 2020; Published: 20 October 2020 Abstract: Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties. Keywords: titanium; biofilm; infection; micro-arc oxidation; silver; copper; zinc; antibacterial properties; coating; implant 1.
    [Show full text]
  • Titanium Alloy Data Sheet
    M Titanium Alloy Data Sheet Description Titanium equipment is often used in severe corrosive environments encountered in the chemical processing industries. Titanium has been considered an exotic “wonder metal” by many. This was particularly true in reference to castings. However, increasing demands and rapidly advancing technology have permitted titanium castings to be commercially available at an economical cost. The combination of its cost, strength, corrosion resistance, and service life in very demanding corrosive environments suggest its selection in applications where titanium castings have never been considered in the past. Specifications Flowserve’s commercially pure titanium (C.P.-Ti) castings conform to ASTM Specification B367, Grade C-3. Flowserve’s palladium stabilized titanium (Ti-Pd) castings conform to Grade Ti-Pd 8A. Composition C.P.-Ti (C-3) Ti-Pd (8A) Element Percent Percent Nitrogen 0.05 max. 0.05 max. Carbon 0.10 max. 0.10 max. Hydrogen 0.015 max. 0.015 max. Iron 0.25 max. 0.25 max. Oxygen 0.40 max. 0.40 max. Titanium Remainder Remainder Palladium –– 0.12 min. Minimum C.P.-Ti (C-3) & Mechanical Ti-Pd (8A) and Physical Tensile Strength, psi 65,000 Properties MPa 448 Yield Strength, psi 55,000 MPa 379 Elongation, % in 1" (25 mm), min. 12 Brinell Hardness, 3000 kg, max. 235 Modulus of Elasticity, psi 15.5 x 106 MPa 107,000 Coefficient of Expansion, in/in/°F@ 68-800°F 5.5 x 10-6 m/m/°C @ 20-427°C 9.9 x 10-6 Thermal Conductivity, Btu/hr/ft/ft2/°F @ 400° 9.8 WATTS/METER-KELVIN @ 204°C 17 Density lb/cu in 0.136 kg/m3 3760 Melting Point, °F (approx.) 3035 °C 1668 Titanium Alloy Data Sheet (continued) Corrosion The outstanding mechanical and physical properties of titanium, combined with its Resistance unexpected corrosion resistance in many environments, makes it an excellent choice for particularly aggressive environments like wet chlorine, chlorine dioxide, sodium and calcium hypochlorite, chlorinated brines, chloride salt solutions, nitric acid, chromic acid, and hydrobromic acid.
    [Show full text]
  • The Platinum/Palladium Process
    9 The Platinum/Palladium Process OVERVIEW AND EXPECTATIONS In the majority of the classes and workshops that I’ve taught over the years, “the platinum/palladium process” is the answer that surfaces first when I ask the question, “What process do you want to learn the most?” In this chapter you will learn how, and, as in previous chapters, I begin with a little history. Then you will learn the chemistry and sequence of the various stages to a finished print. This chapter gives you alternatives to traditional platinum/palladium chemistry and provides you with a simple sensitizer “drop chart” that is based on the type of negative you are working with, rather than the print you would like to make. I also provide the beginnings of a trouble-shooting list to assist in hunting down problems that may be showing up in your work. Finally, you’ll get some brief alternative ideas for combining platinum/palladium with other techniques such as Van Dyke and gum bichromate. A LITTLE HISTORY Like most refined non-silver and alternative photographic processes, the art of platinum/palladium printing was developed in pieces over time by a number of dedicated artists and scientists. In 1830, Ferdinand Gehlen recorded the action and effects of light on platinum chloride, noting that UV light would alter the color of platinum salts and cause the ferric salts to precipitate out into a ferrous state. At around the same time, Johann Wolfgang Dobereiner (1780–1849) observed the decomposition of ferric oxalate on exposure to UV light and scientifically defined its sensitivity.
    [Show full text]
  • Invictus Catalog Lowres.Pdf
    At Invictus Body Jewelry we believe that professional piercers and body modifi cation artists desire high quality, implant grade jewelry at a reasonable price. To accomplish this, we designed and developed Invictus Body Jewelry to supply implant grade titanium jewelry to professional piercers all over the world. Invictus Body Jewelry is manufactured out of Ti 6Al-4V ELI ASTM F-136 implant grade titanium. All of our jewelry is internally threaded and adheres to industry standard thread patterns. At Invictus Body Jewelry we strive to provide the professional piercer with safe, customizable, and affordable implant grade jewelry. 2 www.invictusbodyjewelry.com Invictus Body Jewelry is manufactured only using implant grade materials - Ti 6Al-4V ELI ASTM-F136. All Invictus Body Jewelry products are internally threaded for professional piercers and their clients. Invictus Body Jewelry uses industry standard thread patterns. We use M1.2 threading on our 14ga and M0.9 threading on our 16ga & 18ga. We believe in providing quality piercing products at reasonable prices to our customers. We fulfi ll orders within 24 to 48 hours from being entered into the system. Invictus Body Jewelry is only available to wholesale customers. Only piercing shops and retailers may purchase our products, not the general public. 203.803.1129 3 HORSESHOES & CURVES TIHI (Internally Threaded Titanium Horseshoes) TICI (Internally Threaded Titanium Curves) CodeSizeDiameter Ends Code Size Diameter Ends TIHI601 16g 1/4” 3mm TIHI411 14g 5/16” 4mm TIHI611 16g 5/16” 3mm TIHI421
    [Show full text]
  • Advertising Platinum Jewelry
    FTC FACTS for Business Advertising Platinum Jewelry ftc.gov The Federal Trade Commission’s (FTC’s) Jewelry Guides describe how to accurately mark and advertise the platinum content of the jewelry you market or sell. Platinum jewelry can be alloyed with other metals: either precious platinum group metals (PGMs) — iridium, palladium, ruthenium, rhodium, and osmium — or non-precious base metals like copper and cobalt. In recent years, manufacturers have alloyed some platinum jewelry with a larger percentage of base metals. Recent revisions to the FTC’s Jewelry Guides address the marking of jewelry made of platinum and non-precious metal alloys and when disclosures are appropriate. When Disclosures Should Be Made Product descriptions should not be misleading, and they should disclose material information to jewelry buyers. If the platinum/base metal-alloyed item you are selling does not have the properties of products that are almost pure platinum or have a very high percentage of platinum, you should disclose that to prospective buyers. They may want to know about the value of the product as well as its durability, luster, density, scratch resistance, tarnish resistance, its ability to be resized or repaired, how well it retains precious metal over time, and whether it’s hypoallergenic. You may claim your product has these properties only if you have competent and reliable scientific evidence that your product — that has been alloyed with 15 to 50 percent non-precious or base metals — doesn’t differ in a material way from a product that is 85 percent or more pure platinum. Facts for Business Terms Used in Advertising • Jewelry that has 850 parts per thousand pure platinum — meaning that it is 85 percent pure • Any item that is less than 500 parts per platinum and 15 percent other metals — may be thousand pure platinum should not be marked referred to as “traditional platinum.” The other or described as platinum even if you modify the metals can include either PGMs or non-precious term by adding the piece’s platinum content in base metals.
    [Show full text]
  • THE USE of MIXED MEDIA in the PRODUCTION of METAL ART by Mensah, Emmanuel (B.A. Industrial Art, Metals)
    THE USE OF MIXED MEDIA IN THE PRODUCTION OF METAL ART By Mensah, Emmanuel (B.A. Industrial Art, Metals) A Thesis submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology In partial fulfillment of the requirements for the degree of MASTER OF ARTS (ART EDUCATION) Faculty of Art, College of Art and Social Sciences March 2011 © 2011, Department of General Art Studies DECLARATION I hereby declare that this submission is my own work toward the M.A Art Education degree and that, to the best of my knowledge, it contains no materials previously published by another person or material which has been accepted for the award of any other degree of the university, except where due acknowledgement has been made in the text. ……………………………….. ……………………………….. ………………………….. Student’s name & ID Signature Date Certified by ……………………………….. ……………………………….. ………………………….. Supervisor’s Name Signature Date Certified by ……………………………….. ……………………………….. ………………………….. Head of Department’s Name Signature Date ii ABSTRACT The focus of this study was to explore and incorporate various artistic and non artistic media into the production of metal art. The researcher was particularly interested in integrating more non metallic materials that are not traditional to the production of metal art in the decoration, finishing and the protective coating of metal art works. Basic hand forming techniques including raising, chasing and repoussé, piercing and soldering were employed in the execution of the works. Other techniques such as painting, dyeing and macramé were also used. Non metallic media that were used in the production of the works included leather, nail polish, acrylic paint, epoxy, formica glue, graphite, eye pencil, lagging, foam, wood, shoe polish, shoe lace, eggshell paper, spray paint, cotton cords and correction fluid.
    [Show full text]
  • Raymond & Leigh Danielle Austin
    PRODUCT TRENDS, BUSINESS TIPS, NATIONAL TONGUE PIERCING DAY & INSTAGRAM FAVS Metal Mafia PIERCER SPOTLIGHT: RAYMOND & LEIGH DANIELLE AUSTIN of BODY JEWEL WITH 8 LOCATIONS ACROSS OHIO STATE Friday, August 14th is NATIONAL TONGUE PIERCING DAY! #nationaltonguepiercingday #nationalpiercingholidays #metalmafialove 14G Titanium Barbell W/ Semi Precious Stone Disc Internally Threaded Starting At $7.54 - TBRI14-CD Threadless Starting At $9.80 - TTBR14-CD 14G Titanium Barbell W/ Swarovski Gem Disc Internally Threaded Starting At $5.60 - TBRI14-GD Threadless Starting At $8.80 - TTBR14-GD @fallenangelokc @holepuncher213 Fallen Angel Tattoo & Body Piercing 14G Titanium Barbell W/ Dome Top 14G Titanium Barbell W/ Dome Top 14G ASTM F-67 Titanium Barbell Assortment Internally Threaded Starting At $5.46 - TBRI14-DM Internally Threaded Starting At $5.46 - TBRI14-DM Starting At $17.55 - ATBRE- Threadless Starting At $8.80 - TTBR14-DM Threadless Starting At $8.80 - TTBR14-DM 14G Threaded Barbell W Plain Balls 14G Steel Internally Threaded Barbell W Gem Balls Steel External Starting At $0.28 - SBRE14- 24 Piece Assortment Pack $58.00 - ASBRI145/85 Steel Internal Starting At $1.90 - SBRI14- @the.stabbing.russian Titanium Internal Starting At $5.40 - TBRI14- Read Street Tattoo Parlour ANODIZE ANY ASTM F-136 TITANIUM ITEM IN-HOUSE FOR JUST 30¢ EXTRA PER PIECE! Blue (BL) Bronze (BR) Blurple Dark Blue (DB) Dark Purple (DP) Golden (GO) Light Blue (LB) Light Purple (LP) Pink (PK) Purple (PR) Rosey Gold (RG) Yellow(YW) (Blue-Purple) (BP) 2 COPYRIGHT METAL MAFIA 2020 COPYRIGHT METAL MAFIA 2020 3 CONTENTS Septum Clickers 05 AUGUST METAL MAFIA One trend that's not leaving for sure is the septum piercing.
    [Show full text]
  • JD: Jewelry Design
    JD: Jewelry Design JD 101 — Introduction to Jewelry JD 115 — Metal Forming Techniques: Fabrication Chasing and Repousse 2 credits; 1 lecture and 2 lab hours 1.5 credits; 3 lab hours Basic processes used in the design and Introduces students to jewelry-forming creation of jewelry. Students fabricate their techniques by making their own dapping own designs in the studio. and chasing tools by means of forging, JD 102 — Enameling Techniques for annealing, and tempering. Using these Precious Metals/Fine Jewelry/Objects tools, objects are created by repousse and D'Art other methods. 2 credits; 1 lecture and 2 lab hours Prerequisite(s): all first-semester Jewelry Vitreous enameling on precious metals. Design courses or approval of chairperson Studies include an emphasis on the "Co-requisite(s): JD 116, JD 122, JD metallurgical properties of gold, silver, and 134, JD 171, and JD 173 or approval of platinum and their chemical compatibility chairperson. with enamels. Surface treatments, ancient JD 117 — Enameling for Contemporary and modern, that intensify the jewel- Jewelry like qualities of vitreous enamel on 2 credits; 1 lecture and 2 lab hours precious metal will be explored. along with Vitreous enamel has been used for construction techniques that help students centuries as a means of adding color transform glass into beautiful, functional and richness to precious objects and jewelry and objects of art. jewelry. This course examines historical Prerequisite(s): JD 101. and contemporary uses of enamel, and JD 103 — Jewelry and Accessories explores the various methods of its Fabrication (Interdisciplinary) application, including cloisonne, limoges 2 credits; 1 lecture and 2 lab hours and champleve, the use of silver and gold This is an interdisciplinary course cross- foils, oxidation, surface finishing and setting listed with LD 103.
    [Show full text]