Changing the W Orld's Energy Future

Total Page:16

File Type:pdf, Size:1020Kb

Changing the W Orld's Energy Future NUCLEAR SCIENCE & TECHNOLOGY New and current reactor fuels can be examined at an unprecedented level of detail after samples are prepared for electron microscopes and other advanced characterization equipment within INL’s Irradiated Materials Characterization Laboratory. Nuclear Programs Nuclear Power Pioneers n 1949, the U.S. Atomic materials research, waste • In 1955, the Borax-III reactor Energy Commission treatment, and cleanup of provided electricity to Arco, established the National Cold War-era sites. Today, INL is I Idaho — the first time a Reactor Testing Station — now focused on meeting the nation’s nuclear reactor powered an known as Idaho National energy, nuclear technology, entire U.S. community. Laboratory — to take on science and national security the top-priority mission of • The Advanced Test Reactor, needs. harnessing the power of the one of the world’s most Sustaining the Current Fleet atom for peaceful applications. consistently updated and of Power Reactors capable materials test In the years that followed, INL researchers support the reactors, became one of the thousands of world-class Department of Energy’s Light two primary reactors in the scientists and engineers made Water Reactor Sustainability nation used to produce Idaho their home, and devoted program by developing the life-saving medical and their careers to advancing scientific basis to extend existing industrial radioisotopes. the state of the art in nuclear nuclear power plant operating research and development. • The laboratory developed life beyond the current 60-year Changing the World’s Energy Future Energy the World’s Changing The results of their labors prototype nuclear propulsion licensing period. This work are legendary. plants for Navy submarines ensures long-term reliability, and aircraft carriers. productivity, safety and security • In 1951, Experimental Breeder of the nation’s commercial Reactor-I produced the first Over the years, INL’s mission nuclear energy plants. INL usable amounts of electricity broadened into areas such as serves as the program’s from nuclear power. biotechnology, energy and NUCLEAR SCIENCE & TECHNOLOGY the existing nuclear fleet. GAIN provides the nuclear community with a single point of access to a broad range of capabilities — people, facilities, materials and INL’s Advanced Test Reactor is the world’s most versatile data — across the DOE complex reactor for performing and its national laboratories. irradiation testing necessary to develop new fuel and Advanced Reactor reactor designs. Technologies (ART) The Advanced Reactor Technologies (ART) Program develops new and advanced reactor designs and technologies to improve nuclear energy competitiveness and support, meeting the nation’s energy, Technical Integration Office and extraction of more useful environmental and national coordinates its research and energy from nuclear fuel. security needs. The INL ART development projects. Gateway for Accelerated Technology Development Fuel Cycle Research Innovation in Nuclear (GAIN) Office leads the area of high- and Development DOE’s offices of Nuclear Energy temperature reactor R&D in Researchers at INL are pursuing (NE) and Electricity Delivery support of high-temperature, the development of fuel cycle and Energy Reliability (OE) heat-generating missions. Its technologies that will meet have established the Gateway activities include developing the need for economic and for Accelerated Innovation and qualifying tristructural sustained nuclear energy in Nuclear (GAIN). This isotropic (TRISO) fuel; source production. The systems and initiative provides the nuclear selection, development, processes under research community with access to testing, and qualification of and development should the technical, regulatory and high-temperature materials enable a significant reduction financial support necessary and nuclear grade graphites; in the amount of high-level to move new or advanced verification and validation radioactive waste requiring nuclear reactor designs toward of design methods; and geologic disposal, reduced commercialization while coupling of nuclear and accumulation of plutonium ensuring continued safe, reliable renewable energy sources to in civilian spent fuel and the and economic operation of better optimize energy use for the combined electricity, industrial manufacturing and transportation sectors. Activities within the licensing area of the ART Program are focused on overall reduction of advanced reactor technology development New equipment installed risks by addressing regulatory in INL’s Analytical issues that will facilitate future Laboratory enables thermal Nuclear Regulatory properties testing on fuel and material samples. Commission licensing. Nuclear Benefits Beyond Electricity INL is the world’s leader in applying solid oxide fuel cell technology toward nuclear- powered water splitting and NUCLEAR SCIENCE & TECHNOLOGY CO2 splitting for hydrogen and Isotope Production applications. The reactor is syngas production. INL’s goal Idaho National Laboratory’s currently producing HSA cobalt- is to diversify nuclear energy Advanced Test Reactor (ATR) is 60 (Co-60), which is used as a end uses beyond electricity designed primarily as a nuclear gamma ray source in medical production to economical fuel and materials test reactor radiotherapy to treat cancer. hydrogen and synfuel for the U.S. Naval Reactors The ATR is also scheduled to production via recycling water program and the DOE Office begin production of Iridium-192, and CO2, with the simultaneous of Nuclear Energy. Because of which is commonly used as a benefits of reducing greenhouse its high neutron flux and large gamma ray source in industrial gas emissions and enhancing volume of irradiation space, radiography to locate flaws electrical grid stability. the ATR lends itself to isotope in metal components and in radiotherapy as a radiation Radioisotope Power Systems production as well. source, in particular in and Space Technologies Although not a primary mission, brachytherapy. Radioisotope power systems ATR is well-suited to produce are used to provide heat and significant quantities of isotopes electricity for space exploration for industrial and medical missions and national security applications. INL assisted in providing radioisotope heat and power units for the two rovers that went to Mars in 2003, Spirit and Opportunity. INL assembled a radioisotope thermoelectric generator (RTG) INL’s Hot Fuel Examination for the New Horizons mission to Facility is equipped with one of Pluto in 2006, which completed the largest inert-atmosphere its flyby of Pluto in July 2015. hot cells in the world, hosting INL also assembled and fueled an expansive suite of post- irradiation examination a new design of RTG for NASA’s capability for samples ranging Mars Science Laboratory, which from barely visible to fuel rods launched in 2011, arrived at more than 13 feet long. the red planet in 2012, and conducted an extended mission through 2016. Preparations are underway to provide an RTG for another Mars mission planned for launch in 2020. INL is an active partner with Oak Ridge National Laboratory to re-establish domestic production of Pu-238 for the first time since the 1980s. This Direct machining of uranium isotope is key to providing the metal enables acceleration of the fuel fabrication process fuel for the RTGs for missions to and creation of new fuel types remote or hostile environments. for experiments. INL is also an active partner with DOE in planning for the use of reactor technology in space applications such as nuclear thermo propulsion. NUCLEAR SCIENCE & TECHNOLOGY Infrastructure INL hosts an expansive array of research facility complexes spread across DOE’s 2,300 square kilometer (890-square- mile) Idaho Site and within the city of Idaho Falls. Combined with the talent of the world- class researchers at INL, these national assets make INL an international leader in nuclear energy technology research and development. The laboratory has three major facility areas focused on nuclear research & development: • The Materials and Fuels INL restarted the Transient Reactor Test (TREAT) facility in 2017 Complex hosts an extensive to enable thorough testing of reactor fuels and materials under array of nuclear fuel accident scenarios. fabrication, examination and handling facilities, including The complex also features past 10 years with several the Hot Fuel Examination the Advanced Test Reactor- new facilities. The Energy Facility, Fuel Manufacturing Critical Facility, the Test Train Innovation Laboratory is the Facility, Irradiated Materials Assembly Facility, Radiation gateway to INL’s Idaho Falls Characterization Laboratory, Measurements Laboratory, campus. Other important Experimental Fuels Facility, Radiochemistry Laboratory, capabilities include the and the Space and Security and the Safety and Tritium INL Research Center, the Power Systems Facility. Applied Research Facility. Center for Advanced Energy Studies, National and • The Research and Education • The Advanced Test Reactor Homeland Security office and Campus is INL’s Idaho Falls- Complex hosts the world’s engineering facilities, and the based campus. Its landscape premier nuclear test reactor, Energy Systems Laboratory. the Advanced Test Reactor. has evolved markedly in the For more information Joseph Campbell 208-526-7785 [email protected] www.inl.gov A U.S. Department of Energy National Laboratory Borax-III was the first nuclear EBR-I produced the first usable amounts reactor to power an entire of electricity from nuclear power. U.S. community. 08-50044-08-R8.
Recommended publications
  • Authors, Contributors, Reviewers
    432 Quadrennial Technology Review Quadrennial Technology Review 2015 Appendices List of Technology Assessments List of Supplemental Information Office of the Under Secretary for Science and Energy Executive Steering Committee and Co-Champions Authors, Contributors, and Reviewers Glossary Acronyms List of Figures List of Tables 433 434 Quadrennial Technology Review Technology Assessments Chapter 3 Chapter 6 Cyber and Physical Security Additive Manufacturing Designs, Architectures, and Concepts Advanced Materials Manufacturing Electric Energy Storage Advanced Sensors, Controls, Platforms Flexible and Distributed Energy Resources and Modeling for Manufacturing Measurements, Communications, and Control Combined Heat and Power Systems Transmission and Distribution Components Composite Materials Critical Materials Chapter 4 Direct Thermal Energy Conversion Materials, Devices, and Systems Advanced Plant Technologies Materials for Harsh Service Conditions Carbon Dioxide Capture and Storage Value-Added Options Process Heating Biopower Process Intensification Carbon Dioxide Capture Technologies Roll-to-Roll Processing Carbon Dioxide Storage Technologies Sustainable Manufacturing - Flow of Materials through Industry Carbon Dioxide Capture for Natural Gas and Industrial Applications Waste Heat Recovery Systems Crosscutting Technologies in Carbon Dioxide Wide Bandgap Semiconductors for Capture and Storage Power Electronics Fast-spectrum Reactors Geothermal Power Chapter 7 High Temperature Reactors Bioenergy Conversion Hybrid Nuclear-Renewable Energy
    [Show full text]
  • Electricity Delivery Superseding Nhpuc No
    NHPUC NO. 10 – ELECTRICITY DELIVERY SUPERSEDING NHPUC NO. 9 – ELECTRICITY DELIVERY NHPUC NO. 10 – ELECTRICITY DELIVERY PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE DBA EVERSOURCE ENERGY TARIFF FOR ELECTRIC DELIVERY SERVICE in Various towns and cities in New Hampshire, served in whole or in part. (For detailed description, see Service Area) Issued: December 23, 2020 Issued by: /s/ Joseph A. Purington Joseph A. Purington Effective: January 1, 2021 Title: President, NH Electric Operations NHPUC NO. 10 - ELECTRICITY DELIVERY Original Page 1 PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE DBA EVERSOURCE ENERGY TABLE OF CONTENTS Page TERMS AND CONDITIONS FOR DELIVERY SERVICE 1. Service Area .............................................................................................................. 5 2. Definitions.................................................................................................................. 7 3. General ....................................................................................................................... 9 4. Availability ................................................................................................................ 10 5. Application, Contract and Commencement of Service.............................................. 10 6. Selection of Supplier or Self-Supply Service by a Customer .................................... 11 7. Termination of Supplier Service or Self-Supply Service .......................................... 12 8. Unauthorized Switching of Suppliers .......................................................................
    [Show full text]
  • DOE's Office of Electricity Delivery and Energy Reliability
    DOE’s Office of Electricity Delivery and Energy Reliability (OE): A Primer, with Appropriations for FY2017 Updated December 13, 2016 Congressional Research Service https://crsreports.congress.gov R44357 DOE’s Office of Electricity Delivery and Energy Reliability (OE) Summary The nation’s energy infrastructure is undergoing a major transformation. For example, new technologies and changes in electricity flows place increasing demands on the electric power grid. These changes include increased use of distributed (mostly renewable energy) resources, Internet- enabled demand response technologies, growing loads from electric vehicle use, continued expansion of natural gas use, and integration of energy storage devices. The Department of Energy’s (DOE’s) Office of Electricity Delivery and Energy Reliability (OE) has the lead role in addressing those infrastructure issues. OE is also responsible for the physical security and cybersecurity of all (not just electric power) energy infrastructure. Further, OE has a key role in developing energy storage, supporting the grid integration of renewable energy, and intergovernmental planning for grid emergencies. As an illustration of the breadth of its activities, OE reports that, during FY2014, its programs responded to 24 energy-related emergency events, including physical security events, wildfires, severe storms, fuel shortages, and national security events. OE manages five types of research and development (R&D) programs, usually conducted in cost- shared partnership with private sector firms. OE also operates two types of deployment programs, conducted mainly with state and tribal governments. Each OE program office has its own set of goals and objectives. OE plays the central role in two of DOE’s broad cross-cutting initiatives: grid modernization and cybersecurity.
    [Show full text]
  • Comparing Electricity Generation Technologies Based on Multiple Criteria Scores from an Expert Group
    Comparing electricity generation technologies based on multiple criteria scores from an expert group Euan Mearns*1 and Didier Sornette1.2 ETH Zurich 1Department of Management, Technology and Economics Scheuchzerstrasse 7 , CH-8092 Zurich, Switzerland 2Institute of Risk Analysis, Prediction and Management (Risks-X), Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China [email protected] [email protected] * Corresponding author. Highlights: • 13 common electricity generation technologies were evaluated using multi criteria decision analysis (MCDA) where values were assigned by the expert judgment of a professional group. • A hierarchical scheme of 12 criteria organized into 5 categories of health, environment, grid, economics and resources was used to provide a holistic measure of energy quality. • The three leading technologies to emerge are nuclear power, combined cycle gas and hydroelectric power. The three trailing technologies are solar PV, biomass and tidal lagoon. • Our findings are consistent with the baseline cost approach of the 2004-2009 EU funded NEEDS project but contrast sharply with the MCDA survey of the same project that found CaTe solar PV and solar thermal power to be the most promising technologies for central Europe. Abstract: Multi criteria decision analysis (MCDA) has been used to provide a holistic evaluation of the quality of 13 electricity generation technologies in use today. A group of 19 energy experts cast scores on a scale of 1 to 10 using 12 quality criteria – based around the pillars of sustainability – society, environment and economy - with the aim of quantifying each criterion for each technology. The total mean score is employed as a holistic measure of system quality.
    [Show full text]
  • Cogeneration in Louisiana 2005
    COGENERATION IN LOUISIANA AN UPDATED (2005) TABULATION OF INDEPENDENT POWER PRODUCER (IPP) AND COGENERATION FACILITIES Prepared by David McGee/Patty Nussbaum THE TECHNOLOGY ASSESSMENT DIVISION T. Michael French, P. E. Director William J. Delmar, Jr. P. E. Assistant Director LOUISIANA DEPARTMENT OF NATURAL RESOURCES SCOTT A. ANGELLE SECRETARY Baton Rouge June, 2006 COGENERATION IN LOUISIANA AN UPDATED (2005) TABULATION OF INDEPENDENT POWER PRODUCER (IPP) AND COGENERATION FACILITIES Prepared by David McGee/Patty Nussbaum THE TECHNOLOGY ASSESSMENT DIVISION T. Michael French, P. E. Director William J. Delmar, Jr. P. E. Assistant Director LOUISIANA DEPARTMENT OF NATURAL RESOURCES SCOTT A. ANGELLE SECRETARY Baton Rouge June, 2006 This issue of Cogeneration in Louisiana, (2005) is funded 100% with Petroleum Violation Escrow Funds as part of the State Energy Conservation Program as approved by the U. S. Department of Energy and the Department of Natural Resources. This report is only available in an electronic format on the World Wide Web. Most materials produced by the Technology Assessment Division of the Louisiana Department of Natural Resources, are intended for the general use of the citizens of Louisiana, and are therefore entered into the public domain. You are free to reproduce these items with reference to the Division as the source. Some items included in our publication are copyrighted either by their originators or by contractors for the Department. To use these items it is essential you contact the copyright holders for permission before you reuse these materials TABLE OF CONTENTS COGENERATION IN LOUISIANA UPDATE (2005) Page no. LIST OF TABLES ii LIST OF FIGURES iii LIST OF EXHIBITS iv ABBREVIATIONS AND CODES v-vii BACKGROUND 1 IMPACT OF 2005 HURRICANE SEASON IN LOUISIANA 3 COGENERATION IN LOUISIANA 5 THE ENERGY POLICY ACT OF 2005 7 CONCLUSION 9 ABBREVIATIONS AND ACRONYSMS 10 GLOSSARY 11-13 SELECTED BIBLIOGRAPHY 14 EXHIBITS LIST OF TABLES PAGE Table 1 Potential Benefits of Distributed Generation 7 Table 2.
    [Show full text]
  • Wind Energy Glossary
    Wind Energy Glossary Accelerated Depreciation – With accelerated meet minimum demands based on reasonable depreciation, wind energy projects can reduce the expectations of customer requirements. Base load assessed value of their equipment on their financial values typically vary from hour to hour in most balance sheets over a shorter period of time. commercial and industrial areas. Also known as bas load demand. Access Roads – Roads that allow access to wind energy project sites and individual wind turbine Battery – For most wind energy projects, battery locations during the development, construction and systems are cost-prohibitive and not considered the operational phases of a project. Access roads are commercially viable to include as part of a constructed for long-term use and are built to commercial or utility-scale wind farm development accommodate heavy equipment and maintenance project for alternative energy; may also be called vehicles throughout the life of the project. galvanic battery or voltaic battery. Air Pollution – The addition of harmful chemicals to Beaufort Scale – A scale used to classify wind speeds, the atmosphere that often result from the burning of devised in 1805 by Admiral Francis Beaufort of the fossil fuels, especially in internal combustion engines. British Navy. Alternative Energy – Energy that is produced from Blades – The large “arms” of wind turbines that alternative energy sources such as solar, wind or extend from the hub of a generator. Most turbines nuclear energy that serves as alternative energy have either two or three blades. Wind blowing over forms that produce traditional fossil-fuel sources the blades causes the blades to “lift” and rotate.
    [Show full text]
  • Guide for Conducting Energy Efficiency Potential Studies
    Guide for Conducting Energy Effi ciency Potential Studies A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY NOVEMBER 2007 About This Document This Guide for Conducting Energy Effi ciency Potential Studies is provided to assist state offi cials, regulators, legislators, and others in the implementation of the recommendations of the National Action Plan for Energy Effi ciency (Action Plan) and the pursuit of its longer-term goals. This Guide identifi es three main applications for energy effi ciency potential studies and provides examples of each, along with a de­ scription of how key decisions regarding scope and methodology are made to best achieve the studies’ objectives. It also provides an overview of the main analytical steps in conducting a potential study and introduces several related concepts. The primary intended audience for this Guide is policy-makers, state offi cials, utility staff, and effi ciency advocates looking for guidance on the process of conducting potential studies. These individuals can also use the Guide to review the results of already- completed studies. Guide for Conducting Energy Effi ciency Potential Studies A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY NOVEMBER 2007 The Guide for Conducting Energy Effi ciency Potential Studies is a product of the National Action Plan for Energy Effi ­ ciency Leadership Group and does not refl ect the views, policies, or otherwise of the federal government. The role of the U.S. Department of Energy and U.S. Environmental Protection Agency is limited to facilitation of the Action Plan. This document was fi nal as of December 2007 and incorporates minor modifi cations to the original release.
    [Show full text]
  • A New Era for Wind Power in the United States
    Chapter 4 Wind Vision: A New Era for Wind Power in the United States 1 Table of Contents Message from the Director ..................................................................................................................................... xiii Acronyms .......................................................................................................................................................................xv Executive Summary: Overview ...........................................................................................................................xxiii Contents of Table Executive Summary: Key Chapter Findings ..................................................................................................xxvii ES.1 Introduction ........................................................................................................................................................................xxvii ES.1.1 Project Perspective and Approach ......................................................................................................................xxvii ES.1.2 Understanding the Future Potential for Wind Power ....................................................................................xxix ES.1.3 Defining a Credible Scenario to Calculate Costs, Benefits, and Other Impacts .....................................xxxi ES.2 State of the Wind Industry: Recent Progress, Status and Emerging Trends ................................................xxxiv ES.2.1 Wind Power Markets and Economics ................................................................................................................xxxv
    [Show full text]
  • Wind Vision: a New Era for Wind Power in the United States Wind Vision: a New Era for Wind Power in the United States
    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives recommend policy actions, but analyzes feasibility, The U.S. Department of Energy’s (DOE’s) Wind and costs, and benefits of increased wind power Water Power Technologies Office has conducted a deployment to inform generally, as well as to provide comprehensive analysis to evaluate future pathways insights for policy decisions at the federal, state, for the wind industry. Through a broad-based tribal, and local levels. collaborative effort, theWind Vision analysis includes four principal objectives: Deployment of wind technology for U.S. electricity generation provides a domestic, sustainable, and essentially zero-carbon, zero-pollution, and zero-water 1. Documentation of the current state of wind use U.S. electricity resource. power in the United States and identification of key technological and societal accomplishments over the decade leading up to 2014; 2. Exploration of the potential pathways for wind Wind Power Today power to contribute to the future electricity Wind power has become a mainstream power source needs of the nation, including objectives such as in the U.S. electricity portfolio, supplying 4.5% of reduced carbon emissions, improved air quality, the nation’s electricity demand in 2013. With more and reduced water use; than 61 gigawatts (GW) installed across 39 states at 3. Quantification of costs, benefits, and other the end of 2013, utility-scale wind power is a cost- impacts associated with continued deployment effective source of low-emissions power generation and growth of U.S.
    [Show full text]
  • Renewable Electricity: Potential Economic Effects of Increased Commitments in Massachusetts
    United States International Trade Commission Renewable Electricity: Potential Economic Effects of Increased Commitments in Massachusetts January 2021 Publication Number: 5154 Investigation Number: 332-574 United States International Trade Commission Commissioners Jason E. Kearns, Chair Randolph J. Stayin, Vice Chair David S. Johanson Rhonda K. Schmidtlein Amy A. Karpel Catherine DeFilippo Director, Office of Operations Jonathan Coleman Director, Office of Industries Address all communications to Office of External Relations ([email protected]) United States International Trade Commission Washington, DC 20436 United States International Trade Commission Renewable Electricity: Potential Economic Effects of Increased Commitments in Massachusetts January 2021 Publication Number: 5154 Investigation Number: 332-574 This report was prepared principally by: Project Leader Diana Friedman Deputy Project Leader Tricia Mueller Office of Industries Brian Daigle, Andrew David, Jennifer Powell, Allison Utomi, Heather Wickramarachi Office of Economics David Riker, Samantha Schreiber Office of Analysis and Research Services Conor Hargrove, Maureen Letostak Content Reviewers Martha Lawless, Marinos Tsigas Statistical Reviewers Russell Duncan Editorial Reviewers Peg Hausman, Judy Edelhoff Production Support Byron Barlow, Gwenetta Duvall, Monica Sanders Under the direction of Robert Carr Natural Resources and Energy Division Office of Industries Table of Contents Table of Contents Glossary of Terms ............................................................................................
    [Show full text]
  • Overview of Offshore Wind Research Supported by the DOE Wind Energy Technologies Office
    Overview of Offshore Wind Research supported by the DOE Wind Energy Technologies Office Daniel Beals BOEM Gulf of Maine Task Force Meeting December 12, 2019 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY 1 DOE’s Wind Energy Technology Office (WETO) WETO’s Offshore Wind Objective: Advance the research and development of offshore wind technologies, environmental and siting research, and disseminate unbiased data to stakeholders. *DOE does not have regulatory authority for offshore wind* Strategic Themes Action Areas 1. Offshore Wind Power Resource & Site Characterization Reducing 2. Offshore Wind Plant Technology Technology Advancement Costs & Risks 3. Installation, Operation & Maintenance, & • Issued jointly with BOEM in Supply Chain Solutions 2016 as an update of 2011 4. Ensuring Efficiency, Consistency & Clarity Supporting in the Regulatory Process strategy; input from industry, Effective states and other stakeholders Stewardship 5. Managing Key Environmental & Human Use Concerns • Over 30 DOE and DOI 6. Offshore Wind Electricity Delivery & Grid Improving Integration initiatives to address 7 action Understanding areas; three strategic themes of the Benefits of OSW 7. Quantifying / Communicating the Costs and Benefits of Offshore Wind How? Directed national lab research; competitive awards; collaboration with Federal partners; communication and partnerships with stakeholders U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY 2 U.S. Offshore Wind Industry Challenges and Opportunities Inform DOE Investments U.S. Specific Challenges Opportunities • Steep learning curve – European solutions • Generate low cost electricity near areas may not be optimal or appropriate of high demand with limited new • Vessels and Jones Act transmission • Supply Chain and Port Infrastructure • Targeted R&D and supply chain • Permitting investments can result in steep cost • Wildlife reduction • Challenging physical conditions – which are • Transformative technology allows different than in Europe, i.e.
    [Show full text]
  • Draft FY 2012 Agency Financial Report
    Foreword T he Reports Consolidation Act of 2000 authorizes Report, and will provide an Annual Performance Report and Federal agencies, with the Office of Management and a Summary of Performance and Financial Information, Budget’s (OMB) concurrence, to consolidate various pursuant to OMB Circular No. A-136. They will be available reports to provide performance, financial and related at the website below, as each report is completed. This information in a more meaningful and useful format. For reporting approach simplifies and streamlines the Fiscal Year (FY) 2015, the Department of Energy performance presentations. (Department or DOE), has produced an Agency Financial Annual Performance Summary of Report (APR) [will be Performance & available February 2016] Financial Information The APR will provide the [will be available detailed performance February 2016] This information and document will highlight descriptions of results by the most important each performance performance and measure. financial information from the APR and AFR. These three reports meet the following reporting requirements: . Digital Accountability and Transparency Act (DATA Act) of 2013 requires the transformation of United States (U.S.) federal spending from disconnected documents into open, standardized data, and to publish that data online. Reports Consolidation Act of 2000 requires the consolidated reporting of performance, financial and related information in a Performance and Accountability Report (PAR). Federal Financial Management Improvement Act (FFMIA) of 1996 requires an assessment of the agency’s financial systems for adherence to Government-wide requirements. Government Management Reform Act (GMRA) of 1994 requires an agency to have audited financial statements. Federal Managers’ Financial Integrity Act (FMFIA) of 1982 requires a report on the status of internal controls and the agency’s most serious problems.
    [Show full text]