Sex Determination in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Sex Determination in Humans Sex Determination in Humans • Chromosomal sex is determined at fertilization • Sexual differences begin in the 7th week • Sex is influenced by genetic and environmental factors • Females (generally XX) do not have a Y chromosome • Males (generally XY) have a Y chromosome Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Fig. 7.10 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Defining Sex • Chromosomal sex • Gonadal sex • Phenotypic sex • Formation of male or female reproductive structures depends on – Gene action – Interactions within the embryo – Interactions with other embryos in the uterus – Interactions with the maternal environment Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Sex Differentiation • In early embryo there are two internal duct systems – Wolffian (male) – Müllerian (female) • At 7 weeks, developmental pathways activate different sets of genes • Cause undifferentiated gonads to develop as testes or ovaries • Determine the gonadal sex of embryo Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Appearance of “uncommitted” duct system of embryo at 7 weeks Y chromosome present Y chromosome absent Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-12b, p.167 Appearance of “uncommitted” duct system of embryo at 7 weeks Y chromosome present Y chromosome absent Testes Ovaries Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-12b, p.167 Appearance of “uncommitted” duct system of embryo at 7 weeks Y chromosome present Y chromosome absent Testes Ovaries Uterus Ovary Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Penis Vagina Stepped Art Testis Fig. 7-12b, p.167 Appearance of structures that will give rise to external genitalia 7 weeks Y chromosome present Y chromosome absent Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-12c, p.167 Appearance of structures that will give rise to external genitalia 7 weeks Y chromosome present Y chromosome absent 10 weeks 10 weeks Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-12c, p.167 Appearance of structures that will give rise to external genitalia 7 weeks Y chromosome present Y chromosome absent 10 weeks 10 weeks Penis Vaginal opening Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Birth approaching Birth approaching Fig. 7-12c, p.167 Genes on the Y Chromosome • Cause the indifferent gonad to develop as a testis • Sex determining region is the SRY gene • Other genes on the autosomes play an important role • Once testes develop they secrete two hormones – Testosterone – Müllerian Inhibiting Hormone (MIH) Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Females Develop in the Absence of Y • Embryonic gonads develop into an ovaries • Testosterone not produced – Wolffian system degenerates • MIH is not produced – Müllerian duct system develops to form oviduct, uterus and parts of the vagina • Sexual phenotype develops – Hormones are important Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Male Egg with X sex chromosome Female Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-13, p.168 Male Egg with X sex chromosome Female Fertilized by Fertilized by Sperm with Y chromosome Sperm with X chromosome Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-13, p.168 Male Egg with X sex chromosome Female Fertilized by Fertilized by Sperm with Y chromosome Sperm with X chromosome Genetic Embryo with XY sex chromosomes Embryo with XX sex chromosomes sex Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-13, p.168 Male Egg with X sex chromosome Female Fertilized by Fertilized by Sperm with Y chromosome Sperm with X chromosome Genetic Embryo with XY sex chromosomes Embryo with XX sex chromosomes sex Sex-determining region of No Y chromosome, so no the Y chromosome (SRY) Gonadal SRY. With no masculinizing brings about development sex influence, undifferentiated of undifferentiated gonads gonads develop into ovaries and testes Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-13, p.168 Male Egg with X sex chromosome Female Fertilized by Fertilized by Sperm with Y chromosome Sperm with X chromosome Genetic Embryo with XY sex chromosomes Embryo with XX sex chromosomes sex Sex-determining region of No Y chromosome, so no the Y chromosome (SRY) Gonadal SRY. With no masculinizing brings about development sex influence, undifferentiated of undifferentiated gonads gonads develop into ovaries and testes Testes secrete masculinizing hormones, including No androgens secreted testosterone, a potent androgen Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-13, p.168 Male Egg with X sex chromosome Female Fertilized by Fertilized by Sperm with Y chromosome Sperm with X chromosome Genetic Embryo with XY sex chromosomes Embryo with XX sex chromosomes sex Sex-determining region of No Y chromosome, so no the Y chromosome (SRY) Gonadal SRY. With no masculinizing brings about development sex influence, undifferentiated of undifferentiated gonads gonads develop into ovaries and testes Testes secrete masculinizing hormones, including No androgens secreted testosterone, a potent androgen In presence of testicular With no masculinizing hormones, undifferentiated hormones, undifferentiated Phenotypic reproductive tract and reproductive tract and sex external genitalia develop external genitalia develop along male lines along female lines Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Stepped Art Fig. 7-13, p.168 Mutations that Alter Phenotypic Sex • Hemaphrodites – Have both male and female gonads • Androgen insensitivity – XY males become phenotypic females • Pseudohermaphroditism – XY males at birth are phenotypically female; at puberty develop a male phenotype Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Dosage Compensation • Equalizes the amount of X chromosome products in both sexes • In XX females an inactivated X chromosome forms a Barr body in each cell • XY males do not contain Barr bodies Fig. 7.15 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Lyon Hypothesis • One X chromosome is genetically active in the body cells; the second is inactive and tightly coiled • Either the maternal or paternal chromosome can be inactivated • Inactivation is permanent (reset in germ cells) • Inactivation of second X equalizes the activity of X linked genes in males and females • ROSENSTIEL AWARD - Mary Lyon (+ others) 2007 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Cytological correlates of X-inactivation in mammals Barr body: •Present in somatic XX nuclei •Not present in XY nuclei •In X-chromosome aneuploids, all but one X become Barr bodies Females Barr Bodies Active X XX 1 1 XO 0 1 XXX 2 1 XXXX 3 1 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Cytological correlates of X-inactivation in mammals Barr body: •Present in somatic XX nuclei •Not present in XY nuclei •In X-chromosome aneuploids, all but one X become Barr bodies Females Barr Bodies Active X XX 1 1 Males Barr Bodies Active X XO 0 1 XY 0 1 XXX 2 1 XXY 1 1 XXXX 3 1 XXXY 2 1 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Females Are Mosaics for X-Linked Genes • Some cells express the maternal X and others express the paternal X • Cats heterozygous for orange and black gene must carry two X chromosomes Calico cats are always femaleFig. 7.16 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Woman Heterozygous for Anhidrotic Ectodermal Dysplasia TEM of Barr Body Fig. 7.17 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning X Inactivation Center (Xic) • Contains several genes • The XIST gene causes the chromosome to become coated with XIST RNA and inactivated. • Occurs at approximately 32-cell- embryo stage Fig. 7.18 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning I 1 2 II 1 2 3 4 III 1 2 3 4 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Fig. 7-19, p.174 The cloned calico cat or why your clone may look different from you cc or “Carbon Copy” Rainbow Born Dec 22, 2001 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Dosage Compensation Mechanisms that generate the same amount of X-linked gene product regardless of chromosome dosage Mammals: One of two X chromosomes in the female cell is inactivated Drosophila: X chromosome in males generates twice the amount of gene product when compared to females C. elegans: Activity of genes on BOTH X chromosomes is halved to equal activity of genes on singleX chromosome in males. Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Sex-Influenced Traits • Expressed in males and females • Usually controlled by autosomal genes • Generally phenotypic variations are due to hormonal differences between the sexes • An example is male pattern baldness Fig. 7.20 Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Sex-influenced traits Some autosomal genes govern traits that show up in both sexes but their expression differs because of hormonal differences example: pattern baldness in males. b allele is recessive in one sex and dominant in the other Male Female b+/b+ non-bald non-bald b+/b bald non-bald b/b bald bald Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning Sex-Limited Traits • Genes that produce a phenotype in only one sex • Examples – Precocious puberty – Secondary sex characteristics Chapter 7 Human Heredity by Michael Cummings ©2006 Brooks/Cole-Thomson Learning.
Recommended publications
  • Differential Sperm Motility Mediates the Sex Ratio Drive Shaping Mouse
    bioRxiv preprint doi: https://doi.org/10.1101/649707; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Differential sperm motility mediates the sex ratio drive shaping mouse sex chromosome evolution Rathje CC1, Johnson EEP2, Drage D3, Patinioti C1, Silvestri G1, Affara NA2, Ialy-Radio C4, Cocquet J4, Skinner BM2,5, Ellis PJI1,5* 1 School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom 2 Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom 3 University Biomedical Services, University of Cambridge, Cambridge, United Kingdom 4 Department of Development, Reproduction and Cancer, INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. 5 These authors contributed equally * Corresponding author: Peter Ellis Email: P.J.I.Ellis @kent.ac.uk Tel: +44(0)1227 82 3526 KEYWORDS: Sex ratio, sex chromosomes, transmission ratio, evolution, sperm, fertilisation 1 bioRxiv preprint doi: https://doi.org/10.1101/649707; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Summary The search for morphological or physiological differences between X- and Y-bearing mammalian sperm has provoked controversy for decades.
    [Show full text]
  • X-Linked Recessive Inheritance
    X-LINKED RECESSIVE Fact sheet 09 INHERITANCE This fact sheet talks about how genes affect our health when they follow a well understood pattern of genetic inheritance known as X-linked recessive inheritance. The exception to this rule applies to the genes carried on the sex chromosomes called X and Y. IN SUMMARY The genes in our DNA provide the instructions • Genes contain the instructions for for proteins, which are the building blocks of the growth and development. Some gene cells that make up our body. Although we all have variations or changes may mean that variation in our genes, sometimes this can affect the gene does not work properly or works in a different way that is harmful. how our bodies grow and develop. • A variation in a gene that causes a Generally, DNA variations that have no impact health or developmental condition on our health are called benign variants or is called a pathogenic variant or polymorphisms. These variants tend to be more mutation. common in people. Less commonly, variations can change the gene so that it sends a different • If a genetic condition happens when message. These changes may mean that the gene a gene on the X chromosome has does not work properly or works in a different way a variation, this is called X-linked that is harmful. A variation in a gene that causes inheritance. a health or developmental condition is called a • An X-linked recessive gene is a gene pathogenic variant or mutation. located on the X chromosome and affects males and females differently.
    [Show full text]
  • Human Reproductive Systems Males Vs. Females Learning Goals • Students Will Describe the Basic Anatomy and Physiology of the Male and Female Reproductive Systems
    Human Reproductive Systems Males vs. Females Learning Goals • Students will describe the basic anatomy and physiology of the male and female reproductive systems. Gonads are sex organs that create gametes? & excrete sex hormones Gonads are sex organs that create gametes & excrete sex hormones Male gonads are called testes Female gonads are called ovaries -Are the site of sperm production -Are the site of egg production & maturation Gametes are also called sex ?cells, and are used to create offspring with a mixture of genetic information. Gametes are also called sex cells, and are used to create offspring with a mixture of genetic information. Male gametes are called sperm Female gametes are called -produce 300-500 million per 5ml eggs/ova of semen -70,000-100,000 at birth -release 1-2 per month from puberty to menopause. Sex Hormones are chemical? signals that tell the sex organs how to function. Sex Hormones are chemical signals that tell the sex organs how to function. Male hormone is called Female hormones are estrogen testosterone and progesterone -released from the testes -released from the ovary -controls sperm production -controls egg production & release Duct systems help deliver gametes from gonads and are the site of fertilization in females and delivers sperm out of the body in males. Male duct systems include: Epididymis -site of sperm maturation (about 20 days for sperm to mature) Male duct systems include: Vas deferens -Tube for sperm to travel through as they leave the testes Male duct systems include: Urethra -shared tube for release of semen from reproductive tract and urine from the bladder.
    [Show full text]
  • Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho
    Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho To cite this version: James Umen, Susana Coelho. Algal Sex Determination and the Evolution of Anisogamy. Annual Review of Microbiology, Annual Reviews, 2019, 73 (1), 10.1146/annurev-micro-020518-120011. hal- 02187088 HAL Id: hal-02187088 https://hal.sorbonne-universite.fr/hal-02187088 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Microbiol. 2019. 73:X–X https://doi.org/10.1146/annurev-micro-020518-120011 Copyright © 2019 by Annual Reviews. All rights reserved Umen • Coelho www.annualreviews.org • Algal Sexes and Mating Systems Algal Sex Determination and the Evolution of Anisogamy James Umen1 and Susana Coelho2 1Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; email: [email protected] 2Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France [**AU: Please write the entire affiliation in French or write it all in English, rather than a combination of English and French**] ; email: [email protected] Abstract Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction.
    [Show full text]
  • Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role?
    Journal of Cell Science 109, 2199-2206 (1996) 2199 Printed in Great Britain © The Company of Biologists Limited 1996 JCS3386 Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? Arthur R. Mitchell*, Peter Jeppesen, Linda Nicol†, Harris Morrison and David Kipling MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *Author for correspondence (internet [email protected]) †Present address: MRC Reproductive Biology Unit, Edinburgh, UK SUMMARY Chromosome 1 of the inbred mouse strain DBA/2 has a block of minor satellite DNA sequences on chromosome 1. polymorphism associated with the minor satellite DNA at The binding of the CENP-E protein does not appear to be its centromere. The more terminal block of satellite DNA affected by demethylation of the minor satellite sequences. sequences on this chromosome acts as the centromere as We present a model to explain these observations. This shown by the binding of CREST ACA serum, anti-CENP- model may also indicate the mechanism by which the B and anti-CENP-E polyclonal sera. Demethylation of the CENP-B protein recognises specific sites within the arrays minor satellite DNA sequences accomplished by growing of minor satellite DNA on mouse chromosomes. cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal Key words: Centromere satellite DNA, Demethylation, Centromere block and in addition it now binds to the more internal antibody INTRODUCTION A common feature of many mammalian pericentromeric domains is that they contain families of repetitive DNA The centromere of mammalian chromosomes is recognised at sequences (Singer, 1982).
    [Show full text]
  • Meiosis & Sexual Reproduction Heyer 1
    Meiosis & Sexual Reproduction Meiosis & Sex Cells Arise From Preexisting Cells I. Asexual (Mitotic) Reproduction a. Mitosis: production of two identical nuclei b. Cytokinesis: physical division of the cell into two II. Sexual (Meiotic) Reproduction a. Meiosis: production of four non-identical nuclei b. Cytokinesis: physical division of the cell c. Fertilization: fusion of two Sexual reproduction creates sex cells d. Syngamy: fusion of new combinations of alleles. two nuclei Diploid cells have Homologous chromosomes [Homologs]: homologous pairs of chromosomes: same loci, maybe different alleles. 1 set from mom, 1 set from dad. Meiosis: Reductive Division Sex = Meiosis + Syngamy — Reduces Chromosome Number in Half Meiosis has 2 consecutive divisions – Meiosis I: Homologous pairs separate – Meiosis II: Sister chromatids separate Each division has a prophase, metaphase, anaphase and a telophase Meiosis: Syngamy: 2n 1n 1n 2n Diploid haploid Haploid diploid Heyer 1 Meiosis & Sexual Reproduction Chromosomes Matched in Sexual Life Cycles Homologous Pairs (Homologs) Human somatic (body) cells – 23 pairs = 46 chromosomes – Homolog = same size, shape, centromere, and genes Pairs #1 - 22 = Autosomes – Both male and female Pair #23 = Sex Chromosomes – Determine gender – XX = female, XY = male Diploid life history Alternation of Generations Haploid life history (animals) (plants) (fungi) Human karyotype Somatic (body) cells are Diploid Meiosis I Gametes (sex cells) are Haploid Diploid (2n) Prophase I – Two of each kind of chromosome Chromosomes
    [Show full text]
  • The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
    G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins.
    [Show full text]
  • Section 6: Sex Cells and Fertilisation
    S ection 6: S ex Cells and Fertilisation U se the w ords in the w ord bank below to com plete the sentences below : S maller, vagina, anther, halved, fertilisation, nucleus, male, half, gametes, D N A , stigma, female, ovules, pollen, pollen tube, four, zygote, threadlike, one, identical, genes, amino acids, protein, function, meiosis, sex chromosomes, male S ome plants reproduce sexually. T he sexual parts are inside the flow ers. M ost flow ering plants have flow ers w ith both __ ___ __ and _ ___ __ parts. T hese sexual parts produce special sex cells called _ ____ ___ _. Label the diagram above. T he male part of a flow ering plant is called the ___ ___ ___ _ and produces __ ______. T he female part is called the _ ___ ___ _ and produces ovules. Pollen grains are __ ___ ____ and more numerous than ovules, w hich are larger. Fertilisation in flow ering plants occurs by pollen trains being transferred to the _ ___ ___ _. A _____ ___ __ _____then grow s dow n into the ovary and into an ovule. A male gamete then passes dow n the tube and fuses w ith egg cell. T his process is called 1 __ __________. T he fertilised egg is now called a ___ ___ __. Fertilisation produces variety in the offspring because genetically identical gametes form in different w ays, producing different combinations. S exual Reproduction In H umans Label the follow ing diagrams: 2 In humans, fertilisation takes place in the oviduct.
    [Show full text]
  • X-Chromosome Meiotic Drive in Drosophila Simulans: a QTL Approach Reveals the Complex Polygenic Determinism of Paris Drive Suppression
    Heredity (2019) 122:906–915 https://doi.org/10.1038/s41437-018-0163-1 ARTICLE X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression 1 1,2 1 2 2 Cécile Courret ● Pierre R. Gérard ● David Ogereau ● Matthieu Falque ● Laurence Moreau ● Catherine Montchamp-Moreau1 Received: 31 July 2018 / Revised: 14 October 2018 / Accepted: 24 October 2018 / Published online: 5 December 2018 © The Genetics Society 2018 Abstract Meiotic drivers are selfish genetic elements that promote their own transmission into the gametes, which results in intragenomic conflicts. In the Paris sex-ratio system of Drosophila simulans, drivers located on the X chromosome prevent the segregation of the heterochromatic Y chromosome during meiosis II, and hence the production of Y-bearing sperm. The resulting sex-ratio bias strongly impacts population dynamics and evolution. Natural selection, which tends to restore an equal sex ratio, favors the emergence of resistant Y chromosomes and autosomal suppressors. This is the case in the Paris 1234567890();,: 1234567890();,: sex-ratio system where the drivers became cryptic in most of the natural populations of D. simulans. Here, we used a quantitative trait locus (QTL) mapping approach based on the analysis of 152 highly recombinant inbred lines (RILs) to investigate the genetic determinism of autosomal suppression. The RILs were derived from an advanced intercross between two parental lines, one showing complete autosomal suppression while the other one was sensitive to drive. The confrontation of RIL autosomes with a reference XSR chromosome allowed us to identify two QTLs on chromosome 2 and three on chromosome 3, with strong epistatic interactions.
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • Evolution on the X Chromosome: Unusual Patterns and Processes
    REVIEWS Evolution on the X chromosome: unusual patterns and processes Beatriz Vicoso and Brian Charlesworth Abstract | Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness. Haldane’s rule Sex-chromosome systems have evolved independently the predictions of theoretical models of X-chromosome The disproportionate loss of many times, and have attracted much attention from evolution will shed light on the assumptions on which fitness to the heterogametic evolutionary geneticists. This work has mainly focused the models are based, such as the degree of dominance of sex in F1 hybrids between on the steps leading to the initial evolution of sex chro- mutations and the existence of opposing forces species. mosomes, and the genetic degeneration of Y and W of selection on males and females, leading to a better 1 Clade chromosomes . Here, we discuss the evolution of the understanding of the forces that shape the evolution of A group of species which share X chromosome in long-established sex-chromosome eukaryotic genomes. a common ancestor.
    [Show full text]
  • Chromosomal Localisation of a Y Specific Growth Gene(S) J Med Genet: First Published As 10.1136/Jmg.32.7.572 on 1 July 1995
    5727 JMed Genet 1995;32:572-575 Chromosomal localisation of a Y specific growth gene(s) J Med Genet: first published as 10.1136/jmg.32.7.572 on 1 July 1995. Downloaded from Tsutomu Ogata, Keiko Tomita, Akiko Hida, Nobutake Matsuo, Yutaka Nakahori, Yasuo Nakagome Abstract apparently large Yq terminal deletions are in- Although a Y specific growth gene(s) has variably sterile and occasionally have short been postulated in the Yqll region, the stature.24 However, since correlations between precise location has not been determined. genotype and stature have not been properly To localise the growth gene(s), we cor- examined, the precise location ofthe Y specific related genotype with stature in 13 Jap- growth gene(s) has not been determined. anese and four European non-mosaic In this paper, we attempt to localise the Y adult male patients with a partial Yq de- specific growth gene(s) on the basis of geno- letion. Fourteen patients preserving the type-phenotype correlations in patients with region between DYSll and DYS246 did Yq - chromosomes. not have short stature (11 Japanese, 165-180 cm; three Europeans, 165-173 cm) whereas the remaining three patients with Methods SELECTION OF PATIENTS the region deleted had short stature (two The patients analysed in the present study were Japanese, both 159 cm; one European, collected from a large series ofinfertile Japanese 157 cm). The results suggest that the region males ascertained from 1988 to 1993. The defined by DYS1I at interval 5C and by selection criteria used were: (1) measurement DYS246 at interval SD may be the critical of height between 20 and 50 years of age; region for the Y specific growth gene(s).
    [Show full text]