A New Era for Wind Power in the United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gravity-Based Foundations in the Offshore Wind Sector
Journal of Marine Science and Engineering Review Gravity-Based Foundations in the Offshore Wind Sector M. Dolores Esteban *, José-Santos López-Gutiérrez and Vicente Negro Research Group on Marine, Coastal and Port Environment and other Sensitive Areas, Universidad Politécnica de Madrid, E28040 Madrid, Spain; [email protected] (J.-S.L.-G.); [email protected] (V.N.) * Correspondence: [email protected] Received: 27 December 2018; Accepted: 24 January 2019; Published: 12 March 2019 Abstract: In recent years, the offshore wind industry has seen an important boost that is expected to continue in the coming years. In order for the offshore wind industry to achieve adequate development, it is essential to solve some existing uncertainties, some of which relate to foundations. These foundations are important for this type of project. As foundations represent approximately 35% of the total cost of an offshore wind project, it is essential that they receive special attention. There are different types of foundations that are used in the offshore wind industry. The most common types are steel monopiles, gravity-based structures (GBS), tripods, and jackets. However, there are some other types, such as suction caissons, tripiles, etc. For high water depths, the alternative to the previously mentioned foundations is the use of floating supports. Some offshore wind installations currently in operation have GBS-type foundations (also known as GBF: Gravity-based foundation). Although this typology has not been widely used until now, there is research that has highlighted its advantages over other types of foundation for both small and large water depth sites. There are no doubts over the importance of GBS. -
Biodiversity Impacts Associated to Off- Shore Wind Power Projects
Bennun, L., van Bochove, J., Ng, C., Fletcher, C., Wilson, D., Phair, N., Carbone, G. (2021). Mitigating biodiversity impacts associated with solar and wind energy development. Guidelines for project developers. Gland, Switzerland: IUCN and Cambridge, UK: The Mitigating biodiversity impacts Biodiversity Consultancy. associated with solar and wind energy development Guidelines for project developers Biodiversity impacts associated to off- shore wind power IUCN GLOBAL BUSINESS AND BIODIVERSITY PROGRAMME projects The available scientific literature agrees on the key impacts of offshore wind: i) risk of collision mortality; ii) displacement due to disturbance (including noise impacts); iii) barrier effects (also including noise impacts); iv habitat loss; and v) indirect ecosystem-level effects. There is still much to understand on these five key impacts – but it is clear that that they must be considered carefully in all stages of offshore wind farm planning and development. The broad approach to undertaking an impact assessment for onshore wind energy is often equally relevant to offshore wind projects. There is also evidence that in some circumstances the wind farm area. Table 6-1 summarises the offshore wind farms can have positive biodiversity key biodiversity impacts of offshore wind farm impacts (case study 1), including introduction of new development, with selected references. For more habitat, artificial reef effects and a fishery ‘reserve detailed information, read the IUCN Mitigating effect’ where marine fauna tend to aggregate due biodiversity impacts associated with solar and to the exclusion of fishing (Section 7.2.1). However, wind energy development Guidelines for project it should be noted that this may in turn lead to developers. -
The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry
The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry Mark Ruth, Dylan Cutler, Francisco Flores-Espino, Greg Stark, and Thomas Jenkin National Renewable Energy Laboratory The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy’s National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. Technical Report NREL/TP-6A50-66745 December 2016 Contract No. DE-AC36-08GO28308 The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry Mark Ruth, Dylan Cutler, Francisco Flores-Espino, Greg Stark, and Thomas Jenkin National Renewable Energy Laboratory Prepared under Task No. SA15.1008 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy’s National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for Sustainable Energy, LLC. The Joint Institute for Technical Report Strategic Energy Analysis NREL/TP-6A50-66745 15013 Denver West Parkway December 2016 Golden, CO 80401 303-275-3000 • www.jisea.org Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Download Broschure
OUR CLIMATE PROCTECTION PROJECTS All commitments in Germany, Europe and all over the world. Content In the past years, the market for voluntary compensation for greenhouse gases has developed very dynamically. Above all, voluntary market (VER) Climate protection projects 4 11 good reasons for a voluntary 31 projects are being used to compensate CO2 emissions. compensation Energy efficiency Most of the certificates traded on the German market were generated by Climate protection projects 32 The Paradigm Project Healthy Cookstove renewable energy projects. In case of buyers, which are especially compa- 5 Forest protection / Afforestation and Water Treatment nies, they are compensated for their company footprints (CCF), product 33 Toyola Clean Cookstoves footprints (PCF) and travel. The quality of the projects is the most impor- 6 PROJECT TOGO 34 BioLite Homestove Project tant factor when buying a certificate. 8 Deutschland Plus Buyers see in a voluntary compensatory market an insufficient supply 35 AAC blocks manufacturing unit based on energy efficient technology of certificates from less developed countries, from Germany and from 10 Deutschland Plus Alpen Anaerobic digestion and heat generationat Sugar high-quality forest projects. 11 Deutschland Plus Schwarzwald 36 We as natureOffice too, see the greatest added value for climate and Corporation of Uganda 12 Deutschland Plus Rhön human beings in these projects and therefore focus our own projects on the themes: 13 Deutschland Plus Hunsrück Climate protection projects 37 14 Deutschland -
Wind Power Reduces Environmental Impacts of Desalination Plants
10 November 2011 Wind power reduces environmental impacts of desalination plants Desalination plants, powered by wind energy, offer the potential to produce freshwater using a renewable source of energy. A recent study has explored some of the challenges of integrating wind energy with desalination units, and suggests combining wind with other forms of renewable energy, or constructing a system that operates with variable energy input would help overcome problems with wind powered desalination. Water security is becoming an increasingly urgent problem as populations grow and the demand for freshwater increases. One solution is the desalination (desalting) of seawater or brackish water to produce freshwater. However, the process of desalination consumes large amounts of energy. If the energy comes from fossil fuels, environmental pollution will increase. Using renewable sources of energy, such as wind power, is seen as a viable energy alternative. Worldwide, the use of renewable energy in desalination systems is not widespread and less than 1% of the capacities of desalination plants are powered by renewable energy. However, the development of small and medium-scale desalination plants using wind power is increasing. Since the early 1980s, wind-powered desalination plants or prototypes have been in operation, principally in Europe (Spain, France, Germany and the UK), Hawaii and Australia. The study identifies two desalination processes as particularly suitable to being powered by renewable sources: mechanical vapour compression (MVC) (a thermal desalination unit), during which the feed water is heated; and reverse osmosis (RO) (a non-phase change process), where a membrane is used to separate salts from the feed water. -
Wind Energy Technology Data Update: 2020 Edition
Wind Energy Technology Data Update: 2020 Edition Ryan Wiser1, Mark Bolinger1, Ben Hoen, Dev Millstein, Joe Rand, Galen Barbose, Naïm Darghouth, Will Gorman, Seongeun Jeong, Andrew Mills, Ben Paulos Lawrence Berkeley National Laboratory 1 Corresponding authors August 2020 This work was funded by the U.S. Department of Energy’s Wind Energy Technologies Office, under Contract No. DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Photo source: National Renewable Energy Laboratory ENERGY T ECHNOLOGIES AREA ENERGY ANALYSISAND ENVIRONMENTAL I MPACTS DIVISION ELECTRICITY M ARKETS & POLICY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. -
Microgeneration Strategy: Progress Report
MICROGENERATION STRATEGY Progress Report JUNE 2008 Foreword by Malcolm Wicks It is just over two years since The Microgeneration Strategy was launched. Since then climate change and renewables have jumped to the top of the global and political agendas. Consequently, it is more important than ever that reliable microgeneration offers individual householders the chance to play their part in tackling climate change. In March 2006, there was limited knowledge in the UK about the everyday use of microgeneration technologies, such as solar thermal heating, ground source heat pumps, micro wind or solar photovolatics. Much has changed since then. Thousands of people have considered installing these technologies or have examined grants under the Low Carbon Buildings Programme. Many have installed microgeneration and, in doing so, will have helped to reduce their demand for energy, thereby cutting both their CO2 emissions and their utility bills. The Government’s aim in the Strategy was to identify obstacles to creating a sustainable microgeneration market. I am pleased that the majority of the actions have been completed and this report sets out the excellent progress we have made. As a consequence of our work over the last two years, we have benefited from a deeper understanding of how the microgeneration market works and how it can make an important contribution to a 60% reduction in CO2 emissions by 2050. Building an evidence base, for example, from research into consumer behaviour, from tackling planning restrictions and from tracking capital costs, means that we are now in a better position to take forward work on building a sustainable market for microgeneration in the UK. -
U.S. Offshore Wind Power Economic Impact Assessment
U.S. Offshore Wind Power Economic Impact Assessment Issue Date | March 2020 Prepared By American Wind Energy Association Table of Contents Executive Summary ............................................................................................................................................................................. 1 Introduction .......................................................................................................................................................................................... 2 Current Status of U.S. Offshore Wind .......................................................................................................................................................... 2 Lessons from Land-based Wind ...................................................................................................................................................................... 3 Announced Investments in Domestic Infrastructure ............................................................................................................................ 5 Methodology ......................................................................................................................................................................................... 7 Input Assumptions ............................................................................................................................................................................................... 7 Modeling Tool ........................................................................................................................................................................................................ -
The Digital Energy System 4.0
The Digital Energy System 4.0 2016 May 2016 Authors and Contributors: Main authors: Pieter Vingerhoets, Working Group coordinator Maher Chebbo, ETP SG Digital Energy Chair Nikos Hatziargyriou, Chairman ETP Smart Grids Authors of use cases: Authors Company Chapters E-mail Project Georges Kariniotakis Mines-Paritech 3.2 [email protected] Anemos/Safewind Rory Donnelly 3E 3.1. [email protected] SWIFT Steven de Boeck Energyville, 4.1. [email protected] iTesla KU Leuven Anna-Carin Schneider RWE 4.2. [email protected] GRID4EU Anderskim Johansson Vattenfall 4.3 [email protected] GRID4EU Stephane Dotto SAP 4.4. [email protected] SAP view Nikos Hatziargyriou NTUA 4.5, [email protected] NOBEL grid, 5.1., SmarterEMC2, 6.2. Smarthouse Smartgrid Paul Hickey ESB 4.6. [email protected] Servo Antonello Monti RWTH Aachen 6.3, [email protected] FINESCE, 6.4., IDE4L, 7.1. COOPERATE Pieter Vingerhoets Energyville 6.1. [email protected] Linear KU Leuven Nina Zalaznik, Cybergrid 7.2., [email protected] eBadge, Sasha Bermann 7.3. Flexiciency Marcel Volkerts USEF 7.4. [email protected] USEF Speakers on the digitalization workshop: Rolf Riemenscheider (European Commission), Patrick Van Hove (European Commission), Antonello Monti (Aachen University), Joachim Teixeira (EDP), Alessio Montone (ENEL), Paul Hickey (ESB), Tom Raftery (Redmonk), Svend Wittern (SAP), Jean-Luc Dormoy (Energy Innovator). ETP experts and reviewers: Venizelos Efthymiou, George Huitema, Fernando Garcia Martinez, Regine Belhomme, Miguel Gaspar, Joseph Houben, Marcelo Torres, Amador Gomez Lopez, Jonathan Leucci, Jochen Kreusel, Gundula Klesse, Ricardo Pastor, Artur Krukowski, Peter Hermans. -
Phase-Out 2020: Monitoring Europe's Fossil Fuel Subsidies
Phase-out 2020 Monitoring Europe’s fossil fuel subsidies Ipek Gençsü, Maeve McLynn, Matthias Runkel, Markus Trilling, Laurie van der Burg, Leah Worrall, Shelagh Whitley, and Florian Zerzawy September 2017 Report partners ODI is the UK’s leading independent think tank on international development and humanitarian issues. Climate Action Network (CAN) Europe is Europe’s largest coalition working on climate and energy issues. Readers are encouraged to reproduce material for their own publications, as long as they are not being sold commercially. As copyright holders, ODI and Overseas Development Institute CAN Europe request due acknowledgement and a copy of the publication. For 203 Blackfriars Road CAN Europe online use, we ask readers to link to the original resource on the ODI website. London SE1 8NJ Rue d’Edimbourg 26 The views presented in this paper are those of the author(s) and do not Tel +44 (0)20 7922 0300 1050 Brussels, Belgium necessarily represent the views of ODI or our partners. Fax +44 (0)20 7922 0399 Tel: +32 (0) 28944670 www.odi.org www.caneurope.org © Overseas Development Institute and CAN Europe 2017. This work is licensed [email protected] [email protected] under a Creative Commons Attribution-NonCommercial Licence (CC BY-NC 4.0). Cover photo: Oil refinery in Nordrhein-Westfalen, Germany – Ralf Vetterle (CC0 creative commons license). 2 Report Acknowledgements The authors are grateful for support and advice on the report from: Dave Jones of Sandbag UK, Colin Roche of Friends of the Earth Europe, Andrew Scott and Sejal Patel of the Overseas Development Institute, Helena Wright of E3G, and Andrew Murphy of Transport & Environment, and Alex Doukas of Oil Change International. -
Electric Power Distribution in the World: Today and Tomorrow
Electric Power Distribution in the World: Today and Tomorrow EPRG Working Paper 1826 Cambridge Working Paper in Economics 1846 Sinan Küfeoğlu, Michael Pollitt & Karim Anaya Abstract In light of the increasing importance of distributed energy resources (DERs) in the electricity system, there is an ongoing need to understand the current status of electric power distribution across the world. This review paper compiles key information about the distribution systems in 175 countries worldwide. The findings for each country include the number, legal structure and ownership of distribution system operators, the access to electricity they provide, distribution level voltages, electric power frequency and the significance of renewable electricity generation. This study covers 99.4% of the world’s population. As of June 2018, there are around 7600 distribution system operators in these 175 countries. After reviewing today’s distribution system status, this paper also reviews the various discussions and proposals for tomorrow’s electric power distribution. The discussion covers both system operation and market platform roles as well as data management options for DSOs in the near future. Keywords distribution system operator; DSO; market platform; transmission system operator; TSO JEL Classification L94 Contact [email protected] Publication August 2018 Financial Support None www.eprg.group.cam.ac.uk Electric Power Distribution in the World: Today and Tomorrow Sinan Küfeoğlu1 Michael G. Pollitt Karim Anaya Energy Policy Research Group Energy Policy Research Group Energy Policy Research Group University of Cambridge University of Cambridge University of Cambridge Abstract In light of the increasing importance of distributed energy resources (DERs) in the electricity system, there is an ongoing need to understand the current status of electric power distribution across the world. -
Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.