Fishery Bulletin/U S Dept of Commerce National Oceanic

Total Page:16

File Type:pdf, Size:1020Kb

Fishery Bulletin/U S Dept of Commerce National Oceanic EARLY ZOEAL STAGES OF PLACETRON WOSNESSENSKII AND RHINOLITHODES WOSNESSENSKII (DECAPODA, ANOMURA, LITHODIDAE) AND REVIEW OF LITHODID LARVAE OF THE NORTHERN NORTH PACIFIC OCEAN EVAN B. HAYNES I ABSTRACT Stage I zoeae of Placetron wosnessenskii. and Stage I and Stage II zoeae of Rhinolithooes ",osnes­ senskii. which were reared in the laboratory. can be distinguished from other described zoeae of Lithodidae: P. wosnessenskii have long. blunt spines on posterior margins of abdominal somites 2-5 and sinuate curvature of long, blunt. posterolateral spines on abdominal somite 5; R. l<YJsnessenskii zoeae have a spine in the middorsal. posterior portion of the carapace. Zoeae of Lithodidae can be distinguished from zoeae of Pagurinae by body shape. size of the eyes. spines on the carapace. devel­ opment of uropods, and presence or absence of the anal spine. Stages of Iithodid zoeae can be distin­ guished by eye attachment. number of natatory setae on maxillipeds, and development of pleopods. uropods. and telson. Keys, based on spination of the carapace. rostrum. abdomen. and telson. distin­ guish between zoeae and glaucothoe of each described species of Lithodidae from the northern North Pacific Ocean. Crabs of the family Lithodidae constitute a major METHODS AND RESULTS component of the reptant decapod fauna of the northern North Pacific Ocean. Ofabout 25 species In March 1982, ovigerous females of Placetron ofLithodidae in the northern North Pacific Ocean. wosnessenskii and Rhinolithodes wosnessenskii larvae have been described. at least in part, were collected near Auke Bay, Alaska. in traps for eight species: Dermaturus mandtii Brandt, and by divers using scuba. The females were Cryptolithodes typicus Brandt. Hapalogaster transported to the laboratory and kept in filtered grebnitzkii Schalfeew, H. mertensii Brandt, Lith­ seawater (about 6e Cl until the zoeae hatched odes aequispina Benedict, Paralithodes brel'ipes about 1 wk later. After hatching, about 50 zoeae of (Milne Edwards and Lucas). P. camtschatica each species were transferred to each of four 4 I (Tilesius), and P. platypus Brandt. Most descrip­ glassjars containing about 2,500 ml ofseawater at tions are scattered in foreign scientific journals. 6.1e C. Seawater in the jars was changed about however, and published reviews of the larvae are every other day. Zoeae were fed live plankton limited in species and scope. This report describes strained through a 0.333 mm mesh. About 10 ml of and illustrates Stage I zoeae of Placetron ll'osnes­ live plankton was added to each jar every other senskii Schalfeew and Stages I and II zoeae of day. The live plankton consisted mostly of phyto­ Rhinolithodes wosnessenskii Brandt reared in the plankton and barnacle nauplii. A more detailed laboratory from ovigerous females. I characterize description of the rearing system and type and the morphological differences between zoeae of duration of illumination is given in Haynes and the Lithodidae and subfamily Pagurinae (family Ignell (19831. Paguridae), compare the morphology of lithodid Zoeae of Placetron wosnessenskii hatched at larvae of the northern North Pacific Ocean, and night, and samples ofzoeae were taken the follow­ provide keys for identifying the described larvae ing morning. No prezoeae of P. wosnessenskii to species and stage. were seen. Rhinolithodes wosnessenskii zoeae hatched at night and during the day, and those examined about 10 min after hatching had rem­ nants ofprezoeal exuviae attached to the cephalo­ 'Northwest and Alaska Fisheries Center Auke Bay Labora­ tory, National Marine Fisheries Service. NOAA. P.O. Box thorax and telson. The remnant exuviae are not 210155. Auke Bay. AK 99821. described in this paper. 315 Manuscript accepted October 1983. FISHERY BULLETIN: VOL. 82. NO.2. 1984. FISHERY BULLETIN: VOL. 82. NO.2 Although food was seen in the guts of some their appendages, techniques of illustration, and Placetron wosnessenskii zoeae, none molted to nomenclatureofappendagesfollow Haynes(1979). Stage II. Zoeae ofRhinolithodes wosnessenskii fed Carapace length refers to the straight-line dis­ actively and molted to Stage II about 20 dafter tance from posterior margin of eye orbit to mid­ hatching. Failure to change the seawater on dorsal posterior margin ofcarapace, excluding the schedule prevented rearing the zoeae of R. wos­ middorsal spine. Spines on the telson are num­ nessenskii beyond Stage II. bered from the outermost to innermost (medial) pair. Setation formulae are the number of setae DESCRIPTION OF ZOEAE per segment from the distal segment to the proxi­ mal segment. For clarity in the illustrations, Terminology, methods of measuring zoeae and. setules on plumose setae are usually omitted, but A 1.0 mm ·O.S mm RIGHT E O.S mm O.S mm FIGURE I.-Stage I zoea of Place/ron wosnessenskii: A, whole animal, right side; B. carapace, dorsal; C. antennule, ventral; D. antenna, ventral; E, mandibles (\ef!; and right>. posterior; F. maxillule, ventral; G, maxilla. dorsal; H. first maxilliped, lateral; 316 HAYNES: EARLY ZOEAL STAGES OF L1THODID CRABS spinulose setae are shown. Five zoeae were used to mm (range 5.90-6.70 mm, 10 specimens) (Fig. lA, verify segmentation and setation; 10 zoeae were B). Live zoeae orange throughout except for color­ usedfor measurements. Only those morphological less appendages and posterolateral spines on characteristics useful for readily identifying each carapace and abdomen. Carapace with medially stage are given. curved, long (>114 carapace lengthl, posterolat­ eral spines; markedly pronounced lateral ridges Placetro1J ·u'ostlessemkii-Stage I Zoeae and dorsoventral ridge; and two middorsal angu­ lar prominences: one near center of carapace and Mean carapace length, 2.12 mm (range 2.08­ other at posterior edge. No supraorbital spines. 2.21 mm, 10 specimens); mean total length, 6.22 Eyes sessile. II 0.5 mm 1.0 mm J \\ \ \ 'W 1.0 mm 1.0 mm K 1.0 mm I, second maxilliped, lateral: J. third maxilliped, lateral; K. pereopods 1-5. lateral: L. abdomen and telson, dorsal. 317 FISHERY BULLETIN: VOL. 82. NO.2 Antennule (Fig. 1C).-First antenna (antennule) segmented with four natatory setae. Endopodite with unsegmented tubular basal portion (pedun­ slightly longer than exopodite and distinctly five cle) and distal conical projection. Peduncle with segmented; setation formula 5. 3, I, 2, 3. Protopo­ ventral plumose seta. Conical projection with sev­ dite unsegmented with 10 setae. en aesthetascs and two simple setae terminally. Second maxilliped (Fig. 11l.-Similar to first Antenna <Fig. 1D).-Second antenna (antenna) maxilliped except endopodite slightly shorter with inner flagellum (endopodite) and outer an­ than exopodite. Endopodite four segmented, seta­ tennal scale (exopodite). Flagellum unsegmented. tion formula 5. 2, 2, 2. Protopodite with three shorter than scale, and tipped with two simple lateral setae. setae. Antennal scale without distal joint. has fringe oflO heavily plumose setae along terminal Third maxilliped iFig. lJl.-Exopodite and en­ inner margin and prominent spine on distal outer dopodite undeveloped. Exopodite partially seg­ margin. Ventral surface of protopodite with spin­ mented, with three undeveloped setae terminally. ulose spine atbase offlagellum and naked spine at Endopodite with undeveloped seta terminally. base ofantennal scale. Pereopods (Fig. 1Kl.-Poorly developed, without Mandible (Fig. 1E).-Incisor process of right exopodites. First pereopod bilobed. Fifth pereo­ mandible a tooth; left mandible with biserrate in­ pod arises medially between first and second cisor process. Anterior margins of each mandible pereopods. with premolar denticles. Mandibles without sub­ terminal processes or movable premolar denticle Abdomenand te/son (Fig. lA, Ll.-Abdomen with (lacinia mobilis). five somites and telson (somite 6 fused with telson). Somites 2-5 have six bluntly tipped spines Maxillule (Fig. IF).-First maxilla (maxillule) on posterior margin and two minute dorsal setae. with coxopodite. basipodite, and endopodite. Cox­ Outer pair ofposterior spines on somite 5 are long opodite (proximal lobe) unsegmented with four (about 1.2 times somite width). blunt. and some­ large spinulose spines and three simple spines what sinuate. Thlson with medial invagination terminally. Basipodite (median lobe) with three posteriorly and 6 + 6 spines. Third pair oftelsonic spines terminally (each spine with several spin­ spines longest (about 3/4 maximum telson width/. ulesl and two simple spines subterminally. Three­ All spines jointed with telson. Minute seta be­ segmented endopodite originates from lateral tween spinal pairs 1 and 2 originates from ventral margin ofbasipodite. Endopodite with three setae surface; seta often without setules: spinules on terminally, a long distal seta on second segment, spinal pairs 2-6. No uropods or anal spine. and a short distal seta on first segment. Fine hairs on inner and outer margins of exopodite, outer Rhblo/ithodes u'osnessenskii margin ofendopodite. both lobes ofbasipodite, and distal lobe ofcoxopodite. Stage I Zoeae Maxilla lFig. 1G).-Second maxilla (maxilla) Mean carapace length, 1.29 mm (range 1.21-1.34 with platelike exopodite (scaphognathite). Exo­ mm, 10 specimens); mean total length, 4.45 mm podite with three long plumose setae terminally (range 4.02-4.62 mm. 10 specimens) (Fig. 2A, B). and a subterminal plumose seta on outer margin; Cephalothorax and base of maxillipeds orange; no proximal expansion of exopodite. Endopodite remainder ofmaxillipeds. most ofrostrum, and all unsegmented,
Recommended publications
  • Carcinization in the Anomura–Fact Or Fiction? II. Evidence from Larval
    Contributions to Zoology, 73 (3) 165-205 (2004) SPB Academic Publishing bv, The Hague Carcinization in the Anomura - fact or fiction? II. Evidence from larval, megalopal and early juvenile morphology Patsy+A. McLaughlin Rafael Lemaitre² & Christopher+C. Tudge² ¹, 1 Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, 2 Washington 98221-908IB, U.S.A; Department ofSystematic Biology, NationalMuseum ofNatural History, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A. Keywords: Carcinization, Anomura, Paguroidea, Lithodidae, Paguridae, Lomisidae, Porcellanidae, larval, megalopal and early juvenile morphology, pleonal tergites Abstract Existing hypotheses 169 Developmental data 170 Results 177 In this second carcinization in the Anomura ofa two-part series, From hermit to king, or king to hermit? 179 has been reviewed from early juvenile, megalopal, and larval Analysis by Richter & Scholtz 179 perspectives. Data from megalopal and early juvenile develop- Questions of asymmetry- 180 ment in ten ofthe Lithodidae have genera provided unequivo- Pleopod loss and gain 18! cal evidence that earlier hypotheses regarding evolution ofthe Uropod loss and transformation 182 king crab erroneous. of and pleon were A pattern sundering, - Polarity or what constitutes a primitive character decalcification has been traced from the megalopal stage through state? 182 several early crabs stages in species ofLithodes and Paralomis, Semaphoronts 184 with evidence from in other supplemental species eight genera. Megalopa/early juvenile characters and character Of major significance has been the attention directed to the states 185 inmarginallithodidsplatesareofnotthehomologoussecond pleomere,with thewhichadult whenso-calledseparated“mar- Cladistic analyses 189 Lomisoidea 192 ginal plates” ofthe three megalopal following tergites.
    [Show full text]
  • Environmental Sensitivity Index Guidelines Version 2.0
    NOAA Technical Memorandum NOS ORCA 115 Environmental Sensitivity Index Guidelines Version 2.0 October 1997 Seattle, Washington noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service Office of Ocean Resources Conservation and Assessment National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The Office of Ocean Resources Conservation and Assessment (ORCA) provides decisionmakers comprehensive, scientific information on characteristics of the oceans, coastal areas, and estuaries of the United States of America. The information ranges from strategic, national assessments of coastal and estuarine environmental quality to real-time information for navigation or hazardous materials spill response. Through its National Status and Trends (NS&T) Program, ORCA uses uniform techniques to monitor toxic chemical contamination of bottom-feeding fish, mussels and oysters, and sediments at about 300 locations throughout the United States. A related NS&T Program of directed research examines the relationships between contaminant exposure and indicators of biological responses in fish and shellfish. Through the Hazardous Materials Response and Assessment Division (HAZMAT) Scientific Support Coordination program, ORCA provides critical scientific support for planning and responding to spills of oil or hazardous materials into coastal environments. Technical guidance includes spill trajectory predictions, chemical hazard analyses, and assessments of the sensitivity of marine and estuarine environments to spills. To fulfill the responsibilities of the Secretary of Commerce as a trustee for living marine resources, HAZMAT’s Coastal Resource Coordination program provides technical support to the U.S. Environmental Protection Agency during all phases of the remedial process to protect the environment and restore natural resources at hundreds of waste sites each year.
    [Show full text]
  • Crabs and Their Relatives of British Columbia by Josephine Hart 1984 British Columbia Provincial Museum Handbook 40
    Crabs and their relatives of British Columbia by Josephine Hart 1984 British Columbia Provincial Museum Handbook 40. Victoria, British Columbia. 267 pp. Extracted from the publication (now out of print) SECTION MACRURA Superfamily Thalassinidea Key to Families 1. Shrimp-like. Integument soft and pleura on abdomen large. Live in burrows……………………………………………………………………………..……….……Axiidae 1. Shrimp-like. Integument soft and pleura small. Live in burrows………………………………………………………………………………………………….2 2. Rostrum distinct, ridged and setose. Eyestalks cylindrical and cornea terminal. Chelipeds subchelate and subequal…………………………………………………………………….Upogebiidae 2. Rostrum minute and smooth. Eyestalks flattened with mid-dorsal corneal pigment or cylindrical without dark pigment. Chelipeds chelate and unequal in size and shape.......Callianassidae Family AXIIDAE The thin-shelled shrimp-like animals in this family are all burrowers and are found from shallow subtidal habitats to great depths. Recently Pemberton, Risk and Buckley (1976) determined that one species found off Nova Scotia makes burrows more than 2.5 m into the substrate. Obviously in abyssal regions the collection of these animals under such circumstances in particularly haphazard. Thus the number of specimens obtained is few and often these are damaged. Four species of this family are known to occur in the waters off British Columbia. All have one or two small hollow knobs of apparently unknown function on the mid-dorsal ridge of the carapace. These species have been assigned to the genera Axiopsis, Calastacus and Calocaris. The definitions of these genera were made when few species had been studied and recent discoveries indicate that the criteria used are not satisfactory. New genera will have to be created and the taxonomy of the Family revised.
    [Show full text]
  • Distribution and Abundance of Some Epibenthic Invertebrates of the Northeastern Gulf of Alaska with Notes on the Feeding Biology of Selected Species
    DISTRIBUTION AND ABUNDANCE OF SOME EPIBENTHIC INVERTEBRATES OF THE NORTHEASTERN GULF OF ALASKA WITH NOTES ON THE FEEDING BIOLOGY OF SELECTED SPECIES by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 5 August 1978 357 We thank Max Hoberg, University of Alaska, and the research group from the Northwest Fisheries Center, Seattle, Washington, for assistance aboard the MV North Pucijk. We also thank Lael Ronholt, Northwest Fisheries Center, for data on commercially important invertebrates. Dr. D. P. Abbott, of the Hopkins Marine Station, Stanford University, identified the tunicate material. We appreciate the assistance of the Marine Sorting Center and Max Hoberg of the University of Alaska for taxonomic assistance. We also thank Rosemary Hobson, Data Processing, University of Alaska, for help with coding problems and ultimate resolution of those problems. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environmental Assessment Program. SUMMARY OF OBJEC!CIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT The objectives of this study were to obtain (1) a qualitative and quantitative inventory of dominant epibenthic species within the study area, (2) a description of spatial distribution patterns of selected benthic invertebrate species, and (3) preliminary observations of biological interrelationships between selected segments of the benthic biota. The trawl survey was effective, and excellent spatial coverage was obtained, One hundred and thirty-three stations were successfully occupied, yielding a mean epifaunal invertebrate biomass of 2.6 g/mz.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Ecological Assessment of Sublittoral Plant Communities in the Northern Gulf of Alaska
    ECOLOGICAL ASSESSMENT OF SUBLITTORAL PLANT COMMUNITIES IN THE NORTHERN GULF OF ALASKA by R. J. Rosenthal, D. C. Lees, and T. M. Rosenthal Dames & Moore 510 L Street, Suite 310 Anchorage Alaska 99501 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 78 September 1977 313 TABLE OF CONTENTS Page LIST OF FIGURES . ● . ● . 317 LIST OF TABLES . ✎ . ✎ ● . 319 INTRODUCTION . ● ● . ✎ . ● ● . ✎ ✎ . 323 GENERAL STUDY OBJEC- VES . ✎ ✎ ● ✎ ● ✎ ● ● ● ✎ . ● . ● 325 ✎ METHODS . ● . ✎ ✎ ✎ ● ✎ ✎ ✎ ✎ ✎ ✎ ● . ✎ ● . 326 THE MARINE PLANT COMMUNITY ✎ . ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ . ✎ ✎ . ✎ 328 RESULTS. ✎ . ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ . ✎ ✎ . ✎ 331 Description of the Study Site (Latouche Point) ✎ ✎ . ✎ ✎ . ✎ 331 Biological Setting (Algal Assemblage) . ✎ ✎ . ✎ ● . ✎ 334 Epifauna and Trophic Interaction “. ● . ● ✎ . ✎ ✎ . ✎ 360 Seasonal Patterns . ✎ . ✎ ✎ . ✎ ● ● ✎ 379 Description of the Study Site (Zaikof Bay) ✎ . ✎ ✎ . ✎ ✎ ✎ ✎ 387 Biological Setting (Algal Assemblage) . ✎ . ✎ ✎ . ✎ ✎ ✎ ✎ 389 Epifauna and Trophic Interaction . ✎ . ✎ ✎ . ✎ ✎ ✎ ✎ 406 Seasonal Patterns . ✎ . ✎ ✎ . ✎ ✎ ✎ ✎ 419 Description of the Study Site (Macleod Harbor) ✎ ✎ . ✎ ✎ ✎ ✎ 422 Biological Setting (Algal Assemblage) . ✎ ● . ● ✎ ✎ ✎ ✎ 424 Epifauna and Trophic Interaction . ● ✎ . ✎ ✎ ✎ ✎ ✎ 443 Soft Bottom and Faunal Components . ✎ ✎ , ● ● ✎ ✎ ✎ 451 DISCUSSION . ✎ ✎ . ✎ ✎ ✎ ✎ ✎ 452 LITERATURE CITED . ✎ ✎ . ✎ ✎ ✎ ✎ ✎ 458 315 LIST OF FIGURES figure Page 1. Location of study sites in northeastern Gulf of Alaska . 324 2. Study site and subtidal vegetative canopies at Latouche
    [Show full text]
  • 2005 Bottom Trawl Survey of the Eastern Bering Sea Continental Shelf
    Alaska Fisheries Science Center National Marine Fisheries Service U.S DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 2007-01 2005 Bottom Trawl Survey of the Eastern Bering Sea Continental Shelf January 2007 This report does not constitute a publication and is for information only. All data herein are to be considered provisional. This document should be cited as follows: Lauth, R, and E. Acuna (compilers). 2007. 2005 bottom trawl survey of the eastern Bering Sea continental shelf. AFSC Processed Rep. 2007-1, 164 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar, Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. Notice to Users of this Document This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format. 2005 BOTTOM TRAWL SURVEY OF THE EASTERN BERING SEA CONTINENTAL SHELF Compilers Robert Lauth Erika Acuna Bering Sea Subtask Erika Acuna Lyle Britt Jason Conner Gerald R. Hoff Stan Kotwicki Robert Lauth Gary Mundell Daniel Nichol Duane Stevenson Ken Weinberg Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way N.E. Seattle, WA 98115-6349 January 2007 ABSTRACT The Resource Assessment and Conservation Engineering Division of the Alaska Fisheries Science Center conducts annual bottom trawl surveys to monitor the condition of the demersal fish and crab stocks of the eastern Bering Sea continental shelf.
    [Show full text]
  • Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey
    NOAA Technical Memorandum NMFS-AFSC-335 doi:10.7289/V5/TM-AFSC-335 Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey D. E. Stevenson, K. L. Weinberg, and R. R. Lauth U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center November 2016 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Stevenson, D. E., K. L. Weinberg, and R. R. Lauth. 2016. Estimating confidence in trawl efficiency and catch quantification for the eastern Bering Sea shelf survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-335, 51 p. doi:10.7289/V5/TM-AFSC-335. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-335.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-335 doi:10.7289/V5/TM-AFSC-335 Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey D.
    [Show full text]
  • Ecology of the Hexactinellid Sponge Reefs on the Western Canadian Continental Shelf
    Ecology of the Hexactinellid Sponge Reefs on the Western Canadian Continental Shelf Sarah Emily Cook B.Sc., University of Victoria, 1999 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biology O Sarah Emily Cook, 2005 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisor: Dr. Henry M. Reiswig Co-Supervisor: Dr. Verena J. Tunnicliffe ABSTRACT Hexactinosidan sponges have built seven reef complexes in the Queen Charlotte and Georgia Basins on the Western Canadian continental shelf. These reefs are composed of a matrix of sediment mixed with dead sponge fkagments, which remain remarkably intact after the death of the sponge, with live reef-building sponges growing on the tops of the reef mounds. The reef complexes discontinuously cover over 1000 km2 of the continental shelf and are found at depths between 150 and 230 metres. The objectives of this thesis are to describe quantitatively the megafaunal community of the reefs using video transects and the macrofaunal polychaete community from grab samples, to compare the reef community to the off-reef communities, and to describe how organisms are utilizing the reef substrate. The video used to compare the megafaunal community of live reef, dead reef and off- reef habitat was collected on two reef complexes during cruise PGC990 1. The video was analyzed by taking 'snapshots' at every ten seconds along the transect or at each GPS fix and at each snapshot habitat type was recorded and each megafaunal organism was identified and counted.
    [Show full text]
  • Redalyc.Lithodidae Registrados Frente a San Antonio, Chile Central
    Investigaciones Marinas ISSN: 0716-1069 [email protected] Pontificia Universidad Católica de Valparaíso Chile Brito, José L. Lithodidae registrados frente a San Antonio, Chile central (Crustacea, Anomura) Investigaciones Marinas, vol. 30, núm. 1, 2002, pp. 57-62 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=45630104 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Invest. Mar., Valparaíso, 30(1):Lithodidae 57-62, registrados 2002 frente a San Antonio, Chile central (Crustacea, Anomura) 57 Nota Científica Lithodidae registrados frente a San Antonio, Chile central (Crustacea, Anomura) José Luis Brito M. Museo Municipal de Ciencias Naturales y Arqueología de San Antonio Sanfuentes 2365, Barrancas, San Antonio, Chile E-mail: [email protected] Recibido: 21 septiembre 2001; versión corregida: 14 enero 2002; aceptado: 2 abril 2002 RESUMEN. Se entregan nuevos antecedentes sobre cinco especies de crustáceos lithodidos registrados en el talud continental de Chile central, que son Lithodes panamensis Faxon, 1893, Neolithodes diomedae (Benedict, 1894), Paralomis longipes Faxon, 1893, P. otsuae Wilson, 1990 y Glyptolithodes cristatipes (Faxon, 1893). Palabras claves: crustáceos lithodidos, San Antonio, Chile central. Lithodidae off San Antonio, central Chile (Crustacea, Anomura) ABSTRACT. New data about five species of crustaceans Lithodidae, recorded from Central Chile continental slope are given, Lithodes panamensis Faxon, 1893, Neolithodes diomedeae (Benedict, 1894), Paralomis longipes Faxon, 1893, P. otsuae Wilson, 1990 and Glyptolithodes cristatipes (Faxon, 1893).
    [Show full text]
  • Evaluating a Potential Relict Arctic Invertebrate and Algal Community on the West Side of Cook Inlet
    Evaluating a Potential Relict Arctic Invertebrate and Algal Community on the West Side of Cook Inlet Nora R. Foster Principal Investigator Additional Researchers: Dennis Lees Sandra C. Lindstrom Sue Saupe Final Report OCS Study MMS 2010-005 November 2010 This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) through Cooperative Agreement No. 1435-01-02-CA-85294, Task Order No. 37357, between BOEMRE, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks. This report, OCS Study MMS 2010-005, is available from the Coastal Marine Institute (CMI), School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK 99775-7220. Electronic copies can be downloaded from the MMS website at www.mms.gov/alaska/ref/akpubs.htm. Hard copies are available free of charge, as long as the supply lasts, from the above address. Requests may be placed with Ms. Sharice Walker, CMI, by phone (907) 474-7208, by fax (907) 474-7204, or by email at [email protected]. Once the limited supply is gone, copies will be available from the National Technical Information Service, Springfield, Virginia 22161, or may be inspected at selected Federal Depository Libraries. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. Evaluating a Potential Relict Arctic Invertebrate and Algal Community on the West Side of Cook Inlet Nora R.
    [Show full text]
  • An Overview of the Decapoda with Glossary and References
    January 2011 Christina Ball Royal BC Museum An Overview of the Decapoda With Glossary and References The arthropods (meaning jointed leg) are a phylum that includes, among others, the insects, spiders, horseshoe crabs and crustaceans. A few of the traits that arthropods are characterized by are; their jointed legs, a hard exoskeleton made of chitin and growth by the process of ecdysis (molting). The Crustacea are a group nested within the Arthropoda which includes the shrimp, crabs, krill, barnacles, beach hoppers and many others. The members of this group present a wide range of morphology and life history, but they do have some unifying characteristics. They are the only group of arthropods that have two pairs of antenna. The decapods (meaning ten-legged) are a group within the Crustacea and are the topic of this key. The decapods are primarily characterized by a well developed carapace and ten pereopods (walking legs). The higher-level taxonomic groups within the Decapoda are the Dendrobranchiata, Anomura, Brachyura, Caridea, Astacidea, Axiidea, Gebiidea, Palinura and Stenopodidea. However, two of these groups, the Palinura (spiny lobsters) and the Stenopodidea (coral shrimps), do not occur in British Columbia and are not dealt with in this key. The remaining groups covered by this key include the crabs, hermit crabs, shrimp, prawns, lobsters, crayfish, mud shrimp, ghost shrimp and others. Arthropoda Crustacea Decapoda Dendrobranchiata – Prawns Caridea – Shrimp Astacidea – True lobsters and crayfish Thalassinidea - This group has recently
    [Show full text]