Shale Gas and Groundwater Quality

Total Page:16

File Type:pdf, Size:1020Kb

Shale Gas and Groundwater Quality Shale Gas and Groundwater Quality A literature review on fate and effects of added chemicals Alette Langenhoff 1202141-008 © Deltares, 2011 1202141-008-ZWS-0001, 28 December 2011, final Contents 1 Introduction 1 2 The process of fracturing or fracking 5 3 The use of chemicals 7 4 Polyacrylamide 8 4.1 Aerobic degradation of polyacrylamide 8 4.2 Anaerobic degradation 10 4.3 Chemical or physical removal 10 4.4 Conclusion on removal of polyacrylamide 10 5 Glutaraldehyde 12 5.1 Biocide 12 5.2 Biodegradation 12 5.3 Chemical inactivation of glutaraldehyde 13 6 Conclusions 14 7 References 15 Appendices 17 Appendices A Chemicals identified in hydraulic fracturing fluid and flowback/produced water (EPA, 2011). A-1 B Fracturing fluid ingredients and common uses (Europe Unconventional Gas 2011) B-1 C Properties of Polyacrylamide (source: Wikipedia) C-1 D Properties of Glutaraldehyde (source: Wikipedia) D-1 Shale Gas and Groundwater Quality i 1202141-008-ZWS-0001, 28 December 2011, final 1 Introduction Shale gas is a so-called unconventional sources of natural gas, and is one of the most rapidly expanding trends in onshore domestic oil and gas exploration and production today (Fig. 1 and 2). Shale gas is present in hydrocarbon rich shale formations. Shallow gas is commonly defined as gas occurrences in unconsolidated sediments of Tertiary age (often down to depths of 1000 m below surface). The occurrences are positively associated with thick Neogene sediments and are often trapped in anticlinal structures associated with rising salt domes (Muntendam-Bos et al, 2009). Shale has low matrix permeability, so gas production in commercial quantities requires fractures to provide permeability. Hydraulic fracturing (fracking) creates extensive artificial fractures around well bores, making gas exploration possible. Figure 1 Conventional gas and shale gas exploration (source DTE Energy) Shale Gas and Groundwater Quality 1 1202141-008-ZWS-0001, 28 December 2011, final Figure 2 Detail of onconventional gas and shale gas exploration (Time, april 2011)) Shale gas has become an increasingly important source of natural gas in the United States over the past decade (Fig. 3), and interest has spread to potential gas shales in the rest of the world. It is believed that also Canada and Europe (e.g. in the Netherlands and Poland) will have large supplies of shale gas (Muntendam-Bos et al, 2009). Other advantages are the reduced CO2 emissions compared to charcoal or oil, and the independency of foreign supplies. Shale Gas and Groundwater Quality 2 1202141-008-ZWS-0001, 28 December 2011, final Figure 3 Expected natural gas supplies in the US, including shale gas. Europe’s dependency on natural gas is already considerable, with conventional gas accounting for 25% of the primary energy need. Half of this natural gas comes from intercontinental imports (pipeline and shipments). Off-setting the decline of Europe’s indigenous gas production from conventional fields by the development of indigenous unconventional gas fields could lower its dependency on imports from abroad. The unlocking of Europe’s unconventional gas resources therefore would increase the security of gas supply (Weijermars et al, 2011). Shale gas development requires significant amounts of water (hydraulic fracturing) and is often conducted near valuable surface and ground water. Hydraulic fracturing is a well stimulation technique used to maximize production of oil and natural gas in unconventional reservoirs, such as shale. During hydraulic fracturing, specially engineered fluids containing chemical additives and proppant1 are pumped under high pressure into the well to create and hold open fractures in the formation. These fractures increase the exposed surface area of the rock in the formation and, in turn, stimulate the flow of natural gas or oil to the well bore. As the use of hydraulic fracturing has increased, so have concerns about its potential environmental and human health impacts. In the US, many concerns about hydraulic fracturing focus on potential risks to drinking water resources (EPA, 2011). Questions on the impact of such activities arise, e.g. the nature of shale gas development, the potential environmental impacts, and the ability of the current regulatory structure to deal with this development. 1. Proppant; Suspended particles in the fracturing fluid that are used to hold fractures open after a hydraulic fracturing treatment, thus producing a conductive pathway that fluids can easily flow along. Naturally occurring sand grains or artificial ceramic material are common proppants used (source; Wikipedia). Shale Gas and Groundwater Quality 3 1202141-008-ZWS-0001, 28 December 2011, final In the Netherlands, the British company Cuadrilla had successfully applied for a permission for a shale gas test drilling in Boxtel, in the province of Brabant. This has caused a lot of commotion in the Netherlands. In response to this public concern about announced test drillings in the Netherlands, the ministry of Economic Affairs, Agriculture and Innovation (EL&I) has announced that independent research has to be carried out before any further activities are allowed. We have discussed shale gas exploration and possible impacts with various stakeholders, e.g. the Ministry of Infrastructure and the Environment (I&M), the Ministry of Economic Affairs Agriculture and Innovation (EL&I), DG Environment EU Brussels, Nicole (Network for Industrially Contaminated Land in Europe), TNO, KWR, RIVM, and Shell. It became obvious that stakeholders need an objective source of information on the impact of shale gas development. During a brainstorm session on shale gas by Deltares and TNO, the following research questions were identified: • Risk analyses, including leaking of well-casings; • Groundwater management; • Water cycle; • Monitoring. An integrated approach of these topics is foreseen and we have further discussed the formation of a consortium of TNO, Deltares, RIVM and KWR, to work on these topics. This report gives a literature review on one of the environmental impacts of shale gas exploration: the effects of the chemicals used in the fracturing process. A short description of the fracturing process is given, followed by the chemicals that are used, the degradability of the chemicals, followed by a conclusion on the environmental impact of these chemicals. Shale gas exploration uses fracturing fluids of different volumes and compositions. Chapter 3 describes the numerous chemicals that are mentioned to be used in the US and Canada. Cuadrilla, the company that is planning the first bore drilling in the Netherlands, has mentioned to use only two chemicals, polyacrylamide and glutaraldehyde. Therefore, this report will be limited to those chemicals reported to be used in the Netherlands. Other effects on groundwater quality are the release of salt, metals, methane and radioactive compounds from deeper layers. These topics are beyond the scope of the current literature review and will not be discussed in this report. Shale Gas and Groundwater Quality 4 1202141-008-ZWS-0001, 28 December 2011, final 2 The process of fracturing or fracking Hydraulic fracturing is the propagation of fractures in a rock layer caused by the presence of a pressurized fluid, in order to release the poresent natural gas (Fig. 4). The energy from the injection of a highly-pressurized fracking fluid, creates new channels in the rock which can increase the extraction rates and ultimate recovery of the natural gas. The fracture width is typically maintained after the injection by introducing a proppant into the injected fluid. Proppant is a material, such as grains of sand, ceramic, or other particulates, that prevent the fractures from closing when the injection is stopped. Figure 4 The process of hydraulic fracturing (EPA, 2011) The fracturing process consists of a series of injections using different volumes and compositions of fracturing fluids (GWPC & ALL-Consulting, 2009). Sometimes a small amount of fluid is pumped into the well before the actual fracturing begins. This “mini-frac” may be used to help determine reservoir properties and to enable better fracture design (API 2009). Shale Gas and Groundwater Quality 5 1202141-008-ZWS-0001, 28 December 2011, final In the first stage of the fracture job, fracturing fluid2 (typically without proppant) is pumped down the well at high pressures to initiate the fracture. The fracture initiation pressure will depend on the depth and the mechanical properties of the formation. A combination of fracturing fluid and proppant is then pumped into the well in varying amounts and concentrations. After the combination is pumped in, a water flush is used to begin flushing out the fracturing fluid (Arthur et al., 2008). 2 Fracturing fluid; The fluid used during a hydraulic fracture treatment of oil, gas or water wells. The fracturing fluid has two major functions: (1) Open and extend the fracture, (2) Transport the proppant along the fracture length (source; Wikipedia). Shale Gas and Groundwater Quality 6 1202141-008-ZWS-0001, 28 December 2011, final 3 The use of chemicals The make-up of fracturing fluid varies from one geologic basin or formation to another. Evaluating the relative volumes of the components of a fracturing fluid reveals the relatively small volume of additives that are present. Overall the concentration of additives in most fracturing fluids is relatively consistent, 0.5% to 2%, with water making up 98% to 99.5% (GWPC & ALL-Consulting, 2009). In 2009, a review of chemical use in fracking operations by the New York State Department of Environmental Conservation’s Division of Mineral Resources listed 257 additives that may be mixed with the water injected into shale formations during the fracking process. They provided a breakdown of the known chemicals that stretched 10 pages long, including carcinogenic chemicals (Parfitt, 2011). In 2011, the EPA has compiled a list of chemicals that are publicly known to be used in hydraulic fracturing (Table A). However, the chemicals in this table do not represent the entire set of chemicals used in hydraulic fracturing activities.
Recommended publications
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Sodium Diacetate
    Technical Data Sheet Ref.: 2019_12v09 Sodium Diacetate Stability Description SodiumDiacetate is stable for 3 years from Sodium Diacetate is available as a free date of production. Physical stability and flowing white crystal, containing appearance may change before the end of approximately equimolar amounts of shelf-life if not stored single-stacked in Sodium Acetate and acetic acid. closed original packaging, dry and at room temperature. PRODUCT PROPERTIES Handling Product is classified as irritant. Always Product name Sodium Diacetate check the Safety Data Sheet and label Formula CH3COONaCH3COOH before using the product. Molecular weight 142.08 g/mol CAS No. 126-96-5 Packaging EINECS No. 2048149 Sodium Diacetate crystal is packed in 900 kg big bags. HS code US 2915.29.5000 HS code EU 2915.29.00 Safety precautions Please see the Safety Data Sheet before handling the material. Product grades Sodium Diacetate has a free acetic acid content of 40% - 43%. Application Sodium Diacetate is used in haemodialysis. The product is also used in other applications where it is advantageous to use a solid source of free acetic acid, e.g. for safer handling and reduced transportation costs. Warranty. This information herein is offered as a guide and is believed to be accurate and reliable as of the date of the printing. The values given are not to be considered as a warranty and they are subject to change without prior notice. For additional information regarding our products or for information concerning current specifications, please contact our Technical Service. Niacet Corporation www.niacet.com Niacet b.v. 400, 47th Street P.O.
    [Show full text]
  • Meat Curing and Sodium Nitrite
    MEDIA MYTHCRUSHER Meat Curing and Sodium Nitrite The use of nitrite to produce cured meats like salami, ham, bacon and hot dogs, is a safe, regulated practice that has distinct public health benefits. However, much confusion and even mythology surrounds nitrite. Being mindful of key words and statistics and providing appropriate context can help reporters improve the accuracy of their coverage and the information that is passed on to readers and viewers. We’ve compiled ten tips to improve accuracy when writing about the use of sodium nitrite in cured meats. #1: Nitrite is not ‘unnatural’. Before the terms nitrate and nitrite are often used refrigeration was available, humans salted and interchangeably, meat companies mainly use dried meat to preserve it. It was discovered sodium nitrite to cure meat, not sodium nitrate. that the nitrate in saltpeter was extremely At the turn of the 20th century, German effective in causing a chemical reaction known scientists discovered nitrite (and not nitrate) as “curing.” Not only did this give meat a was the active form of these curing salts. When distinct taste and flavor, it also preserved it and added directly, rather than as nitrate, meat prevented the growth of Clostridium botulinum, processors can have better control of this which causes botulism. important curing ingredient and more closely manage how much they are adding. Later on, scientists came to understand that nitrate naturally found in the environment #3: Cured meats are a miniscule source of converts to nitrite when in the presence of total human nitrite intake. Scientists say that certain bacteria.
    [Show full text]
  • Effects of Sodium Citrate Plus Sodium Diacetate and Buffered Vinegar on Escherichia Coli O157:H7 and Psychrotrophic Bacteria in Brine-Injected Beef
    359 Journal of Food Protection, Vol. 74, No. 3, 2011, Pages 359–364 doi:10.4315/0362-028X.JFP-10-294 Copyright G, International Association for Food Protection Effects of Sodium Citrate plus Sodium Diacetate and Buffered Vinegar on Escherichia coli O157:H7 and Psychrotrophic Bacteria in Brine-Injected Beef AMUDHAN PONRAJAN,1,2 MARK A. HARRISON,1 JACOB R. SEGERS,2 BRADLEY K. LOWE,2 RUSSELL O. MCKEITH,2 T. DEAN PRINGLE,2 KARINA G. MARTINO,1 JAKE H. MULLIGAN,1 AND ALEXANDER M. STELZLENI2* Downloaded from http://meridian.allenpress.com/jfp/article-pdf/74/3/359/1685103/0362-028x_jfp-10-294.pdf by guest on 01 October 2021 1Department of Food Science and Technology and 2Department of Animal and Dairy Sciences, University of Georgia, Athens, Georgia 30602, USA MS 10-294: Received 15 July 2010/Accepted 4 December 2010 ABSTRACT The objective of this research was to examine the effects of sodium citrate plus sodium diacetate or buffered vinegar on Escherichia coli O157:H7 and psychrotrophic bacteria when incorporated in brine solutions for injected beef. Two experiments were conducted in which 30 top rounds and 30 top sirloins were injected (110%) to contain (i) 0.5% sodium chloride and 0.4% sodium tripolyphosphate as the control (CNT); (ii) CNT with a 1% solution of 80% sodium citrate plus 20% sodium diacetate (SCzD); or (iii) CNT with 2% buffered vinegar (VIN) in the final product. For the E. coli challenge, muscles were surface inoculated to target 6 log CFU/cm2. After injection and 10 days of storage in a vacuum package (4uC), one half of each muscle was sampled raw and the other half was cooked to an internal temperature of 60uC with a 12-min hold.
    [Show full text]
  • STAC-V : Chemical Resistance List Max Temperature
    S TA C Industrial Coatings STAC-V : Chemical Resistance List Max Temperature Chemical Formula Alias Concentration V1 V2 Note Acetaldehyde CH3-CH=O Acetic aldehyde 100 % n.r. n.r. Aldehyde Ethanal Ethyl aldehyde Acetic acid CH3-CO-OH Acetic acid glacial 010 % 90 100 0 Ethanoic acid Ethylic acid Glacial acetic acid Methane carboxylic acid Vinegar acid Vinegar Hac 015 % 90 100 0 025 % 90 100 0 040 % 80 90 050 % 70 80 075 % 60 65 080 % 45 45 085 % 45 45 100 % n.r. 25 Acetic acid : nitric acid : CH3-CO-OH : HNO3 : Cr2O3 Ethylic acid : salpeterzuur : 03:05:03 65 80 chromic oxide chromium oxide Acetic acid : sulfuric acid CH3-CO-OH : H2SO4 Ethylic acid : dihydrogen sulfate 20:10 100 100 Acetic anhydride CH3-CO-O-CO-CH3 Acetyl acetate 100 % n.r. n.r. Acetanhydride Acetic oxide Acetyl ether Acetyl oxide Acetone CH3-CO-CH3 Propanone 005 % 80 80 Propan-2-one Dimethyl ketone β-Ketopropane[ Propanone 2-Propanone Dimethyl formaldehyde Pyroacetic spirit (archaic) 010 % 80 80 100 % n.r. n.r. Acetone : MEK : MiBK CH3-CO-CH3 : CH3-CO-CH2- Acetone : methylethyl ketone : 02:02:02 n.r. 40 CH3 : CH3-CO-CH2-CH2-CH3 methylisobutyl ketone Acetonitrile CH3-CN Cyanomethane all n.r. n.r. Ethanenitrile Ethyl nitrile Methanecarbonitrile Methyl cyanid Acetyl chloride CH3-CO-Cl Acetic chloride 100 % n.r. n.r. Ethanoyl chloride Acetylacetone CH3-CO-CH2-CO-CH3 Pentane-2,4-dione 020 % 40 50 2,4-Pentanedione 2,4-Dioxopentane 2,4-Pentadione acetyl-2-Propanone Acac Acetoacetone Diacetylmethane 100 % n.r.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC
    Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-06/105 September 2006 Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC By S. H. Hilal Ecosystems Research Division National Exposure Research Laboratory Athens, Georgia U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 NOTICE The information in this document has been funded by the United States Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and has been approved for publication. Mention of trade names of commercial products does not constitute endorsement or recommendation for use. ii ABSTRACT SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external mechanistic perturbation components. The internal perturbations quantify the interactions of the appended perturber (P) with the reaction center (C). These internal perturbations are factored into SPARC’s mechanistic components of electrostatic and resonance effects. External perturbations quantify the solute-solvent interactions (solvation energy) and are factored into H-bonding, field stabilization and steric effects. These models have been tested using 1471 reliable measured base, acid and general base-catalyzed carboxylic acid ester hydrolysis rate constants in water and in mixed solvent systems at different temperatures.
    [Show full text]
  • Effect of Sodium Nitrite, Sodium Erythorbate and Organic Acid Salts on Germination and Outgrowth of Clostridium Perfringens Spores in Ham During Abusive Cooling
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Science and Technology Food Science and Technology Department Fall 9-19-2011 Effect of Sodium Nitrite, Sodium Erythorbate and Organic Acid Salts on Germination and Outgrowth of Clostridium perfringens Spores in Ham during Abusive Cooling Mauricio A. Redondo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/foodscidiss Part of the Food Chemistry Commons, Food Microbiology Commons, and the Food Processing Commons Redondo, Mauricio A., "Effect of Sodium Nitrite, Sodium Erythorbate and Organic Acid Salts on Germination and Outgrowth of Clostridium perfringens Spores in Ham during Abusive Cooling" (2011). Dissertations, Theses, & Student Research in Food Science and Technology. 18. https://digitalcommons.unl.edu/foodscidiss/18 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EFFECT OF SODIUM NITRITE, SODIUM ERYTHORBATE AND ORGANIC ACID SALTS ON GERMINATION AND OUTGROWTH OF CLOSTRIDIUM PERFRINGENS SPORES IN HAM DURING ABUSIVE COOLING By Mauricio Redondo-Solano A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the supervision of Professor Harshavardhan Thippareddi Lincoln, Nebraska September, 2011 EFFECT OF SODIUM NITRITE, SODIUM ERYTHORBATE AND ORGANIC ACID SALTS ON GERMINATION AND OUTGROWTH OF CLOSTRIDIUM PERFRINGENS SPORES IN HAM DURING ABUSIVE COOLING Mauricio Redondo-Solano, M.
    [Show full text]
  • Summary of Fracfocus 1.0 Hydraulic Fracturing Data User Guide for State Summaries
    Summary of FracFocus 1.0 Hydraulic Fracturing Data User Guide for State Summaries The Ground Water Protection Council (GWPC) and the Interstate Oil and Gas Compact Commission (IOGCC) launched the FracFocus Chemical Disclosure Registry in 2011 to provide information to the public about the chemicals used in hydraulic fracturing fluids. Background on FracFocus 1.0 Operators submit information on the composition of fluids used for hydraulic fracturing operations at individual oil and gas production wells on specific dates. These submissions, or "disclosures" as they are commonly called, are searchable by the public and available as PDF files. Disclosures provide information on the fracture date, location, well number and name, well operator, intended production type of the well, depth, total water volume used, trade name and purpose of additives, and ingredients in fracturing fluid, as shown below. Operators initially disclosed information to FracFocus 1.0 voluntarily. During the period of time studied in this report (January 1, 2011 through February 28, 2013), 14 states enacted regulations requiring oil and gas production well operators to disclose hydraulic fracturing chemicals to the public. Four of these states require reporting to FracFocus (one allows reporting to the state, which will then submit the information to FracFocus), two states require reporting to both FracFocus and the state, three states offer the choice of reporting to the state or FracFocus, and five states require reporting directly to the state. Example disclosure from FracFocus 1 Summary of FracFocus 1.0 Hydraulic Fracturing Data User Guide for State Summaries How the EPA Conducted Its Analysis of FracFocus 1.0 Data The goal of this project was to gain a better understanding of the composition of fracturing fluid and water usage for hydraulic fracturing.
    [Show full text]
  • I Norgan Ic C He Mi Str Y
    View Article Online / Journal Homepage / Table of Contents for this issue INORGANIC CHEMISTRY. 443 I n o r g a n ic C h e mi s t r y. Composition of Atmospheres which Extinguish Flame. By FRANKCLOWES ( PTOC. Roy. Soc., 1894, 56, 2-6) .--The experimental flame burning at a platinum jet 1 mm. in diameter, was 0.75 in. in height; it was gradually lowered into a cylinder containing the atmosphere of mixed gases, and these were considered to be in extinctive proportions if the flame was extinguished during its downward passage, or immediately on attaining its lowest position in the cylinder. The gaseous mixture was regarded as containing the minimum quantitr of extinctive gas, when the flame on being lowered into another mixture containing 1 per cent. less of such gas continued to burn in it for a few seconds before being ex- tinguished. Experiments made with flames of hydrogen and Published on 01 January 1895. Downloaded 25/10/2014 07:12:09. alcohol, varying from 0.4 in. to 1.5 in. in height, show that the varying dimensions of the flame are without influence on the proportion of carbonic anhydride in the air necessary to pro- duce extinction. Characteristic differences were observed between the behaviour of wick-fed flames and that of gas-fed flames when they were introduced into an atmosphere which extinguished them, the wick-fed flames gradually diminishing in size until they vanished, whilst the gas-fed flames gradually increased in size, becoming paler and apparently lower in temperature until they suddenly expired.
    [Show full text]
  • The Iron-Dependent Cyanide and Hydrogen Peroxide Co-Toxicity in Escherichia Coli and Its Catastrophic Consequences for the Chromosome
    THE IRON-DEPENDENT CYANIDE AND HYDROGEN PEROXIDE CO-TOXICITY IN ESCHERICHIA COLI AND ITS CATASTROPHIC CONSEQUENCES FOR THE CHROMOSOME BY TULIP MAHASETH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Doctoral Committee: Professor Andrei Kuzminov, Chair and Director of Research Professor John E. Cronan Professor Jeffrey F. Gardner Associate Professor Carin K. Vanderpool ABSTRACT 2+ Hydrogen peroxide (H2O2) can oxidize cytoplasmic ferrous ions (Fe ) to produce highly reactive hydroxyl radicals (•OH) via Fenton’s reaction that can damage various biomolecules causing oxidative stress. Even though at concentrations higher than 20 mM H2O2 by itself can efficiently kill micro-organisms, it is metabolically impossible for eukaryotic cells to generate H2O2, an uncharged molecule, in such large quantities inside the cell. We propose that potentiation of physiologically relevant amounts of H2O2 by various small molecules serves as a more feasible and safe mechanism to combat invading microbes. NO potentiation of H2O2 toxicity is a known bactericidal weapon employed by macrophages. In fact, in human neutrophils activated by bacterial infection, the myeloperoxidase enzyme catalyzes the formation of hydrogen cyanide (HCN) from serum thiocyanate (SCN-). In the past, researchers have reported that a combination of low millimolar doses of H2O2 and cyanide (CN), which are individually bacteriostatic, caused rapid synergistic killing in Escherichia coli. Our aim is to understand the immune cells antimicrobial responses by investigating the mechanism of CN potentiation of H2O2 toxicity and its chromosomal consequences. We have found that the ability of CN to recruit iron from intracellular depots such as ferritin contributes to its potentiation of H2O2 toxicity, whereas the major stationary phase intracellular iron depot protein, Dps, can sequester this iron, thereby quelling Fenton's reaction.
    [Show full text]
  • Bioorganic Chemistry
    Hermann Dugas Christopher Penney Bioorganic Chemistry A Chemical Approach to Enzyme Action With 82 Figures Spri nger-Verlag New York Heidelberg Berlin Dr. Hermann Dugas Dr. Christopher Penney Departement de Chimie Connaught Research Institute Universite de Montreal Willowdale, Ontario Montreal, Quebec Canada M2N 5T8 Canada H3C 3Vl Series Editor: Prof. Charles R. Cantor Columbia University Box 608 Havemeyer Hall New York, New York 10027 USA Cover: The green illustration represents the hypothetical mode of binding of a rigid structural analogue of N-benzoyl-L-phenylalanine methyl ester at the active site of a-chymotrypsin. The illustration emphasizes the equilibration toward the favored configuration (see text page 224). The background design is taken from a diagrammatic representation of the primary structure of a-chymotrypsin. After Nature with permission [B.W. Matthews, P.B. Sigler, R. Henderson, and D.M. Blow (1967), Nature 214, 652-656]. Library of Congress Cataloging in Publication Data Dugas, Hermann, 1942- Bioorganic chemistry. (Springer advanced texts in chemistry.) Bibliography: p. Includes index. 1. Enzymes. 2. Biological chemistry. 3. Chemistry,. Organic. I. Penney, Christopher, 1950- joint author. II. Title. m. Series. [DNLM: 1. Biochemistry. 2. Enzymes-Metabolism. QUl35 D866b] QP60 1. D78 574.19'25 80-16222 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
    [Show full text]