Renewable Energy Australian Water Utilities

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy Australian Water Utilities Case Study 7 Renewable energy Australian water utilities The Australian water sector is a large emissions, Melbourne Water also has a Water Corporation are offsetting the energy user during the supply, treatment pipeline of R&D and commercialisation. electricity needs of their Southern and distribution of water. Energy use is These projects include algae for Seawater Desalination Plant by heavily influenced by the requirement treatment and biofuel production, purchasing all outputs from the to pump water and sewage and by advanced biogas recovery and small Mumbida Wind Farm and Greenough sewage treatment processes. To avoid scale hydro and solar generation. River Solar Farm. Greenough River challenges in a carbon constrained Solar Farm produces 10 megawatts of Yarra Valley Water, has constructed world, future utilities will need to rely renewable energy on 80 hectares of a waste to energy facility linked to a more on renewable sources of energy. land. The Mumbida wind farm comprise sewage treatment plant and generating Many utilities already have renewable 22 turbines generating 55 megawatts enough biogas to run both sites energy projects underway to meet their of renewable energy. In 2015-16, with surplus energy exported to the energy demands. planning started for a project to provide electricity grid. The purpose built facility a significant reduction in operating provides an environmentally friendly Implementation costs and greenhouse gas emissions by disposal solution for commercial organic offsetting most of the power consumed Sydney Water has built a diverse waste. The facility will divert 33,000 by the Beenyup Wastewater Treatment renewable energy portfolio made up of tonnes of commercial food waste Plant. Delivery of this project is expected cogeneration, hydroelectricity and solar, from landfill each year. The waste is to be complete in 2018. which now accounts for approximately delivered by trucks from commercial 20 per cent of its total energy demand. waste producers, such as markets and Many other utilities across the country Of this, cogeneration accounts for food manufacturing. As well as helping are also making a contribution. These approximately 15 per cent of energy to keep organics out of landfill it is also contributions range from small to large production, having been rolled out in helping to make recycling commercial scale. They include small-scale solar to eight of the larger wastewater treatment organic waste easier and more shared large-scale solar farms, wind plant sites. Sydney Water are now affordable for businesses. towers to supply all of a utility’s needs trialling co-digestion of sewage sludge and off-grid solutions. and organic food wastes; reflecting SA Water’s Bolivar wastewater a gradually changing mindset that treatment plant is 87 per cent Benefit / outcome Sydney Water could provide broader energy self-sufficient following new Financial benefits – reduced benefits as a ‘waste services’ provider infrastructure at the plant to make • energy costs and hedge against by expanding its current capability the best use of biogas to produce future price increases and treating one significant stream of waste. renewable energy. The renewable insecurity of supply. Hydroelectricity and a small amount of electricity generated at the Plant is solar is also generated in suitable sites enough to power 4000 houses a year. • Reduction in greenhouse gas within the network. SA Water is also taking large strides in emissions/climate change energy efficiency across its other sites. mitigation. Melbourne Water also has a significant Since 2013-14, its innovative energy Contribution to liveable and renewable energy program. Nine management program has helped • resilient cities. mini-hydros across Melbourne’s water reduce carbon emissions by 13,000 supply system generate 61,000 tonnes per year across wastewater • Reputational benefits for utilities. Megawatt hours of electricity each treatment sites. year – enough to power 9,000 Further References households. In all, the water supply Queensland Urban Utilities operates For more information please go to the network generates more electricity three cogeneration units at its biggest websites for: than it uses. On the wastewater side, sewage treatment plants at Oxley Creek – Sydney Water (sydneywater.com.au/ Melbourne Water captures biogas and Luggage Point. The state-of-the- SW/water-the-environment/what-we-re- from the waste treatment processes art technology produces up to 50 per doing/energy-management/index.htm); at both treatment plants, and uses it cent of the plants’ electricity needs, to power 40 per cent of the electricity delivering savings of up to $2.5 million a – Melbourne Water (melbournewater. required for treatment processes. The year. They have also unveiled Australia’s com.au/whatwedo/Liveability-and- Western Treatment Plant is on track to first poo-powered car. The car runs environment/energy/Pages/Energy- become energy self-sufficient (utilising on electricity generated from sewage efficiencies-and-renewable-sources.aspx). its own biogas) in 2016/17. As part of at the Oxley Creek Sewage Treatment its continued commitment to reduce Plant in Brisbane’s west. 26.
Recommended publications
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • An Overview of the State of Microgeneration Technologies in the UK
    An overview of the state of microgeneration technologies in the UK Nick Kelly Energy Systems Research Unit Mechanical Engineering University of Strathclyde Glasgow Drivers for Deployment • the UK is a signatory to the Kyoto protocol committing the country to 12.5% cuts in GHG emissions • EU 20-20-20 – reduction in EU greenhouse gas emissions of at least 20% below 1990 levels; 20% of all energy consumption to come from renewable resources; 20% reduction in primary energy use compared with projected levels, to be achieved by improving energy efficiency. • UK Climate Change Act 2008 – self-imposed target “to ensure that the net UK carbon account for the year 2050 is at least 80% lower than the 1990 baseline.” – 5-year ‘carbon budgets’ and caps, carbon trading scheme, renewable transport fuel obligation • Energy Act 2008 – enabling legislation for CCS investment, smart metering, offshore transmission, renewables obligation extended to 2037, renewable heat incentive, feed-in-tariff • Energy Act 2010 – further CCS legislation • plus more legislation in the pipeline .. Where we are in 2010 • in the UK there is very significant growth in large-scale renewable generation – 8GW of capacity in 2009 (up 18% from 2008) – Scotland 31% of electricity from renewable sources 2010 • Microgeneration lags far behind – 120,000 solar thermal installations [600 GWh production] – 25,000 PV installations [26.5 Mwe capacity] – 28 MWe capacity of CHP (<100kWe) – 14,000 SWECS installations 28.7 MWe capacity of small wind systems – 8000 GSHP systems Enabling Microgeneration
    [Show full text]
  • The Opportunity of Cogeneration in the Ceramic Industry in Brazil – Case Study of Clay Drying by a Dry Route Process for Ceramic Tiles
    CASTELLÓN (SPAIN) THE OPPORTUNITY OF COGENERATION IN THE CERAMIC INDUSTRY IN BRAZIL – CASE STUDY OF CLAY DRYING BY A DRY ROUTE PROCESS FOR CERAMIC TILES (1) L. Soto Messias, (2) J. F. Marciano Motta, (3) H. Barreto Brito (1) FIGENER Engenheiros Associados S.A (2) IPT - Instituto de Pesquisas Tecnológicas do Estado de São Paulo S.A (3) COMGAS – Companhia de Gás de São Paulo ABSTRACT In this work two alternatives (turbo and motor generator) using natural gas were considered as an application of Cogeneration Heat Power (CHP) scheme comparing with a conventional air heater in an artificial drying process for raw material in a dry route process for ceramic tiles. Considering the drying process and its influence in the raw material, the studies and tests in laboratories with clay samples were focused to investigate the appropriate temperature of dry gases and the type of drier in order to maintain the best clay properties after the drying process. Considering a few applications of CHP in a ceramic industrial sector in Brazil, the study has demonstrated the viability of cogeneration opportunities as an efficient way to use natural gas to complement the hydroelectricity to attend the rising electrical demand in the country in opposition to central power plants. Both aspects entail an innovative view of the industries in the most important ceramic tiles cluster in the Americas which reaches 300 million squares meters a year. 1 CASTELLÓN (SPAIN) 1. INTRODUCTION 1.1. The energy scenario in Brazil. In Brazil more than 80% of the country’s installed capacity of electric energy is generated using hydropower.
    [Show full text]
  • Phase-Out 2020: Monitoring Europe's Fossil Fuel Subsidies
    Brief Czech Republic France Germany Greece Hungary Phase-out 2020: monitoring Italy Netherlands Poland Europe’s fossil fuel subsidies Spain Sweden Leah Worrall and Matthias Runkel United Kingdom September 2017 European Union Italy Key Leading on phasing out fossil fuel subsidies: findings • Italy is demonstrating commitment to report on its fossil fuel subsidies, as part of the EU agreements. Following the approval of a Green Economy package by Parliament, the Italian Ministry of Environment released a summary of subsidies with harmful and beneficial impacts on the environment. This includes Italy’s tax expenditures and budgetary support for fossil fuels, but does not include support provided through public finance or state-owned enterprises . • Domestic oil and gas production are in decline, which may account for low domestic support for fossil fuel production infrastructure in Italy through its development bank Cassa Depositi e Prestiti (CDP). • Remaining national subsidies to coal mining and coal-fired power are comparatively low in Italy, indicating the possibility for a complete phase-out of support for these subsidies by 2018, in line with its EU-level commitment to phase out hard-coal mining by 2018. Lagging on phasing out fossil fuel subsidies: • The Fiscal Reform Delegation Law introduced in 2014 required the removal of environmentally harmful subsidies, but it has never been implemented. All sectors reviewed in this analysis still receive fossil-fuel subsidies (see Table 1). • The transport sector receives the most support through government spending. This includes a reduced excise tax rate for diesel compared with petrol fuel, at an annual average cost of €5 billion.
    [Show full text]
  • Thermal Storage Impact on CHP Cogeneration Performance with Southwoods Case Study Edmonton, Alberta Michael Roppelt C.E.T
    Thermal Storage Impact on CHP Cogeneration Performance with Southwoods Case Study Edmonton, Alberta Michael Roppelt C.E.T. CHP Cogeneration Solar PV Solar Thermal Grid Supply Thermal Storage GeoExchange RenewableAlternative & LowEnergy Carbon Microgrid Hybrid ConventionalSystemSystem System Optional Solar Thermal Option al Solar PV CNG & BUILDING OR Refueling COMMUNITY Station CHP Cogeneration SCALE 8 DEVELOPMENT Hot Water Hot Water DHW Space Heating $ SAVINGS GHG OPERATING Thermal Energy Cool Water Exchange & Storage ElectricalMicro Micro-Grid-Grid Thermal Microgrid Moving Energy not Wasting Energy Natural Gas Combined Heat and Power (CHP) Cogeneration $350,000 2,500,000 kWh RETAILINPUT OUTPUT VALUE NATURAL GAS $400,000. $100,000.30,000 Gj (85% Efficiency) CHP $50,000 Cogeneration15,000 Energy Gj Technologies CHP Unit Sizing Poorly sized units will not perform optimally which will cancel out the benefits. • For optimal efficiency, CHP units should be designed to provide baseline electrical or thermal output. • A plant needs to operate as many hours as possible, since idle plants produce no benefits. • CHP units have the ability to modulate, or change their output in order to meet fluctuating demand. Meeting Electric Power Demand Energy Production Profile 700 Hourly Average 600 353 January 342 February 500 333 March 324 April 400 345 May 300 369 June 400 July 200 402 August 348 September 100 358 October 0 362 November 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Meeting Heat Demand with CHP Cogeneration Energy Production Profile Heat Demand (kWh) Electric Demand (kWh) Cogen Heat (kWh) Waste Heat Heat Shortfall Useable Heat CHP Performance INEFFICIENCY 15% SPACE HEATING DAILY AND HEAT 35% SEASONAL ELECTRICAL 50% IMBALANCE 35% 50% DHW 15% Industry Studies The IEA works to ensure reliable, affordable and clean energy for its 30 member countries and beyond.
    [Show full text]
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • A Model for Internalization of Environmental Effects for Different Cogeneration Technologies
    2nd WSEAS/IASME International Conference on ENERGY PLANNING, ENERGY SAVING, ENVIRONMENTAL EDUCATION (EPESE'08) Corfu, Greece, October 26-28, 2008 A model for internalization of environmental effects for different cogeneration technologies ROXANA PATRASCU AND EDUARD MINCIUC Faculty of Power Engineering University Politehnica of Bucharest Splaiul Independentei 313, Bucharest, Postal Code 060032 ROMANIA Abstract: - Economic quantification of environmental effects should be found in the energy price. European research studies underline the main characteristics of environmental taxes, which comparing to other taxes, lead to improved energy and economic efficiencies. This is due to that fact that environmental taxes stimulate utilization of clean and renewable energy sources as well as clean energy production technologies. The article presents a model for internalization of environmental aspects for different cogeneration technologies: steam turbine, gas turbine and internal combustion engine. The model is validated using a cogeneration plant at an industrial company. A special importance for establishing the model has been paid to the hypotheses needed to economically quantify the environmental effects. Using the proposed model there has been established that environmental taxes has great influence on energy prices and on establishing the optimal technical solution for cogeneration plant. Key-Words: - energy, environment, cogeneration, eco-taxes, pollutants 1 Introduction Presently, there are the following types of taxes that The technical and economic efficiency of are used: cogeneration technologies that use fossil fuels Energy tax – a quantitative tax applied to should include the effects of environmental taxes. energy consumption; The environmental impact of different cogeneration Different pollutant tax (CO2, SO2, NOx, etc.) technologies using fossil fuels are quantified by – qualitative tax, that can really lead to some different criteria that cannot be used in an economic changes.
    [Show full text]
  • Renewables in Latin America and the Caribbean 25 May 2016
    Renewables in Latin America and the Caribbean 25 May 2016 HEADLINE Renewable generation capacity by energy source FIGURES At the end of 2015, renewable 7% 2% generation capacity in Latin America 212 GW 10% and the Caribbean amounted to 212.4 GW. Hydro accounted for the Renewable largest share of the regional total, generation capacity with an installed capacity of 172 GW. at the end of 2015 The vast majority of this (95%) was in large-scale plants of over 10 MW. 81% 6.6% Bioenergy and wind accounted for Growth in renewable most of the remainder, with an installed capacity of 20.8 GW and capacity during 2015, Hydro Bioenergy Wind Others the highest rate ever 15.5 GW respectively. Other renewables included 2.2 GW of solar photovoltaic energy, 1.7 GW of 13.1 GW geothermal energy and about 50 kW of experimental marine energy. Increase in renewable generation capacity Capacity growth in the region in 2015 GW GW 817 TWh 250 6 Renewable electricity 5 200 generation in 2014 4 13% 150 3 Growth in renewable 100 generation in 2014, 2 excluding large hydro 50 1 10% 0 0 Growth in liquid 2011 2012 2013 2014 2015 Capacity added in 2015 biofuel consumption Hydropower Bioenergy Wind Solar Geothermal in 2014 IRENA’s renewable Renewable generation capacity increased by 13.1 GW during 2015, the largest energy statistics can be annual increase since the beginning of the time series (year 2000). Hydroelectric downloaded from capacity increased by 5.5 GW followed by wind energy, with an increase of resourceirena.irena.org 4.6 GW.
    [Show full text]
  • Combined Heat & Power (CHP), Also Known As Cogeneration, Supplies
    TEXAS COMBINED HEAT AND POWER INITIATIVE www.texaschpi.org P.O. Box 1462 Austin, Texas 78767 512.705.9996 Combined Heat & Power (CHP), also known as cogeneration, supplies 20% of the electricity in Texas. CHP uses well-known technologies that can be deployed quickly and cost-effectively in a wide variety of industrial, institutional and commercial applications. And similar to the commonly known renewable energy sources, CHP consumes very little water. By all accounts, CHP It is the most efficient way to generate power from fuel including natural gas, waste or byproducts, biogas, or biomass. Typically, power generation is an inherently inefficient process that creates heat but with CHP the heat is used to displace fuel instead of evaporating cooling water as is required with conventional power generation. Texas leads the nation in CHP generation with about 16 GW, or 20% of total US capacity. Texas added 10,000 MWe of CHP capacity between 1995 and 2002 and the bulk of this was comprised of large (100+ MWe) systems located at industrial sites. However, economic and policy barriers have limiting further gains, especially of smaller CHP systems. We believe the state is at a cross roads where the implementation of smart policies supportive of CHP could stimulate another burst of CHP development and significant growth in industrial and commercial projects. Growth in CHP is needed because it is a dispatchable, distributed resource that reduces energy consumption, provides impressive air emission savings, saves water, improves energy reliability and security, and makes Texas businesses more competitive in world markets. TXCHPI estimates that the existing CHP capacity reduces water consumption by 28 billion gallons or 85,000 acre-feet per year.
    [Show full text]
  • 163 Bioenergynews15.1
    iea news june 2003.qxd 17/06/2003 8:25 a.m. Page 1 Bioenergy set for growth in Australia Guest Editorial by Dr Stephen Schuck, Member for Australia Bioenergy is relatively well established in some sectors in Australia. The installed electricity generating capacity at Australia’s 30 sugar mills, using bagasse, totals 369 MW. Australia is a leader in capturing and using landfill gas. Some 29 projects across Australia, up to 13 MW in size, have a total installed capacity of close to 100 MW. There are also 11 wastewater treatment plants around Australia which capture biogas for producing 24 MW of electricity. In addition, 6 to 7 million tonnes of firewood are used in Australia every year. In recent years there has been increased interest in the development of bioenergy to meet government greenhouse gas reduction targets. In April 2001, Australia’s Mandatory Renewable Energy Target (MRET) came into force. The Target requires an additional 9,500 GWh of new renewable electricity to be generated per year from sources such as bioenergy. It is set to raise Australia’s renewable energy proportion from 10.5% in 1997 to approximately 12.5% percent by 2010. The MRET has provided a stimulus for bioenergy in Australia. For instance Australia’s oldest sugar mill, the Rocky Point Mill in South Eastern Queensland, has been upgraded to 30 MWe for year-round operation, using wood waste in the non-crushing season. Australia’s first large-scale anaerobic digester (82,000 tonnes per year) fed by food and other organic wastes is currently being commissioned near Sydney.
    [Show full text]
  • Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
    energies Article Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Vasileios Kitsikoudis 1,*, Pierre Archambeau 1 , Benjamin Dewals 1, Estanislao Pujades 2, Philippe Orban 3, Alain Dassargues 3 , Michel Pirotton 1 and Sebastien Erpicum 1 1 Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.A.); [email protected] (B.D.); [email protected] (M.P.); [email protected] (S.E.) 2 Department of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 3 Hydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.O.); [email protected] (A.D.) * Correspondence: [email protected] or [email protected]; Tel.: +32-478-112388 Received: 22 April 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems.
    [Show full text]
  • COGEN Europe Position Paper in Response to European Commission Consultation on “Strategy for Long-Term EU Greenhouse Gas Emissions Reductions”
    COGEN Europe Position Paper In response to European Commission Consultation on “Strategy for long-term EU greenhouse gas emissions reductions” Brussels, 09/10/2018 In the context of the Paris Agreement, the EU has set ambitious energy and climate change objectives to ensure that it relies on secure, affordable and climate-friendly energy. The cogeneration sector is committed to the creation of a resilient, decentralised and carbon neutral European energy system by 2050 with cogeneration as its backbone. Cogeneration empowers European citizens and industry to generate efficiently reliable and affordable clean heat and power locally, thus representing a “no regrets” solution for delivering EU’s energy and climate objectives both in the medium and long term. The EU’s 2030 climate and energy framework, which is currently taking shape, has reaffirmed Europe’s commitment to implementing energy efficiency first, to putting consumers at the centre and cementing Europe’s leadership in renewable energy production and use, all while reducing CO2 emissions and boosting competitiveness and growth. Moving beyond 2030, the EU’s Strategy for long- term EU greenhouse gas emissions reductions should: ✓ continue to integrate the “energy efficiency first” principle by prioritising primary energy savings across the entire energy value chain and applying it to all energy sources. Energy and climate policy should in a consistent and effective manner ensure that high efficiency cogeneration is set as the default option over the separate and inefficient production of 1 heat and electricity; ✓ take an integrated approach to energy systems, promoting a mix of decarbonisation solutions across the key energy infrastructures (i.e.
    [Show full text]