Discovery of Normal Cell Biology

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Normal Cell Biology DISCOVERY OF NORMAL CELL BIOLOGY SLIDE 1. TITLE. Cancer is always topical in the 21st century-particularly in the demographic that takes Senior College courses. There is fascinating science and fierce human drama associated with the disease. SLIDE 2. OUTLINE OF THE COURSE We will lecture on six topics in this course. Today we lecture on normal cell biology and cancer biology, so you can better understand the how and why of cancer’s effects on patients. The first lecture may be the most challenging as it reviews basic science. In the 2nd lecture we discuss the causes of cancer, prevention of cancer, and screening tests for cancer. In the 3rd lecture we will discuss the evaluation of the cancer patient. In the 4th lecture we will discuss the treatment of cancer. In the 5th lecture we present seven cases that illustrate how the knowledge gleaned in the first four lectures was employed to help actual patients. In the sixth and final lecture we will discuss what is required of the patient; oncologist and care team; and the health care system to best help cancer patients. I hope to be permitted some philosophical reflections on patient care reflecting almost half a century of clinical training and practice. A heavy dose of medical history will be supplied in each lecture because medical history is interesting and will help you understand how it is we came to do what we do. SLIDE 3. DILBERT STRIP ON ZOOM TECHNOLOGY I’m not a fan of this new-fangled ZOOM technology and worry it will poleax me any minute. I will soldier on with information technology support. SLIDE 4. DILBERT WITH A COMPLICATED PRESENTATION The lectures are pitched to the intelligent layman. We’ve all felt like Alice after listening to Dilbert’s lecture. The lingua franca of oncology can be hard to follow. I’ll try my best to define the terms and simplify the concepts. I’ll periodically take any questions you relay to Dr. Scott both during the lectures, and at the end of the lectures. We can provide transcripts of the lectures if you so desire. If I were you I’d relax, listen to the lecture and view the slides. I’d raise any questions I had at the time I thought of it. I’d get the transcripts of the lectures and review the transcripts after the lectures. SLIDE 5. BURDEN OF CANCER IN THE USA. I would hazard the guess everyone auditing this course has had someone near and dear who has had to cope with cancer. The statistics are sobering. One out of 225 American were diagnosed with cancer in 2020. 1 out of 630 Americans died of cancer in 2020-1 out of every 530 men and 1 out of every 740 women. African-American men were the most affected demographic: 1 out of 439 died of cancer.. Asian-American women were relatively least afflicted: 1 out of 1, 1168. There are 17 million cancer survivors in the USA. 40% of Americans will receive a cancer diagnosis in their lifetime. SLIDE 6. DEFINITION OF CANCER. We lecture today on normal cell biology. In order to appreciate what causes cancer, it is important to understand normal cell biology. With this understanding we then lecture on cancer biology. Cancer is basically altered cells caused by mutations in the genome. SLIDE 7. SCHOOL OF ATHENS The Greeks, as was their wont, got the ball rolling on characteriZing normal cell biology with speculative natural philosophy. Pythagoras hypothesiZed, around 530 BC, that “likeness” was carried in the male semen, after coursing through a man’s body and absorbing vapors from each part. Aeschylus’s Eumenides was performed in 458 BC. In the play Orestes was on trial for matricide. Apollo, called to judge, reasoned a father’s sperm carries “likeness”, while the mother just drips nutrients through the umbilical cord into the child. Apollo judged Orestes innocent since he was avenging a more serious crime-his father’s murder. Aristotle dismantled the Pythagorean theory of spermism by noting children also inherit features from their mother and other ancestors. He noted “In Sicily a woman committed adultery with an Ethiopian; the daughter did not become an Ethiopian, but the granddaughter did.” SLIDE 8. GREGOR MENDEL Father Gregor Mendel, was an Augustinian monk at St. Thomas’s Abbey in Brno, Moravia. Father Mendel distilled a decades worth of scientific work breeding peas into a paper published in the 1866 Proceedings of the Brno Natural Science Society. Father Mendel had documented the laws of inheritance. Father Mendel was well aware of the relevance of his research to Darwin’s theory of natural selection. But Father Mendel’s attempts to interest professional scientists in his work failed. Father Mendel’s epochal research languished in obscurity for 40 years. In 1905 William Bateson, “Mendel’s bulldog”, finally recognized the importance of Father Mendel’s research. Bateson publicized Mendel’s conclusions. Bateson also coined the word genetics from the Greek word “genno”-to give birth. In 1909 the word gene was first used for Mendel’s unit of heredity. The sum total of all our genes is the genome. SLIDE 9. ALLELES Alleles are one of two or more alternative forms of a gene that are found at the same place on a chromosome. Another way to remember what alleles are is to think of them as allies: the gene on the chromosome from the father and the gene on the “homologue” chromosome of the mother ally to assign characteristics to the baby. The male and female alleles combine to assign hair color, eye color, etc. On the slide capital A is the dominant gene, coding for yellow peas. Small a is the recessive gene coding for green peas. In the Punnett square the peas are yellow when there are two dominant Capital A genes paired, yellow when a dominant capital A and recessive small a are paired, and only green when two recessive “green genes” are paired. 75% of the peas are yellow and 25% green over time. However, what happens to any individual pea is akin to a roll of the dice. SLIDE 10. CHROMOSOMES ARE THE CELLULAR BASIS OF HEREDITY In the 1890’s Theodore Boveri, a German embryologist working with sea urchins in Naples, proposed that genes resided in chromosomes, which resided in the nucleus of cells. Walter Sutton, a farm boy from Russell, KS who attended the University of Kansas, was later a graduate student at Columbia. Sutton’s research at Columbia with grasshopper sperm and egg cells confirmed Boveri’s findings that genes resided in chromosomes in the nucleus of cells. In 1905 Nettie Stevens of Bryn Mawr College documented “maleness” in worms was determined by the Y chromosome. Thomas Morgan then documented genes for certain characteristics were physically linked on the chromosomes of fruit flies in 1912. SLIDE 11. CHROMOSOME PAIRS As pictured in the slide, we have 23 pairs of genes in the nucleus of each cell in our body. In each chromosome one of the strands comes from the father and one comes from the mother. The father’s strand is paired with its counterpart, called a homologue, from the mother. The two homologues are joined at the center by a centromere. In the lower right corner of the slide the sex chromosomes are pictured. Women inherit two X sex chromosomes. Men inherit an X and Y sex chromosome. Note how small the Y chromosome is. The genes on the Y chromosome instruct the embryo to turn into a male at age 6-7 weeks. Instructing the embryo to turn into a male is the only job a Y chromosome is asked to do. One of the X chromosomes also becomes inactive after conception. The inactivated X chromosome turns into something called a Barr body. The inactivated X chromosome (Barr body) is inactivated by a process called epigenetics which we will soon discuss. After the chromosomes were proven to be the locus of genes and heredity the search was then on for the molecular structure of chromosomes. The molecular structure of chromosomes needed to be characterized before we could fully understand the mechanisms of heredity and cancer. SLIDE 12. STRUCTURE OF THE HUMAN CELL As early as 1869 a Swiss biochemist, Friedrich Miescher, documented the dense, swirling strands of chemicals he found in salmon sperm and human white blood cells were acidic and located in the nucleus of those cells. By the early 1920’s biochemists documented nucleic acid came in two forms: DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). The cytoplasm is the area in the cell outside the nucleus. It is important to remember the mitochondrion has its own separate DNA. The mitochondrion is where respiration takes place and energy is produced. The ribosomes are sites where proteins are manufactured through assembly of amino acids. In 1944 Oswald Avery documented DNA was the carrier of genetic information. Maurice Wilkins and Rosalind Franklin produced clear X-ray crystallography images of DNA at King’s College London in 1952. SLIDE 13. WATSON AND CRICK WITH THE DOUBLE HELIX On February 28, 1953, Francis Crick and an American graduate student James Watson deduced the double helical structure of DNA at Cambridge University. They deduced the double helical structure of DNA by building on the experimental data collected by Wilkins and Franklin and tinkering with the toy model pictured in the slide. Watson and Crick won the competition to determine the structure of DNA, lasting fame and the 1962 Nobel PriZe in Medicine for their discovery. SLIDE 14. DOUBLE HELIX STRUCTURE OF DNA Pictured is a DNA molecule, shaped in the double helix.
Recommended publications
  • Dosage Compensation∗ a Mechanism to Equalize X-Linked Gene Products Between the Sexes
    GENERAL ARTICLE Dosage Compensation∗ A Mechanism to Equalize X-linked Gene Products Between the Sexes Rajiva Raman The sex chromosomes evolved from a pair of autosomes that deviated over a period of time, with one chromosome losing most of its genes. In many animal groups, females have two X-chromosomes—a large chromosome with numerous genes. Males have one X and a Y chromosome, which has lost most genes except those involved in sex determination and fertility. Thus males are effectively monosomic for the X-chromosome. Monosomy being lethal for other chromosomes, organisms Rajiva Raman had his evolved a mechanism called ‘dosage compensation’ (DC) which university education from quantitatively equalizes X-linked gene products between the Banaras Hindu University. After his retirement from the sexes, compensating for their numerical disparity (dosage). Department of Zoology at Best studied in Drosophila, Caenorhabditis elegans, and mam- BHU as Professor, he is now mals, different species adopt different mechanisms of DC. In serving in the same Drosophila, genes on the male X-chromosome are twice as ac- department as Distinguished Professor. He is also the tive as on each X-chromosome in females. In C. elegans, DC Senior Scientist of the Indian is achieved by the lowered activity of each X-chromosome in National Science Academy. XX individuals vis-a-vis the male X. In mammals, the inac- He has a teaching experience tivation of an entire X-chromosome in the female results in of nearly 40 years. the parity between the two sexes. Despite the difference in gross mechanisms, the molecular processes achieving DC are uniform due to chromatin modifications (histone acetylation, methylation, and DNA methylation) and synthesis of various noncoding RNAs (lncRNAs ).
    [Show full text]
  • Chapter 4: Epigenesis and Genetic Regulation
    © 1998, Gregory Carey Chapter 4: Epigenesis - 1 Chapter 4: Epigenesis and Genetic Regulation Introduction Virtually every cell in your body contains all the genetic information about making a complete human being that would be your identical twin.1 This fact makes cloning you a theoretical possibility. A mad geneticist could try this by extracting the DNA from one of your cells, placing it into the nucleus of a human egg where the DNA has been removed, inducing the egg to start dividing, and then inserting it into the uterus of a woman. If the resulting zygote were viable, the organism would be your identical twin, albeit in a different phase of the life cycle. But if every cell has the same genetic code, then why are some cells liver cells while others are neurons? Another problem arises from the consideration of cell division. You and I begin as a single fertilized egg. This egg divides into two cells that contain the same genetic material. These two genetically identical cells each divide, giving four genetically identical cells; these four divide, giving eight and so on. Why were our parents not rewarded for nine months of pregnancy by bouncing, seven pound blobs of identical cells? Although the answers for these questions are complicated and not well understood, a major reason is that genes are differentially expressed in some tissues and are also regulated over time even within the same tissue. To oversimplify, even though a liver cell has all the genetic information to make a neuron, only those “liver cell” genes are © 1998, Gregory Carey Chapter 4: Epigenesis - 2 working in the liver.
    [Show full text]
  • Dosage Compensation in Mammals: Fine-Tuning the Expression of the X Chromosome
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Dosage compensation in mammals: fine-tuning the expression of the X chromosome Edith Heard1,3 and Christine M. Disteche2,4 1CNRS UMR218, Curie Institute, 75248 Paris, Cedex 05, France; 2Department of Pathology and Department of Medicine, University of Washington, Seattle, Washington 98195, USA Mammalian females have two X chromosomes and somes. In eutherians, X-chromosome inactivation (XCI) males have only one. This has led to the evolution of affects the paternal or maternal X chromosome ran- special mechanisms of dosage compensation. The inac- domly during early development, and the inactive state tivation of one X chromosome in females equalizes gene is then stably inherited, giving rise to adults that are expression between the sexes. This process of X-chromo- mosaics for two cell types, expressing one or the other X some inactivation (XCI) is a remarkable example of long- chromosome. The initiation of X inactivation is con- range, monoallelic gene silencing and facultative hetero- trolled by the X-inactivation center (Xic), which pro- chromatin formation, and the questions surrounding it duces the noncoding Xist transcript responsible for trig- have fascinated biologists for decades. How does the in- gering silencing in cis. In marsupials and in the extraem- activation of more than a thousand genes on one X chro- bryonic tissues of some placental mammals such as mosome take place while the other X chromosome, rodents, XCI is imprinted, with the paternal X chromo- present in the same nucleus, remains genetically active? some (Xp) being inactivated.
    [Show full text]
  • The Barr Body Is a Looped X Chromosome Formed by Telomere
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 6191-6195, July 1991 Genetics The Barr body is a looped X chromosome formed by telomere association (chromosome structure/X-inactivation/centromere/interphase cytogenetics/in situ hybridization) CHERI L. WALKER*t, COLYN B. CARGILE*, KIMBERLY M. FLOY*, MICHAEL DELANNOYt, AND BARBARA R. MIGEON*§ Departments of *Pediatrics and *Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Communicated by Victor A. McKusick, April 15, 1991 ABSTRACT We examined Barr bodies formed by isodi- long arms (3935 and 7213) and the third attached at the short centric human X chromosomes in cultured human cells and in arms (411). We isolated these dicentric chromosomes from mouse-human hybrids using confocal microscopy and DNA their normal homologue in hybrid cells so that all signals probes for centromere and subtelomere regions. At interphase, would come from the dicentric X chromosome and to exam- the two ends of these chromosomes are only a micron apart, ine the human Barr body in a mouse cell environ. Finally, we indicating that these inactive X chromosomes are in a nonlinear simultaneously hybridized centromere and subtelomere configuration. Additional studies of normal X chromosomes probes using differential labels and confocal microscopy. reveal the same telomere association for the inactive X but not for the active X chromosome. This nonlinear configuration is maintained during mitosis and in a murine environment. MATERIALS AND METHODS Cell Lines. These are characterized in Table 1. The hybrids Barr bodies are unique chromatin structures formed in nuclei derived from A9 mouse fibroblasts were selected in hypo- of the mammalian female as a means of sex chromosome xanthine/aminopterin/thymidine medium, back selected in dosage compensation.
    [Show full text]
  • Barr Bodies and Blood Types
    11/13/2015 Barr Bodies and Blood Types Barr Bodies 1 11/13/2015 X-inactivation in female mammals In females, one of the two X chromosomes in each somatic (body) cell becomes inactive during embryonic development Why? ◦ Cells of females and males would have same effective dose of genes on the X chromosome Inactive X chromosomes called Barr bodies BARR BODY Found in females One X chromosome in each cell is randomly inactivated Inactivated X chromosome seen as a darkly staining area in the nucleus of a cell How many active chromosomes are found in the cells of a human female? 2 11/13/2015 Barr Body Do you see the Barr body? Barr Bodies in Cats Calico cat ◦ Generally all females ◦ One of several genes controlling fur color found on X chromosome ◦ Gene on X chromosome codes for either orange or black color ◦ Color pattern determined by random inactivation (Barr body) Why do you think Calico Cats are usually all female? 3 11/13/2015 Ex: Tortoiseshell (Calico) cats animation Calico Cat Color Inheritance 4 11/13/2015 Calico Cat There have been instances of male Calico cats found ◦ How could this happen? ◦ HINT: Male calico cats are sterile Example in humans Anhidrotic ectodermal dysplasia ◦ X linked mutation prevents the development of sweat glands ◦ A woman who is heterozygous will have patches of normal skin and patches of skin without sweat glands ◦ Difficulty controlling body temperature 5 11/13/2015 Blood Types ABO BLOOD TYPES Example of codominance Blood type depends on the presence or absence of certain carbohydrates (antigens) on surface of red blood cells 3 alleles are possible: ◦ IA :Type A Blood ◦ IB :Type B Blood ◦ i :Type O Blood 6 11/13/2015 ABO BLOOD TYPES IA and IB are codominant to each other when they are paired.
    [Show full text]
  • Glossary.Pdf
    Glossary Pronunciation Key accessory fruit A fruit, or assemblage of fruits, adaptation Inherited characteristic of an organ- Pronounce in which the fleshy parts are derived largely or ism that enhances its survival and reproduc- a- as in ace entirely from tissues other than the ovary. tion in a specific environment. – Glossary Ј Ј a/ah ash acclimatization (uh-klı¯ -muh-tı¯-za -shun) adaptive immunity A vertebrate-specific Physiological adjustment to a change in an defense that is mediated by B lymphocytes ch chose environmental factor. (B cells) and T lymphocytes (T cells). It e¯ meet acetyl CoA Acetyl coenzyme A; the entry com- exhibits specificity, memory, and self-nonself e/eh bet pound for the citric acid cycle in cellular respi- recognition. Also called acquired immunity. g game ration, formed from a fragment of pyruvate adaptive radiation Period of evolutionary change ı¯ ice attached to a coenzyme. in which groups of organisms form many new i hit acetylcholine (asЈ-uh-til-ko–Ј-le¯n) One of the species whose adaptations allow them to fill dif- ks box most common neurotransmitters; functions by ferent ecological roles in their communities. kw quick binding to receptors and altering the perme- addition rule A rule of probability stating that ng song ability of the postsynaptic membrane to specific the probability of any one of two or more mu- o- robe ions, either depolarizing or hyperpolarizing the tually exclusive events occurring can be deter- membrane. mined by adding their individual probabilities. o ox acid A substance that increases the hydrogen ion adenosine triphosphate See ATP (adenosine oy boy concentration of a solution.
    [Show full text]
  • Unravelling X-Inactivation Through Time: Implications of X-Linked
    etics & E en m G b ry n o a l o m g Sofocleous et al., Human Genet Embryol 2012, S3 u y H Human Genetics & Embryology DOI: 10.4172/2161-0436.S3-001 ISSN: 2161-0436 Review Article Open Access Unravelling X-Inactivation through Time: Implications of X-Linked Disorders in Humans Christalena Sofocleous1,2, Anastasia Kanioura3, Styliani Amenta4, Stavroula Psoni1 and Helen Fryssira1* 1University of Athens Medical School,“Aghia Sophia” Childrens Hospital, Greece 2Research Institute for the Study of Genetic and Malignant disorders in Childhood, Athens, Greece 3Department of Chemistry, University of Athens, Greece 4Styliani Amenta, MD, PhD, Pediatrician, “MITERA” Maternity Hospital, Athens, Greece Abstract X-Inactivation occurs early in embryogenesis, when one of the two chromosomes in each cell is subjected to specific modifications which lead to the formation of the transcriptional inactive heterochromatin known as Barr body. This mechanism was described 50 years ago by Mary Lyon. Scientists have been researching the phenomenon of X- inactivation ever since and multiple factors have been implicated in this multistep procedure. In our review we try to present how some of the mysteries of X- linked disorders in humans have been unraveled through time. Keywords: X-chromosome inactivation; X-Inactivation centre; from both X-chromosomes in fertilized egg cells [11,12]. Therefore, as XIST/Xist gene; Skewed inactivation; X-linked disorders X-Inactivation is reprogrammed in the fetus the selection of the X to be inactivated is not inherited in the next generation, and there is no Introduction mother to daughter transmission in humans. X-Inactivation: first findings Counting, choice and sensing Sexual dimorphism in humans raised a number of intellectual Over the years, X-Chromosome Inactivation (XCI) studies queries and led the scientific community to decipher this focused on patients with abnormal karyotypes where gain or loss of phenomenon which still remains fascinating through time (Figure X-chromosomes has occurred [13].
    [Show full text]
  • X Chromosome Fact Sheet
    10 Neat Facts About the X Chromosome CELL 1 In the nucleus of each cell, DNA is packaged in thread-like structures called 23 pairs of Chromosomes chromosomes. X Chromosome Most human cells contain 23 pairs of chromosomes. One set of chromosomes comes from the mother, while the other comes from the 2 father. The twenty-third pair is the sex chromosomes, while the rest of the 22 pairs are called autosomes. Sex chromosomes XX Sex chromosomes Y X Typically, biologically female individuals have two X chromosomes (XX) while those who are biologically 3 male have one X and one Y chromosome (XY). However, there are exceptions to this rule. Mother Father Biologically female people inherit an X chromosome from their father, and the other X chromosome from 4 their mother. Biologically male people always inherit X Y X Y XX XX their X chromosome from their mother. Children Male Female The X chromosome is about three times larger than the Y chromosome, containing about 900 genes, while the Y 5 chromosome has about 55 genes. X Chromosome Y Chromosome Female mammals have two X chromosomes in every cell. However, one of the X chromosomes is inactivated. Such 6 inactivation stops transcription from occurring, hence making sure a potentially toxic double dose of X-linked genes does not occur. An inactivated X chromosome gets condensed into a small, dense structure in the nucleus, and is 7 called a Barr body. Barr bodies are commonly used to determine sex. Variation in female sex chromosomes Changes in the structure or number of X X X XX X X chromosomes can lead to a number of diseases.
    [Show full text]
  • Cytogenetics Lecture 1
    Principles of Cytogenetics Categorical Course Introduction to Cytogenetics 1 Erica Andersen, PhD Section Chief, Cytogenetics and Genomic Microarray ARUP Laboratories Associate Professor, Department of Pathology University of Utah Email: [email protected] What is Cytogenetics? • The study of chromosomes and genomic structure, function, and variation and their role in human disease and heredity Chromosome analysis/ karyotyping Fluorescence in situ hybridization Genomic microarray analysis Constitutional versus cancer cytogenetics • Constitutional cytogenetics: diagnosis of heritable genetic abnormalities in children, adults, pregnancy, and fetal loss – Abnormalities may be inherited or de novo • Cancer cytogenetics: detection of acquired or somatic (versus germline/constitutional) genetic abnormalities for the diagnosis, prognosis, therapy, and/or monitoring of many types of cancer, esp. hematologic Indications for Cytogenetic Analysis (Constitutional) • Postnatal, childhood growth and development – Perinatal/newborn: Birth defects, malformations, dysmorphisms, ambiguous genitalia – Growth: failure to thrive, growth delay, short stature – Developmental delay (fine and gross motor, speech) – Cognitive: intellectual disability, learning disability – Neurological: hypotonia, seizures, ataxia – Behavioral: autism, OCD, psychiatric illness Tissues studied: Peripheral blood, buccal swab, skin biopsy Indications for Cytogenetic Analysis (Constitutional) • Adolescent, adult sexual development and fertility – Amenorrhea, primary or secondary
    [Show full text]
  • Identification of an Autoimmune Serum Containing Antibodies Against the Barr Body
    Identification of an autoimmune serum containing antibodies against the Barr body Bo Hong*, Peter Reeves†, Barbara Panning†, Maurice S. Swanson‡§, and Thomas P. Yang*§¶ʈ *Department of Biochemistry and Molecular Biology, ‡Department of Molecular Genetics and Microbiology, §Center for Mammalian Genetics, and ¶Division of Pediatric Genetics, University of Florida College of Medicine, Gainesville, FL 32610; and †Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94140 Communicated by Stanley M. Gartler, University of Washington, Seattle, WA, May 24, 2001 (received for review April 20, 2001) Transcriptional inactivation of one X chromosome in mammalian components and structure of the Barr body itself. The Barr body female somatic cells leads to condensation of the inactive X has been examined by electron microscopy (6, 7), and the results chromosome into the heterochromatic sex chromatin, or Barr body. indicate the possibility of a special nuclear envelope attachment Little is known about the molecular composition and structure of region for the Barr body. But these studies provide few insights the Barr body or the mechanisms leading to its formation in female into the possible composition or macromolecular organization of nuclei. Because human sera from patients with autoimmune dis- the inactive X chromosome. The Barr body and individual genes eases often contain antibodies against a variety of cellular com- on the inactive X have been probed with nucleases, particularly ponents, we reasoned that some autoimmune sera may contain DNase I, to analyze molecular structure. Nick translation assays antibodies against proteins associated with the Barr body. There- on female cells after fixation and nicking with DNase I have fore, we screened autoimmune sera by immunofluorescence of shown that inactive X chromatin is resistant to nick translation human fibroblasts and identified one serum that immunostained a (6, 8).
    [Show full text]
  • Glossary of Biotechnology and Genetic Engineering 1
    FAO Glossary of RESEARCH AND biotechnology TECHNOLOGY and PAPER genetic engineering 7 A. Zaid H.G. Hughes E. Porceddu F. Nicholas Food and Agriculture Organization of the United Nations Rome, 1999 – ii – The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the United Nations or the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN: 92-5-104369-8 ISSN: 1020-0541 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1999 – iii – PREFACE Biotechnology is a general term used about a very broad field of study. According to the Convention on Biological Diversity, biotechnology means: “any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.” Interpreted in this broad sense, the definition covers many of the tools and techniques that are commonplace today in agriculture and food production. If interpreted in a narrow sense to consider only the “new” DNA, molecular biology and reproductive technology, the definition covers a range of different technologies, including gene manipulation, gene transfer, DNA typing and cloning of mammals.
    [Show full text]
  • Analysis of the Barr Body with Super-Resolution Microscopy Implications for a Structural Role of Xist RNA in Mammalian X Chromosome Inactivation
    Department Biologie II Humanbiologie und Bioimaging Ludwig-Maximilians-Universität München Analysis of the Barr body with super-resolution microscopy Implications for a structural role of Xist RNA in mammalian X chromosome inactivation Daniel Smeets Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Eingereicht am 16. Juli 2013 Analysis of the Barr body with super-resolution microscopy Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von: Dipl. Biol. Daniel Smeets aus Koblenz Gutachter: Prof. Dr. Heinrich Leonhardt Prof. Dr. Thomas Cremer Eingereicht am: 16. Juli 2013 Tag der mündlichen Prüfung: 22. November 2013 II Wo kämen wir hin, wenn alle sagten, wo kämen wir hin, und niemand ginge, um einmal zu schauen, wohin man käme, wenn man ginge? Kurt Marti Schweizer Schriftsteller III ANALYSIS OF THE BARR BODY WITH SUPER-RESOLUTION MICROSCOPY Table of contents Table of contents .................................................................................................................................... IV List of figures ......................................................................................................................................... VII List of tables ........................................................................................................................................... IX 1 Summary .................................................................................................................................. 1 2 Introduction
    [Show full text]