The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China

Total Page:16

File Type:pdf, Size:1020Kb

The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China energies Article The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China Jun Zhao 1,* and Bo Shen 2 1 School of Humanities and Social Sciences, North China Electric Power University, Beijing 102206, China 2 Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA; [email protected] * Correspondence: [email protected] Received: 2 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: Coal-fired power generation will dominate the electricity supply in China in the foreseeable future. Coal fired power units can play a crucial role in integrating intermittent wind energy and improving the overall energy efficiency of the power system. The integration benefits of wind power, along with the gains of high load rates of coal fired units, should be fully taken into account. An optimal model combining wind power and coal fired units is built to analyze the operational flexibility of coal fired units and the integration of wind power. Taking the coal fired units in North China Power Grid as an example, the dispatch costs and benefits are examined under the energy efficiency dispatch mode, in comparison with those under the fair dispatch rules and the installed capacity. The results show that increasing the flexibility of the power system under the energy efficiency dispatch mode may be the best choice for the power system with the high share of coal fired units to integrate more wind power, and that the units delivering flexibility services are financially influenced. The results also indicate that a certain amount of wind power curtailment may be reasonable, and that rational penalty rate and fees for the curtailment of wind power may help to optimize the operation of the power system and integrate more wind power. Based on these results, policy and strategy recommendations are proposed to promote the flexibility of coal fired units and change their operation mode and their dispatch mode in the power system. Keywords: coal fired power generation; operational flexibility; cycling; peak-regulation optimization; renewable energy; policy recommendations 1. Introduction In response to climate change, economic, and environmental challenges, the Paris Agreement is an important milestone against the global warming. Many countries have begun to deploy renewable energy (RE, mainly wind and solar energy) and low carbon energy technologies towards a more sustainable power supply, and high shares of RE have become a focus around the world [1,2]. Because of the coal-based energy endowment, China’s power industry is facing huge challenges [3]. China targets to increase the proportion of non-fossil energy to 15% in 2020, and 20% in 2030, and the CO2 intensity of GDP will be lowered by 60–65% by 2030, in comparison with that in 2005 [4]. China is not alone in the energy system transition as other countries (e.g., Germany, USA, Australia, etc.) with high proportion of coal power generation pursue their own energy targets, and the paths these countries have taken may vary because of their energy mix, RE resources, and political and social setting [5]. These countries are still relying on coal for the bulk of their power generation, and their shares of electricity generation by fuel sources in 2016 [6] are shown in Figure1. Hydropower and Gas-fired power stations are usually regarded as peak regulation sources or flexibility sources Energies 2019, 12, 2376; doi:10.3390/en12122376 www.mdpi.com/journal/energies Energies 2019, 12, x FOR PEER REVIEW 2 of 33 Energies 2019, 12, 2376 2 of 22 Hydropower and Gas-fired power stations are usually regarded as peak regulation sources or toflexibility integrate sources renewable to integrate energy, butrenewable hydroelectric energy, generation but hydroelectric is affected generation by the environment, is affected seasons, by the etc.environment, [7], and the seasons, capacity etc. share[7], an ofd the pumped-hydro capacity share energy of pumped-hyd storage stationsro energy is lessstorage than stations 9 percent is less of overallthan 9 percent hydroelectric of overall generation hydroelectric capacity generation in China ca [8].pacity Hydroelectric in China [8]. generation Hydroelectric is also generation clean energy is andalso isclean always energy granted and priority is always dispatch. granted All priority these factors dispatch. affect All the flexibilitythese factor servicess affect provided the flexibility by the hydroelectricservices provided power by units. the hydroelectric China lacks flexibility power un sourcesits. China for renewable lacks flexibility energy sources integration, for renewable which are availableenergy integration, in other countries which are with ava highilable share in other ofrenewable countries with energy. high share of renewable energy. Figure 1. Shares of electricity generation by sources. Figure 1. Shares of electricity generation by sources. Although the shares of RE are also increasing steadily in China, coal-fired power generation still dominatesAlthough the electricitythe shares supply of RE and are willalso be increasing expected tosteadily be so forin theChina, foreseeable coal-fired future. power By generation the end of 2017,still dominates the capacity the of electricity coal fired supply power unitsand will was be about expe 981.3cted Gigawattsto be so for (GW), the fo accountingreseeable future. for more By than the 55end percent of 2017, of the the capacity total generation of coal fired capacity, power and units it generated was about 4149.8 981.3 Terawatt-hours Gigawatts (GW), (TWh), accounting accounting for formore almost than 6555 percentpercent ofof thethe totaltotal powergeneration output capa [9].city, With and the it cumulativegenerated 4149.8 wind powerTerawatt-hours capacity of(TWh), 163.3 GWaccounting and the for solar almost photovoltaic 65 percent (PV) of capacity the total of powe 129.4r GWoutput in 2017, [9]. With they generated,the cumulative respectively, wind power 303.4 TWhcapacity and of 116.6 163.3 TWh, GW accounting and the solar for 4.73%photovoltaic and 1.82% (PV) of totalcapacity electricity of 129.4 generation GW in 2017, [9]. Accordingthey generated, to the requirementsrespectively, referred303.4 TWh in Opinions and 116.6 on Further TWh, Deepeningaccounting the Reformfor 4.73% of Power and System1.82% [10of], total China’s electricity electric powergeneration system [9]. in According the future shouldto the requirements be a combination referred of conventional in Opinionspower on Further generation, Deepening centralized the Reform and of distributedPower System renewable [10], China's energy, electric and would power run insystem the mode in the where future types should of energy be area complementary,combination of andconventional are transmitted power over generation, a long distance centralized by power and di gridstributed along withrenewable the local energy, consumption and would by microgrid,run in the ensuingmode where that renewabletypes of energy energy are could complementary, be exploited and to theare transmitted outmost extend over anda long the distance energy ebyffi ciencypower significantlygrid along with be improved. the local consumption by microgrid, ensuing that renewable energy could be exploitedThe expansion to the outmost of RE extend will increase and the the ener operationgy efficiency complexity significantly of the power be improved. system and has an effect on theThe dispatch expansion mode of ofRE the will power increase system the andoperatio then operation complexity way of of the the power conventional system and generation has an unitseffect [11on]. the Given dispatch the variable, mode unpredictableof the power characteristics system and the of RE, operation more RE way integration of the increasesconventional the requirementsgeneration units of the[11]. flexibility Given the sources variable, to balance unpredictable their variances, characteristics and these of RE, flexibility more RE requirements integration haveincreases to be the imposed requirements on the overall of the powerflexibility system. sources to balance their variances, and these flexibility requirementsThe flexibility have canto be be imposed defined on as the overall ability ofpower a power system. system to rapidly response to the power changesThe inflexibility demand can and be supply, defined and as itsthe evolution ability of isa power driven system by the increaseto rapidly of response RE integration to the power in the powerchanges system in demand [12]. The and potential supply, and flexibility its evolution sources is usually driven include by the electricityincrease of storage RE integration units, demand in the sidepower management, system [12]. cross-borderThe potential energyflexibility trading, sources hydro usually power include units, electricity and the storage flexible units, operation demand of thermalside management, power units, cross-border etc. [7,13]. The energy capacity trading, shares hy ofdro units power by fuel units, sources and in the the flexible regional operation power grids of inthermal 2017 [ 8power,9] are units, shown etc. in Figure[7,13]. 2Th. Thee capacity flexibility shares sources of units include by thefuel gas sources fired units,in the pumped-hydroregional power energygrids in storage 2017 stations[8,9] are and shown hydro in power Figure stations 2. The with flexibility reservoirs. sources In the northerninclude regionsthe gas of fired China units, with aboutpumped-hydro nearly 69% energy of RE capacities,storage stations there isand a shortage hydro
Recommended publications
  • Trends in Electricity Prices During the Transition Away from Coal by William B
    May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS).
    [Show full text]
  • Overview of Electric Power Supply Systems
    Overview of Electric Power Supply Systems Why are electric power systems studied? What are the characteristics of power systems that justify spending a whole course on them? There are many answers to each of these questions; this course will touch on a few of them. You will recall that ECE370 gave an overview of the circuit theory associated with electrical power and it is worth recalling that most power systems are three-phase and that when balanced systems are being analyzed these are usually drawn in terms of a one-line diagram, i.e. a single line is used to denote the three phases, which may or may not also have a neutral. The US Electric Power System The main aspects that describe power systems are: size, complexity and economic impact. Utility power systems cover vast territory, are subject to the whims of nature, are interconnected to each other, the quality of their commodity affects the ability of industry to produce effectively, and the price of their commodity has a significant impact on the economy of their service area. Controlling power systems requires that electricity be supplied at the correct frequency, satisfactory voltage, with its phases balanced, have low harmonic content, and with all protection systems coordinated. The foregoing has to be achieved without overloading equipment and at the lowest cost to the consumer (after the utility makes a reasonable profit.) All this is complicated by the fact that demand for electricity changes throughout the day (and week, and season) and that electricity can not be readily stored in a practical manner.
    [Show full text]
  • Energy Storage for Power Systems Applications: a Regional Assessment for the Northwest Power Pool (NWPP)
    PNNL-19300 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP) MCW Kintner-Meyer MAElizondo PJ Balducci VV Viswanathan C Jin X Guo TB Nguyen FK Tuffner April 2010 PNNL-19300 Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP) M Kintner-Meyer M Elizondo P Balducci V Viswanathan C Jin X Guo T Nguyen F Tuffner April 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Funded by the Energy Storage Systems Program of the U.S. Department of Energy Dr. Imre Gyuk, Program Manager Pacific Northwest National Laboratory Richland, Washington 99352 Abstract This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. Specifically, it addresses the following questions: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, Lithium Ion (Li-ion) batteries, pumped-hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated.
    [Show full text]
  • Electric Power Generation and Distribution
    ATP 3-34.45 MCRP 3-40D.17 ELECTRIC POWER GENERATION AND DISTRIBUTION JULY 2018 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. This publication supersedes TM 3-34.45/MCRP 3-40D.17, 13 August 2013. Headquarters, Department of the Army Foreword This publication has been prepared under our direction for use by our respective commands and other commands as appropriate. ROBERT F. WHITTLE, JR. ROBERT S. WALSH Brigadier General, USA Lieutenant General, USMC Commandant Deputy Commandant for U.S. Army Engineer School Combat Development and Integration This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil) and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 3-34.45 MCRP 3-40D.17 Army Techniques Publication Headquarters No. 3-34.45 Department of the Army Washington, DC, 6 July 2018 Marine Corps Reference Publication Headquarters No. 3-40D.17 Marine Corps Combat Development Command Department of the Navy Headquarters, United States Marine Corps Washington, DC, 6 July 2018 Electric Power Generation and Distribution Contents Page PREFACE.................................................................................................................... iv INTRODUCTION .......................................................................................................... v Chapter 1 ELECTRICAL POWER ............................................................................................. 1-1 Electrical Power Support to Military Operations
    [Show full text]
  • Cogeneration in Louisiana 2005
    COGENERATION IN LOUISIANA AN UPDATED (2005) TABULATION OF INDEPENDENT POWER PRODUCER (IPP) AND COGENERATION FACILITIES Prepared by David McGee/Patty Nussbaum THE TECHNOLOGY ASSESSMENT DIVISION T. Michael French, P. E. Director William J. Delmar, Jr. P. E. Assistant Director LOUISIANA DEPARTMENT OF NATURAL RESOURCES SCOTT A. ANGELLE SECRETARY Baton Rouge June, 2006 COGENERATION IN LOUISIANA AN UPDATED (2005) TABULATION OF INDEPENDENT POWER PRODUCER (IPP) AND COGENERATION FACILITIES Prepared by David McGee/Patty Nussbaum THE TECHNOLOGY ASSESSMENT DIVISION T. Michael French, P. E. Director William J. Delmar, Jr. P. E. Assistant Director LOUISIANA DEPARTMENT OF NATURAL RESOURCES SCOTT A. ANGELLE SECRETARY Baton Rouge June, 2006 This issue of Cogeneration in Louisiana, (2005) is funded 100% with Petroleum Violation Escrow Funds as part of the State Energy Conservation Program as approved by the U. S. Department of Energy and the Department of Natural Resources. This report is only available in an electronic format on the World Wide Web. Most materials produced by the Technology Assessment Division of the Louisiana Department of Natural Resources, are intended for the general use of the citizens of Louisiana, and are therefore entered into the public domain. You are free to reproduce these items with reference to the Division as the source. Some items included in our publication are copyrighted either by their originators or by contractors for the Department. To use these items it is essential you contact the copyright holders for permission before you reuse these materials TABLE OF CONTENTS COGENERATION IN LOUISIANA UPDATE (2005) Page no. LIST OF TABLES ii LIST OF FIGURES iii LIST OF EXHIBITS iv ABBREVIATIONS AND CODES v-vii BACKGROUND 1 IMPACT OF 2005 HURRICANE SEASON IN LOUISIANA 3 COGENERATION IN LOUISIANA 5 THE ENERGY POLICY ACT OF 2005 7 CONCLUSION 9 ABBREVIATIONS AND ACRONYSMS 10 GLOSSARY 11-13 SELECTED BIBLIOGRAPHY 14 EXHIBITS LIST OF TABLES PAGE Table 1 Potential Benefits of Distributed Generation 7 Table 2.
    [Show full text]
  • History of Electric Energy Systems and New Evolution - Yanoush B
    ELECTRICAL ENERGY SYSTEMS - History of Electric Energy Systems and New Evolution - Yanoush B. Danilevich, B. E. Kirichenko And N. N. Tikhodeev HISTORY OF ELECTRIC ENERGY SYSTEMS AND NEW EVOLUTION Yanoush B. Danilevich Division for Basic Researches in Electrical Power Engineering, Department of Physical and Technical Problems of Energetics, Russian Academy of Sciences, Russia B. E. Kirichenko Division for Basic Researches in Electric Power Engineering, Russian Academy of Sciences (RAS), St.-Petersburg, Russia N. N. Tikhodeev High Voltage Technology Department, HVDC Power Transmission Research Institute, St. Petersburg, Russia Keywords: Armature, electric generator, electric machine, electric power station, electrical energy end user, electrical energy production, electromagnetic processes, hydrogenerator, induction motor, inductor, interconnected power system, power station unit, power system, transmission lines, turbogenerator Contents 1. Introduction: Electrical Energy 2. History and Recent Progress of Electric Motors and Generators 3. History and Recent Progress of Electric Power Generation 3.1. Role of Electric Power Generation in the Present Fuel and Energy Complex 3.2. Electric Power Stations Today 3.3. Electric Generators for Thermal, Hydraulic and Nuclear Power Stations 4. History and Recent Progress of Electric Power Systems and Their Utilization 4.1. Early History of Electric Station Pooling 4.2. Structure of a State-of-the-art Electric Power System 4.3. Reasons for Connection of Electric Stations into Power Systems 4.4. Interconnection of Power Systems for Synchronous Operation 4.5. Asynchronous Operation of Interconnected Power Systems 4.6. International Interconnected Power Systems 5. Distributed Generation - the New Tendencies UNESCO – EOLSS Summary During the XXSAMPLE century modern power system sCHAPTERS with all necessary equipment have been created and the problems of power transmission were solved.
    [Show full text]
  • Electric Power Grid Modernization Trends, Challenges, and Opportunities
    Electric Power Grid Modernization Trends, Challenges, and Opportunities Michael I. Henderson, Damir Novosel, and Mariesa L. Crow November 2017. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 United States License. Background The traditional electric power grid connected large central generating stations through a high- voltage (HV) transmission system to a distribution system that directly fed customer demand. Generating stations consisted primarily of steam stations that used fossil fuels and hydro turbines that turned high inertia turbines to produce electricity. The transmission system grew from local and regional grids into a large interconnected network that was managed by coordinated operating and planning procedures. Peak demand and energy consumption grew at predictable rates, and technology evolved in a relatively well-defined operational and regulatory environment. Ove the last hundred years, there have been considerable technological advances for the bulk power grid. The power grid has been continually updated with new technologies including increased efficient and environmentally friendly generating sources higher voltage equipment power electronics in the form of HV direct current (HVdc) and flexible alternating current transmission systems (FACTS) advancements in computerized monitoring, protection, control, and grid management techniques for planning, real-time operations, and maintenance methods of demand response and energy-efficient load management. The rate of change in the electric power industry continues to accelerate annually. Drivers for Change Public policies, economics, and technological innovations are driving the rapid rate of change in the electric power system. The power system advances toward the goal of supplying reliable electricity from increasingly clean and inexpensive resources. The electrical power system has transitioned to the new two-way power flow system with a fast rate and continues to move forward (Figure 1).
    [Show full text]
  • Public Citizen, Inc. List of Witnesses and Documents
    UNITED STATES OF AMERICA 1 Before the 1 SECURITIES AND EXCHANGE COMMISSIO DEC 8 3 2004 ) In the Matter of ) I 1 I AMERICAN ELECTRIC POWER COMPANY, INC. ) Administrative Proceeding ) File No. 3-1 1616 ) PUBLIC CITIZEN, INC. LIST OF WITNESSES AND DOCUMENTS Pursuant to the Scheduling Order of the Presiding Administrative Law Judge, Public Citizen, Inc. ("Public Citizen") hereby submits its list of witnesses and documents to be submitted in the above-captioned proceeding. Witnesses 1. Public Citizen plans to submit testimony of Mi-. Jack A. Casazza, President of the American Education Institute, as an electric utility system expert witness His curriculum vita is attached. Mr. Casazza will testify regarding current transmission programs of the Federal Energy Regulatory Commission ("FERC"), including RTOs, and the extent to which they have, or have not, changed the operations of electric utility systems in ways relevant to the provisions of the Public Utility Holding Company Act of 1935 at issue in this proceeding. 2. Public Citizen plans to submit testimony by Ms. Lynn N. Hargis, former FERC Assistant General Counsel for Electric Rates and Corporate Regulation and thirty-year practitioner under the Federal Power Act, on the statutory differences between the Federal Power Act and the Public Utility Holding Company Act of 1935, to refute the proposed testimony of applicant, American Electric Power Company, that this Commission may rely on actions and deregulatory programs of the FERC in enforcing the provisions of the Public Utility Holding Company Act.. 3. Public Citizen reserves the right to call Mr. David B. Smith, Division of Investment Management-as an adverse witness, if necessary.
    [Show full text]
  • Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends
    energies Review Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends Diana Enescu 1,2,* , Gianfranco Chicco 3 , Radu Porumb 2,4 and George Seritan 2,5 1 Electronics Telecommunications and Energy Department, University Valahia of Targoviste, 130004 Targoviste, Romania 2 Wing Computer Group srl, 077042 Bucharest, Romania; [email protected] (R.P.); [email protected] (G.S.) 3 Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10129 Torino, Italy; [email protected] 4 Power Engineering Systems Department, University Politehnica of Bucharest, 060042 Bucharest, Romania 5 Department of Measurements, Electrical Devices and Static Converters, University Politehnica of Bucharest, 060042 Bucharest, Romania * Correspondence: [email protected] Received: 31 December 2019; Accepted: 8 January 2020; Published: 10 January 2020 Abstract: Thermal energy systems (TES) contribute to the on-going process that leads to higher integration among different energy systems, with the aim of reaching a cleaner, more flexible and sustainable use of the energy resources. This paper reviews the current literature that refers to the development and exploitation of TES-based solutions in systems connected to the electrical grid. These solutions facilitate the energy system integration to get additional flexibility for energy management, enable better use of variable renewable energy sources (RES), and contribute to the modernisation of the energy system infrastructures, the enhancement of the grid operation practices that include energy shifting, and the provision of cost-effective grid services. This paper offers a complementary view with respect to other reviews that deal with energy storage technologies, materials for TES applications, TES for buildings, and contributions of electrical energy storage for grid applications.
    [Show full text]
  • Generation of Electric Power
    SECTION 8 GENERATION OF ELECTRIC POWER Hesham E. Shaalan Assistant Professor Georgia Southern University Major Parameter Decisions . 8.1 Optimum Electric-Power Generating Unit . 8.7 Annual Capacity Factor . 8.11 Annual Fixed-Charge Rate . 8.12 Fuel Costs . 8.13 Average Net Heat Rates . 8.13 Construction of Screening Curve . 8.14 Noncoincident and Coincident Maximum Predicted Annual Loads . 8.18 Required Planning Reserve Margin . 8.19 Ratings of Commercially Available Systems . 8.21 Hydropower Generating Stations . 8.23 Largest Units and Plant Ratings Used in Generating-System Expansion Plans . 8.24 Alternative Generating-System Expansion Plans . 8.24 Generator Ratings for Installed Units . 8.29 Optimum Plant Design . 8.29 Annual Operation and Maintenance Costs vs. Installed Capital Costs . 8.30 Thermal Efficiency vs. Installed Capital and/or Annual Operation and Maintenance Costs . 8.31 Replacement Fuel Cost . 8.35 Capability Penalty . 8.37 Bibliography . 8.38 MAJOR PARAMETER DECISIONS The major parameter decisions that must be made for any new electric power-generating plant or unit include the choices of energy source (fuel), type of generation system, unit and plant rating, and plant site. These decisions must be based upon a number of techni- cal, economic, and environmental factors that are to a large extent interrelated (see Table 8.1). Evaluate the parameters for a new power-generating plant or unit. 8.1 8.2 HANDBOOK OF ELECTRIC POWER CALCULATIONS Calculation Procedure 1. Consider the Energy Source and Generating System As indicated in Table 8.2, a single energy source or fuel (e.g., oil) is often capable of being used in a number of different types of generating systems.
    [Show full text]
  • IEA Wind Task 24 Integration of Wind and Hydropower Systems Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration
    IEA Wind Task 24 Final Report, Vol. 1 1 IEA Wind Task 24 Integration of Wind and Hydropower Systems Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration Authors: Tom Acker, Northern Arizona University on behalf of the National Renewable Energy Laboratory U.S. Department of Energy Wind and Hydropower Program Prepared for the International Energy Agency Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy 1617 Cole Boulevard Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Golden, Colorado 80401 303-275-3000 • www.nrel.gov Technical Report NREL/TP-5000-50181 December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Use of Electric Transmission and Distribution Equipment Technical
    TECHNICAL SUPPORT DOCUMENT FOR PROCESS EMISSIONS OF SULFUR HEXAFLUORIDE (SF6) AND PFCs FROM ELETRIC POWER SYSTEMS: PROPOSED RULE FOR MANDATORY REPORTING OF GREENHOUSE GASES Revised November 2010 Office of Air and Radiation U.S. Environmental Protection Agency Contents 1. Source Description...............................................................................................................................................1 a. Total U.S. Emissions.......................................................................................................................................1 b. Emissions to be Reported................................................................................................................................1 c. Facility Definition Characterization................................................................................................................1 2. Options for Reporting Threshold .........................................................................................................................4 3. Options for Monitoring Methods .........................................................................................................................6 4. Procedures for Estimating Missing Data..............................................................................................................7 5. QA/QC Requirements ..........................................................................................................................................7 6. Reporting Procedures...........................................................................................................................................9
    [Show full text]