Guide to Combined Heat and Power Systems for Boiler Owners and Operators

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Combined Heat and Power Systems for Boiler Owners and Operators ORNL/TM-2004/144 Guide to Combined Heat and Power Systems for Boiler Owners and Operators C. B. Oland DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2004/144 GUIDE TO COMBINED HEAT AND POWER SYSTEMS FOR BOILER OWNERS AND OPERATORS C. B. Oland July 30, 2004 Prepared for the U.S. Department of Energy Industrial Technologies Program Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ii CONTENTS Page LIST OF FIGURES................................................................................................................................ vii LIST OF TABLES.................................................................................................................................. ix ACRONYMS.......................................................................................................................................... xi ACKNOWLEDGMENTS...................................................................................................................... xiii EXECUTIVE SUMMARY .................................................................................................................... xv 1. INTRODUCTION ........................................................................................................................... 1 1.1 SCOPE AND OBJECTIVES................................................................................................... 2 1.2 APPROACH ............................................................................................................................ 3 1.3 COGENERATION OPPORTUNITIES .................................................................................. 4 1.4 REFERENCES ........................................................................................................................ 5 2. COGENERATION TECHNOLOGY ISSUES................................................................................ 7 2.1 TECHNOLOGY DESCRIPTION ........................................................................................... 7 2.2 NATIONAL ENERGY ACTS................................................................................................. 9 2.3 ENVIRONMENTAL REGULATIONS.................................................................................. 11 2.3.1 Clean Air Act................................................................................................................ 11 2.3.1.1 National Ambient Air Quality Standards ..................................................... 14 2.3.1.2 New Source Performance Standards............................................................ 14 2.3.1.3 National Emission Standards for HAPs ....................................................... 16 2.3.1.4 Permitting requirements ............................................................................... 19 2.3.1.5 State permitting programs ............................................................................ 23 2.3.2 Clean Water Act ........................................................................................................... 24 2.4 BENEFITS AND BARRIERS................................................................................................. 25 2.4.1 Benefits and Potential Applications ............................................................................. 25 2.4.2 Barriers to Implementation........................................................................................... 27 2.5 REFERENCES ........................................................................................................................ 29 3. PRIME MOVERS............................................................................................................................ 33 3.1 STEAM TURBINES ............................................................................................................... 33 3.1.1 Description ................................................................................................................... 33 3.1.2 Design and Performance Characteristics...................................................................... 36 3.1.2.1 Efficiency ..................................................................................................... 39 3.1.2.2 Capital cost................................................................................................... 40 3.1.2.3 Availability................................................................................................... 40 3.1.2.4 Maintenance ................................................................................................. 41 3.1.2.5 Heat recovery ............................................................................................... 41 3.1.2.6 Fuels and emissions...................................................................................... 41 3.1.3 Potential Applications................................................................................................... 41 3.2 GAS TURBINES..................................................................................................................... 42 3.2.1 Description ................................................................................................................... 43 3.2.2 Design and Performance Characteristics...................................................................... 44 3.2.2.1 Efficiency ..................................................................................................... 46 3.2.2.2 Capital cost................................................................................................... 49 3.2.2.3 Availability................................................................................................... 49 3.2.2.4 Maintenance ................................................................................................. 49 3.2.2.5 Heat recovery ............................................................................................... 50 3.2.2.6 Fuels and emissions...................................................................................... 50 iii 3.2.3 Potential Applications................................................................................................... 51 3.3 MICROTURBINES................................................................................................................. 52 3.3.1 Description ................................................................................................................... 52 3.3.2 Design and Performance Characteristics...................................................................... 52 3.3.2.1 Efficiency ..................................................................................................... 54 3.3.2.2 Capital cost................................................................................................... 54 3.3.2.3 Availability................................................................................................... 54 3.3.2.4 Maintenance ................................................................................................. 55 3.3.2.5 Heat recovery ............................................................................................... 55 3.3.2.6 Fuels and emissions...................................................................................... 55 3.3.3 Potential Applications................................................................................................... 55 3.4 RECIPROCATING INTERNAL COMBUSTION ENGINES ............................................... 56 3.4.1 Description ..................................................................................................................
Recommended publications
  • Investigating Hidden Flexibilities Provided by Power-To-X Consid- Ering Grid Support Strategies
    InVESTIGATING Hidden FleXIBILITIES ProVIDED BY Power-to-X Consid- ERING Grid Support StrATEGIES Master Thesis B. Caner YAgcı˘ Intelligent Electrical POWER Grids Investigating Hidden Flexibilities Provided by Power-to-X Considering Grid Support Strategies Master Thesis by B. Caner Yağcı to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Tuesday September 14, 2020 at 9:30. Student number: 4857089 Project duration: December 2, 2019 – September 14, 2020 Thesis committee: Dr. Milos Cvetkovic, TU Delft, supervisor Dr. ir. J. L. Rueda Torres, TU Delft Dr. L. M. Ramirez Elizando TU Delft This thesis is confidential and cannot be made public until September 14, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface First of all, I would like to thank PhD. Digvijay Gusain and Dr. Milos Cvetkovic for not only teaching me the answers through this journey, but also giving me the perception of asking the right questions that lead simple ideas into unique values. I would also like to thank my family Alican, Huriye, U˘gur, Gökhan who have been supporting me from the beginning of this journey and more. You continue inspiring me to find my own path and soul, even from miles away. Your blessing is my treasure in life... My friends, Onurhan and Berke. You encourage me and give me confidence to be my best in any scene. You are two extraordinary men who, I know, will always be there when I need. Finally, I would like to thank TU Delft staff and my colleagues in TU Delft for making this journey enter- taining and illuminative for me.
    [Show full text]
  • Development and Application of Optimal Design Capability for Coal Gasification Systems
    DEVELOPMENT AND APPLICATION OF OPTIMAL DESIGN CAPABILITY FOR COAL GASIFICATION SYSTEMS Technical Documentation: Oxygen-based Combustion Systems (Oxyfuels) with Carbon Capture and Storage (CCS) Final Report of Work Performed Under Contract No.: DE-AC21-92MC29094 Reporting Period Start, October 2003 Reporting Period End, May 2007 Report Submitted, May 2007 to U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, P.O. Box 10940 Pittsburgh, Pennsylvania 15236-0940 by Edward S. Rubin (P.I.) Anand B. Rao Michael B. Berkenpas Carnegie Mellon University Center for Energy and Environmental Studies Department of Engineering and Public Policy Pittsburgh, PA 15213-3890 Contents Objective 1 Literature Review 2 Process Overview ......................................................................................................................2 History .......................................................................................................................................4 Advantages ................................................................................................................................5 Issues and Challenges................................................................................................................6 Performance Model 8 Model Configurations................................................................................................................8 Default Configuration................................................................................................................9
    [Show full text]
  • Trends in Electricity Prices During the Transition Away from Coal by William B
    May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS).
    [Show full text]
  • Energy Technology Perspectives 2020
    Energy Technology Perspectives 2020 A path for the decarbonisation of the buildings sector 14 December 2020 Page 1 Opening remarks Timur Gül Head, Energy Technology Policy Division, International Energy Agency (IEA) The IEA buildings technology work across four main deliverables Energy Technology Tracking clean energy Special Report on Clean Technology guide progress Perspectives Innovation Tracking Clean Energy Progress Assessing critical energy technologies for global clean energy transitions The IEA is unfolding a series of resources setting an ambitious pathway to reach the Paris Agreement and other Sustainable Development goals. Opening remarks Roland Hunziker Director, Sustainable Buildings and Cities, World Business Council for Sustainable Development (WBCSD) Energy Technology Perspectives 2020 presentation Thibaut ABERGEL Chiara DELMASTRO Co-leads, Buildings Energy Technology, Energy Technology Policy Division, International Energy Agency (IEA) Commitment to net-zero emissions is globalising Share of energy-related CO2 emissions covered by national and supra-national public net-zero emissions targets as of 01st SeptemberDecember 20202020 Carbon or climate 100% 10 neutrality target 80% 8 No target 2 60% 6 Under discussion GtCO 40% 4 In policy document 20% 2 Proposed legislation 0% 0 In law Total emissions (right axis) Countries responsible for around 60% of global energy-related CO2 emissions have formulated net-zero emissions ambitions in laws, legislation, policy documents or official discussions. Source: IEA (2020),| Credit Energyphoto
    [Show full text]
  • Renewable Energy Australian Water Utilities
    Case Study 7 Renewable energy Australian water utilities The Australian water sector is a large emissions, Melbourne Water also has a Water Corporation are offsetting the energy user during the supply, treatment pipeline of R&D and commercialisation. electricity needs of their Southern and distribution of water. Energy use is These projects include algae for Seawater Desalination Plant by heavily influenced by the requirement treatment and biofuel production, purchasing all outputs from the to pump water and sewage and by advanced biogas recovery and small Mumbida Wind Farm and Greenough sewage treatment processes. To avoid scale hydro and solar generation. River Solar Farm. Greenough River challenges in a carbon constrained Solar Farm produces 10 megawatts of Yarra Valley Water, has constructed world, future utilities will need to rely renewable energy on 80 hectares of a waste to energy facility linked to a more on renewable sources of energy. land. The Mumbida wind farm comprise sewage treatment plant and generating Many utilities already have renewable 22 turbines generating 55 megawatts enough biogas to run both sites energy projects underway to meet their of renewable energy. In 2015-16, with surplus energy exported to the energy demands. planning started for a project to provide electricity grid. The purpose built facility a significant reduction in operating provides an environmentally friendly Implementation costs and greenhouse gas emissions by disposal solution for commercial organic offsetting most of the power consumed Sydney Water has built a diverse waste. The facility will divert 33,000 by the Beenyup Wastewater Treatment renewable energy portfolio made up of tonnes of commercial food waste Plant.
    [Show full text]
  • Unit 10 Lubricating Systems
    unit 10 FUEL TANK lubricating systems An engine needs oil between its moving parts. The oil keeps the parts from rubbing on each other. When the parts do not rub on each other they do not wear out as quickly. The parts also move more easily, because the oil prevents friction. The oil also helps cool the engine by carrying heat away from hot engine parts, and oil is used to clean or flush dirt off engine parts. Oil on the cylinders helps seal the rings to prevent com• pressed air from leaking. Getting the oil to the engine parts is called lubrication. There are sev• eral types of lubricating systems used on small engines. In this unit we will study how these sys• tems work. LET'S FIND OUT: When you finish reading and studying this unit, you should be able to: 1. Describe the purpose of lubrication. 2. Describe the properties of oil. 3. Explain how a two-cycle engine is lubricated. 4. Describe the operation of a splash lubrication system. 5. Explain the operation of a pressure lubrication system. REDUCING FRICTION table. As the amount of pressure between two objects increases, their friction increases. The If you push a book along a table top you will type of material from which the two objects are notice resistance. This is due to the friction made also affects the friction. If the table is made between the book and table. The rougher the of glass, the book slides across it easily. If it is table and book surfaces, the more friction there is, made of rubber, it is very difficult to push the because the two surfaces tend to lock together.
    [Show full text]
  • Boiler Analysis
    The World’s Leading Laboratory Network Boiler Analysis Industry www.eurofins.co.nz Page 2 Table of Contents Introduction Page 3 Who should read this brochure? Page 3 Boiler water tests available Page 4 Feedwater Page 4 Boiler Water Page 5 Condensate Page 6 How to arrange everything Page 7 Analysis Page 7 Contact us Page 8 Cover Photo: Broken pressure gauge Page 3 Introduction Eurofins-ELS is one of New Zealand’s leading experts in the areas of: Air quality monitoring Biological fluids Boiler water Ceramicware and metal food containers Environmental water Food and Dairy Products Landfills Legionella Meat industry services Metals Potable water for councils Potable water for small communities Sample Integrity Sewage and effluent Swimming pools Trade waste The company has its origin as part of the Hutt City Council Laboratory and became a private enterprise in 1994. We grew through natural growth as well as the acquisition of local laboratories until in December 2012 we were acquired by Eurofins - the largest laboratory network in the world. Eurofins Scientific is an international life sciences company which provides a unique range of analytical testing services to clients across multiple industries. The Group is the world leader in food and pharmaceutical products testing. It is also number one in the world in the field of environmental laboratory services, and one of the global market leaders in agroscience, genomics, pharmaceutical discovery and central laboratory services. We are based in a purpose built facility of 1450 m2 at 85 Port Road, Lower Hutt. Eurofins-ELS is comprised of four separate laboratory areas – Instrumental Chemistry, General Chemistry, Biological Fluids, and Microbiology.
    [Show full text]
  • Overview of Electric Power Supply Systems
    Overview of Electric Power Supply Systems Why are electric power systems studied? What are the characteristics of power systems that justify spending a whole course on them? There are many answers to each of these questions; this course will touch on a few of them. You will recall that ECE370 gave an overview of the circuit theory associated with electrical power and it is worth recalling that most power systems are three-phase and that when balanced systems are being analyzed these are usually drawn in terms of a one-line diagram, i.e. a single line is used to denote the three phases, which may or may not also have a neutral. The US Electric Power System The main aspects that describe power systems are: size, complexity and economic impact. Utility power systems cover vast territory, are subject to the whims of nature, are interconnected to each other, the quality of their commodity affects the ability of industry to produce effectively, and the price of their commodity has a significant impact on the economy of their service area. Controlling power systems requires that electricity be supplied at the correct frequency, satisfactory voltage, with its phases balanced, have low harmonic content, and with all protection systems coordinated. The foregoing has to be achieved without overloading equipment and at the lowest cost to the consumer (after the utility makes a reasonable profit.) All this is complicated by the fact that demand for electricity changes throughout the day (and week, and season) and that electricity can not be readily stored in a practical manner.
    [Show full text]
  • Fuel Cells and Environmental, Energy, and Other Clean Energy Technologies…
    Energy Efficiency & Renewable Energy U.S. Department of Energy Fuel Cell Technologies Program Nancy L. Garland, Ph.D. Technology Development Manager Fuel Cell Technologies Program Energy Efficiency and Renewable Energy United States Department of Energy Washington, D.C. 18th WWorldo rld Hydrogen EnergyEnergy Conference 2010 Essen, Germany May 17, 2010 Advancing Presidential Priorities Energy efficiency and renewable energy research , development , and deployment activities help the U.S. meet its economic, energy security, and environmental challenges concurrently. Energy Security Economic • Deploy the cheapest, cleanest, • Create green jobs through fastest energy source – energy Recovery Act energy projects efficiency • Double renewable energy • One million plug-in hybrid cars generation by 2012 on the road by 2015 Presidential Priorities • Weatherize one million homes • Develop the next generation of annually sustainable biofuels and infrastructure • Increase fuel economy standards Environmental • Implement an economy-wide cap-and-trade program to reduce greenhouse gas emissions 80 percent by 2050 • Make the US a leader on climate change • Establish a national low carbon fuel standard U.S. DOE President’s National Objectives for DOE— Energy to Secure America’s Future • Quickly Implement the Economic Recovery Package: Create Millions of New Green Jobs and Lay the Foundation for the Future • Restore Science Leadership: Strengthen America ’s Role as the World Leader in Science and Technology • Reduce GHG Emissions: Drive emissions 20 Percent below 1990 levels by 2020 • Enhance Energy Security: Save More Oil than the U.S currently imports from the Middle East and Venezuela combined within 10 years • Enhance Nuclear Security: Strengthen non-proliferation activities, reduce global stockpiles of nuclear weapons, and maintain safety and reliability of the US stockpile First Principle: Pursue material and cost-effective measures with a sense of urgency From: Secretary Chu’s presentation on DOE Goal’s and Targets, 5/5/09 U.S.
    [Show full text]
  • The Opportunity of Cogeneration in the Ceramic Industry in Brazil – Case Study of Clay Drying by a Dry Route Process for Ceramic Tiles
    CASTELLÓN (SPAIN) THE OPPORTUNITY OF COGENERATION IN THE CERAMIC INDUSTRY IN BRAZIL – CASE STUDY OF CLAY DRYING BY A DRY ROUTE PROCESS FOR CERAMIC TILES (1) L. Soto Messias, (2) J. F. Marciano Motta, (3) H. Barreto Brito (1) FIGENER Engenheiros Associados S.A (2) IPT - Instituto de Pesquisas Tecnológicas do Estado de São Paulo S.A (3) COMGAS – Companhia de Gás de São Paulo ABSTRACT In this work two alternatives (turbo and motor generator) using natural gas were considered as an application of Cogeneration Heat Power (CHP) scheme comparing with a conventional air heater in an artificial drying process for raw material in a dry route process for ceramic tiles. Considering the drying process and its influence in the raw material, the studies and tests in laboratories with clay samples were focused to investigate the appropriate temperature of dry gases and the type of drier in order to maintain the best clay properties after the drying process. Considering a few applications of CHP in a ceramic industrial sector in Brazil, the study has demonstrated the viability of cogeneration opportunities as an efficient way to use natural gas to complement the hydroelectricity to attend the rising electrical demand in the country in opposition to central power plants. Both aspects entail an innovative view of the industries in the most important ceramic tiles cluster in the Americas which reaches 300 million squares meters a year. 1 CASTELLÓN (SPAIN) 1. INTRODUCTION 1.1. The energy scenario in Brazil. In Brazil more than 80% of the country’s installed capacity of electric energy is generated using hydropower.
    [Show full text]
  • GRID-INTERACTIVE EFFICIENT BUILDINGS TECHNICAL REPORT SERIES: Overview of Research Challenges and Gaps
    Grid-interactive Efficient Buildings Technical Report Series Overview of Research Challenges and Gaps December 2019 (This page intentionally left blank) GRID-INTERACTIVE EFFICIENT BUILDINGS TECHNICAL REPORT SERIES: Overview of Research Challenges and Gaps Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. iii GRID-INTERACTIVE EFFICIENT BUILDINGS TECHNICAL REPORT SERIES: Overview of Research Challenges and Gaps Authors The authors of this report are: Monica Neukomm, U.S. Department of Energy (DOE) Valerie Nubbe, Navigant Consulting, Inc. Robert Fares, former American Association for the Advancement of Science (AAAS) fellow at DOE Acknowledgments The authors would like to acknowledge the valuable guidance and input provided during the preparation of this report. The authors are also grateful to the following list of contributors. Their feedback, guidance, and review proved invaluable in preparing this report.
    [Show full text]
  • Impact of Fuel Variability and Operating Parameters on Biomass Boiler Performance
    Impact of Fuel Variability and Operating Parameters on Biomass Boiler Performance by Nazanin Abbas Nejad Orang A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy Chemical Engineering and Applied Science University of Toronto © Copyright by Nazanin Abbas Nejad Orang 2019 Impact of Fuel Variability and Operating Parameters on Biomass Boiler Performance Nazanin Abbas Nejad Orang Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2019 Abstract Biomass boilers provide up to one-third of the energy requirement in pulp and paper mills by burning hog fuel, which is a mixture of wood-waste available at the mill site. The quality of this fuel varies significantly depending on its source and storage conditions. This fuel variability often causes biomass boiler operation to be unstable and unpredictable. This study consists of two parts: the first part investigates the impact of fuel variability on combustion and develops means for mitigating these impacts to achieve stable boiler operation. The second part identifies the most influential parameter in boiler operation using multivariate analysis, and develops a predictive statistical model for optimization of biomass boiler thermal performance. In the first part, wood species are differentiated by their initial particle density. For all wood species examined, particle density decreases throughout the combustion process but at different rates depending on the combustion stage. During the devolatilization stage, the density decreases significantly as a result of rapid mass loss. This sharp decrease causes particles to be light enough to be entrained and/or be lifted off from the grate by the flue gas.
    [Show full text]