Cogeneration in Louisiana 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trends in Electricity Prices During the Transition Away from Coal by William B
May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS). -
Overview of Electric Power Supply Systems
Overview of Electric Power Supply Systems Why are electric power systems studied? What are the characteristics of power systems that justify spending a whole course on them? There are many answers to each of these questions; this course will touch on a few of them. You will recall that ECE370 gave an overview of the circuit theory associated with electrical power and it is worth recalling that most power systems are three-phase and that when balanced systems are being analyzed these are usually drawn in terms of a one-line diagram, i.e. a single line is used to denote the three phases, which may or may not also have a neutral. The US Electric Power System The main aspects that describe power systems are: size, complexity and economic impact. Utility power systems cover vast territory, are subject to the whims of nature, are interconnected to each other, the quality of their commodity affects the ability of industry to produce effectively, and the price of their commodity has a significant impact on the economy of their service area. Controlling power systems requires that electricity be supplied at the correct frequency, satisfactory voltage, with its phases balanced, have low harmonic content, and with all protection systems coordinated. The foregoing has to be achieved without overloading equipment and at the lowest cost to the consumer (after the utility makes a reasonable profit.) All this is complicated by the fact that demand for electricity changes throughout the day (and week, and season) and that electricity can not be readily stored in a practical manner. -
Authors, Contributors, Reviewers
432 Quadrennial Technology Review Quadrennial Technology Review 2015 Appendices List of Technology Assessments List of Supplemental Information Office of the Under Secretary for Science and Energy Executive Steering Committee and Co-Champions Authors, Contributors, and Reviewers Glossary Acronyms List of Figures List of Tables 433 434 Quadrennial Technology Review Technology Assessments Chapter 3 Chapter 6 Cyber and Physical Security Additive Manufacturing Designs, Architectures, and Concepts Advanced Materials Manufacturing Electric Energy Storage Advanced Sensors, Controls, Platforms Flexible and Distributed Energy Resources and Modeling for Manufacturing Measurements, Communications, and Control Combined Heat and Power Systems Transmission and Distribution Components Composite Materials Critical Materials Chapter 4 Direct Thermal Energy Conversion Materials, Devices, and Systems Advanced Plant Technologies Materials for Harsh Service Conditions Carbon Dioxide Capture and Storage Value-Added Options Process Heating Biopower Process Intensification Carbon Dioxide Capture Technologies Roll-to-Roll Processing Carbon Dioxide Storage Technologies Sustainable Manufacturing - Flow of Materials through Industry Carbon Dioxide Capture for Natural Gas and Industrial Applications Waste Heat Recovery Systems Crosscutting Technologies in Carbon Dioxide Wide Bandgap Semiconductors for Capture and Storage Power Electronics Fast-spectrum Reactors Geothermal Power Chapter 7 High Temperature Reactors Bioenergy Conversion Hybrid Nuclear-Renewable Energy -
Electricity Delivery Superseding Nhpuc No
NHPUC NO. 10 – ELECTRICITY DELIVERY SUPERSEDING NHPUC NO. 9 – ELECTRICITY DELIVERY NHPUC NO. 10 – ELECTRICITY DELIVERY PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE DBA EVERSOURCE ENERGY TARIFF FOR ELECTRIC DELIVERY SERVICE in Various towns and cities in New Hampshire, served in whole or in part. (For detailed description, see Service Area) Issued: December 23, 2020 Issued by: /s/ Joseph A. Purington Joseph A. Purington Effective: January 1, 2021 Title: President, NH Electric Operations NHPUC NO. 10 - ELECTRICITY DELIVERY Original Page 1 PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE DBA EVERSOURCE ENERGY TABLE OF CONTENTS Page TERMS AND CONDITIONS FOR DELIVERY SERVICE 1. Service Area .............................................................................................................. 5 2. Definitions.................................................................................................................. 7 3. General ....................................................................................................................... 9 4. Availability ................................................................................................................ 10 5. Application, Contract and Commencement of Service.............................................. 10 6. Selection of Supplier or Self-Supply Service by a Customer .................................... 11 7. Termination of Supplier Service or Self-Supply Service .......................................... 12 8. Unauthorized Switching of Suppliers ....................................................................... -
DOE's Office of Electricity Delivery and Energy Reliability
DOE’s Office of Electricity Delivery and Energy Reliability (OE): A Primer, with Appropriations for FY2017 Updated December 13, 2016 Congressional Research Service https://crsreports.congress.gov R44357 DOE’s Office of Electricity Delivery and Energy Reliability (OE) Summary The nation’s energy infrastructure is undergoing a major transformation. For example, new technologies and changes in electricity flows place increasing demands on the electric power grid. These changes include increased use of distributed (mostly renewable energy) resources, Internet- enabled demand response technologies, growing loads from electric vehicle use, continued expansion of natural gas use, and integration of energy storage devices. The Department of Energy’s (DOE’s) Office of Electricity Delivery and Energy Reliability (OE) has the lead role in addressing those infrastructure issues. OE is also responsible for the physical security and cybersecurity of all (not just electric power) energy infrastructure. Further, OE has a key role in developing energy storage, supporting the grid integration of renewable energy, and intergovernmental planning for grid emergencies. As an illustration of the breadth of its activities, OE reports that, during FY2014, its programs responded to 24 energy-related emergency events, including physical security events, wildfires, severe storms, fuel shortages, and national security events. OE manages five types of research and development (R&D) programs, usually conducted in cost- shared partnership with private sector firms. OE also operates two types of deployment programs, conducted mainly with state and tribal governments. Each OE program office has its own set of goals and objectives. OE plays the central role in two of DOE’s broad cross-cutting initiatives: grid modernization and cybersecurity. -
Energy Storage for Power Systems Applications: a Regional Assessment for the Northwest Power Pool (NWPP)
PNNL-19300 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP) MCW Kintner-Meyer MAElizondo PJ Balducci VV Viswanathan C Jin X Guo TB Nguyen FK Tuffner April 2010 PNNL-19300 Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP) M Kintner-Meyer M Elizondo P Balducci V Viswanathan C Jin X Guo T Nguyen F Tuffner April 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Funded by the Energy Storage Systems Program of the U.S. Department of Energy Dr. Imre Gyuk, Program Manager Pacific Northwest National Laboratory Richland, Washington 99352 Abstract This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. Specifically, it addresses the following questions: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, Lithium Ion (Li-ion) batteries, pumped-hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. -
Comparing Electricity Generation Technologies Based on Multiple Criteria Scores from an Expert Group
Comparing electricity generation technologies based on multiple criteria scores from an expert group Euan Mearns*1 and Didier Sornette1.2 ETH Zurich 1Department of Management, Technology and Economics Scheuchzerstrasse 7 , CH-8092 Zurich, Switzerland 2Institute of Risk Analysis, Prediction and Management (Risks-X), Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China [email protected] [email protected] * Corresponding author. Highlights: • 13 common electricity generation technologies were evaluated using multi criteria decision analysis (MCDA) where values were assigned by the expert judgment of a professional group. • A hierarchical scheme of 12 criteria organized into 5 categories of health, environment, grid, economics and resources was used to provide a holistic measure of energy quality. • The three leading technologies to emerge are nuclear power, combined cycle gas and hydroelectric power. The three trailing technologies are solar PV, biomass and tidal lagoon. • Our findings are consistent with the baseline cost approach of the 2004-2009 EU funded NEEDS project but contrast sharply with the MCDA survey of the same project that found CaTe solar PV and solar thermal power to be the most promising technologies for central Europe. Abstract: Multi criteria decision analysis (MCDA) has been used to provide a holistic evaluation of the quality of 13 electricity generation technologies in use today. A group of 19 energy experts cast scores on a scale of 1 to 10 using 12 quality criteria – based around the pillars of sustainability – society, environment and economy - with the aim of quantifying each criterion for each technology. The total mean score is employed as a holistic measure of system quality. -
Electric Power Generation and Distribution
ATP 3-34.45 MCRP 3-40D.17 ELECTRIC POWER GENERATION AND DISTRIBUTION JULY 2018 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. This publication supersedes TM 3-34.45/MCRP 3-40D.17, 13 August 2013. Headquarters, Department of the Army Foreword This publication has been prepared under our direction for use by our respective commands and other commands as appropriate. ROBERT F. WHITTLE, JR. ROBERT S. WALSH Brigadier General, USA Lieutenant General, USMC Commandant Deputy Commandant for U.S. Army Engineer School Combat Development and Integration This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil) and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 3-34.45 MCRP 3-40D.17 Army Techniques Publication Headquarters No. 3-34.45 Department of the Army Washington, DC, 6 July 2018 Marine Corps Reference Publication Headquarters No. 3-40D.17 Marine Corps Combat Development Command Department of the Navy Headquarters, United States Marine Corps Washington, DC, 6 July 2018 Electric Power Generation and Distribution Contents Page PREFACE.................................................................................................................... iv INTRODUCTION .......................................................................................................... v Chapter 1 ELECTRICAL POWER ............................................................................................. 1-1 Electrical Power Support to Military Operations -
History of Electric Energy Systems and New Evolution - Yanoush B
ELECTRICAL ENERGY SYSTEMS - History of Electric Energy Systems and New Evolution - Yanoush B. Danilevich, B. E. Kirichenko And N. N. Tikhodeev HISTORY OF ELECTRIC ENERGY SYSTEMS AND NEW EVOLUTION Yanoush B. Danilevich Division for Basic Researches in Electrical Power Engineering, Department of Physical and Technical Problems of Energetics, Russian Academy of Sciences, Russia B. E. Kirichenko Division for Basic Researches in Electric Power Engineering, Russian Academy of Sciences (RAS), St.-Petersburg, Russia N. N. Tikhodeev High Voltage Technology Department, HVDC Power Transmission Research Institute, St. Petersburg, Russia Keywords: Armature, electric generator, electric machine, electric power station, electrical energy end user, electrical energy production, electromagnetic processes, hydrogenerator, induction motor, inductor, interconnected power system, power station unit, power system, transmission lines, turbogenerator Contents 1. Introduction: Electrical Energy 2. History and Recent Progress of Electric Motors and Generators 3. History and Recent Progress of Electric Power Generation 3.1. Role of Electric Power Generation in the Present Fuel and Energy Complex 3.2. Electric Power Stations Today 3.3. Electric Generators for Thermal, Hydraulic and Nuclear Power Stations 4. History and Recent Progress of Electric Power Systems and Their Utilization 4.1. Early History of Electric Station Pooling 4.2. Structure of a State-of-the-art Electric Power System 4.3. Reasons for Connection of Electric Stations into Power Systems 4.4. Interconnection of Power Systems for Synchronous Operation 4.5. Asynchronous Operation of Interconnected Power Systems 4.6. International Interconnected Power Systems 5. Distributed Generation - the New Tendencies UNESCO – EOLSS Summary During the XXSAMPLE century modern power system sCHAPTERS with all necessary equipment have been created and the problems of power transmission were solved. -
Electric Power Grid Modernization Trends, Challenges, and Opportunities
Electric Power Grid Modernization Trends, Challenges, and Opportunities Michael I. Henderson, Damir Novosel, and Mariesa L. Crow November 2017. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 United States License. Background The traditional electric power grid connected large central generating stations through a high- voltage (HV) transmission system to a distribution system that directly fed customer demand. Generating stations consisted primarily of steam stations that used fossil fuels and hydro turbines that turned high inertia turbines to produce electricity. The transmission system grew from local and regional grids into a large interconnected network that was managed by coordinated operating and planning procedures. Peak demand and energy consumption grew at predictable rates, and technology evolved in a relatively well-defined operational and regulatory environment. Ove the last hundred years, there have been considerable technological advances for the bulk power grid. The power grid has been continually updated with new technologies including increased efficient and environmentally friendly generating sources higher voltage equipment power electronics in the form of HV direct current (HVdc) and flexible alternating current transmission systems (FACTS) advancements in computerized monitoring, protection, control, and grid management techniques for planning, real-time operations, and maintenance methods of demand response and energy-efficient load management. The rate of change in the electric power industry continues to accelerate annually. Drivers for Change Public policies, economics, and technological innovations are driving the rapid rate of change in the electric power system. The power system advances toward the goal of supplying reliable electricity from increasingly clean and inexpensive resources. The electrical power system has transitioned to the new two-way power flow system with a fast rate and continues to move forward (Figure 1). -
Wind Energy Glossary
Wind Energy Glossary Accelerated Depreciation – With accelerated meet minimum demands based on reasonable depreciation, wind energy projects can reduce the expectations of customer requirements. Base load assessed value of their equipment on their financial values typically vary from hour to hour in most balance sheets over a shorter period of time. commercial and industrial areas. Also known as bas load demand. Access Roads – Roads that allow access to wind energy project sites and individual wind turbine Battery – For most wind energy projects, battery locations during the development, construction and systems are cost-prohibitive and not considered the operational phases of a project. Access roads are commercially viable to include as part of a constructed for long-term use and are built to commercial or utility-scale wind farm development accommodate heavy equipment and maintenance project for alternative energy; may also be called vehicles throughout the life of the project. galvanic battery or voltaic battery. Air Pollution – The addition of harmful chemicals to Beaufort Scale – A scale used to classify wind speeds, the atmosphere that often result from the burning of devised in 1805 by Admiral Francis Beaufort of the fossil fuels, especially in internal combustion engines. British Navy. Alternative Energy – Energy that is produced from Blades – The large “arms” of wind turbines that alternative energy sources such as solar, wind or extend from the hub of a generator. Most turbines nuclear energy that serves as alternative energy have either two or three blades. Wind blowing over forms that produce traditional fossil-fuel sources the blades causes the blades to “lift” and rotate. -
Public Citizen, Inc. List of Witnesses and Documents
UNITED STATES OF AMERICA 1 Before the 1 SECURITIES AND EXCHANGE COMMISSIO DEC 8 3 2004 ) In the Matter of ) I 1 I AMERICAN ELECTRIC POWER COMPANY, INC. ) Administrative Proceeding ) File No. 3-1 1616 ) PUBLIC CITIZEN, INC. LIST OF WITNESSES AND DOCUMENTS Pursuant to the Scheduling Order of the Presiding Administrative Law Judge, Public Citizen, Inc. ("Public Citizen") hereby submits its list of witnesses and documents to be submitted in the above-captioned proceeding. Witnesses 1. Public Citizen plans to submit testimony of Mi-. Jack A. Casazza, President of the American Education Institute, as an electric utility system expert witness His curriculum vita is attached. Mr. Casazza will testify regarding current transmission programs of the Federal Energy Regulatory Commission ("FERC"), including RTOs, and the extent to which they have, or have not, changed the operations of electric utility systems in ways relevant to the provisions of the Public Utility Holding Company Act of 1935 at issue in this proceeding. 2. Public Citizen plans to submit testimony by Ms. Lynn N. Hargis, former FERC Assistant General Counsel for Electric Rates and Corporate Regulation and thirty-year practitioner under the Federal Power Act, on the statutory differences between the Federal Power Act and the Public Utility Holding Company Act of 1935, to refute the proposed testimony of applicant, American Electric Power Company, that this Commission may rely on actions and deregulatory programs of the FERC in enforcing the provisions of the Public Utility Holding Company Act.. 3. Public Citizen reserves the right to call Mr. David B. Smith, Division of Investment Management-as an adverse witness, if necessary.