Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role?

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role? Journal of Cell Science 109, 2199-2206 (1996) 2199 Printed in Great Britain © The Company of Biologists Limited 1996 JCS3386 Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? Arthur R. Mitchell*, Peter Jeppesen, Linda Nicol†, Harris Morrison and David Kipling MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *Author for correspondence (internet [email protected]) †Present address: MRC Reproductive Biology Unit, Edinburgh, UK SUMMARY Chromosome 1 of the inbred mouse strain DBA/2 has a block of minor satellite DNA sequences on chromosome 1. polymorphism associated with the minor satellite DNA at The binding of the CENP-E protein does not appear to be its centromere. The more terminal block of satellite DNA affected by demethylation of the minor satellite sequences. sequences on this chromosome acts as the centromere as We present a model to explain these observations. This shown by the binding of CREST ACA serum, anti-CENP- model may also indicate the mechanism by which the B and anti-CENP-E polyclonal sera. Demethylation of the CENP-B protein recognises specific sites within the arrays minor satellite DNA sequences accomplished by growing of minor satellite DNA on mouse chromosomes. cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal Key words: Centromere satellite DNA, Demethylation, Centromere block and in addition it now binds to the more internal antibody INTRODUCTION A common feature of many mammalian pericentromeric domains is that they contain families of repetitive DNA The centromere of mammalian chromosomes is recognised at sequences (Singer, 1982). Some of these families of repeated the cytological level as the primary constriction of the chro- DNAs appear to be quite specific for any one species. In man, mosome. Using the electron microscope Rattner and Bazett- these are the simple-sequence, so-called satellite DNAs, where Jones (1989) and Ris and Wit (1981) identified the kinetochore particular chromosomes have amplified relatively short as an electron dense component of the centromere with specific oligonucleotides to give the present-day situation where they structural features. These included inner and outer plates and may contain millions of copies of these repetitive DNA a fibrous corona. Phosphorous was one of the elements families (Prosser et al., 1986). A similar situation can be seen detected in this structure indicating that DNA was one of the in the mouse. In Mus musculus both the major and minor structural components. Later, Cooke et al. (1993) came to the satellite DNAs are present on all chromosomes with the conclusion that both the outer plate of the kinetochore and the exception of the Y chromosome (Pardue and Gall, 1969; Jones, matrix between the outer and inner plates either lacked DNA 1970; Wong and Rattner, 1988; Joseph et al., 1989). The same as an integral part of their structure or, if DNA sequences were is true for Mus spretus although the amount of DNA homolo- present, only a small amount (~2 kb) of DNA was involved gous to the Mus musculus major satellite DNA sequences in with these structural components. The initial finding that phos- the M. spretus genome is greatly reduced (Narayanswami et phorous was present in the outer plate being ascribed more al., 1992). In Mus caroli different families of repetitive DNAs likely to the presence of phosphoproteins rather than DNA have evolved within the centromeric domains of its chromo- sequences (Cooke et al., 1993). somes, and are quite distinct from those in the other two Mus The biological role of the centromere in the cell is of species (Kipling et al., 1995). paramount importance to the chromosome. The loss of cen- It was known that certain families of repetitive DNAs tromere function leads to chromosome instability during cell mapped, by in situ hybridisation, closer to the primary con- division which in turn leads to chromosome loss. Kinetochores striction of chromosomes than others (Mitchell et al., 1985; are recognised as the attachment sites for the spindle micro- Wong and Rattner, 1988; Joseph et al., 1989). Little sequence tubules. The loss of centromere function is associated with the similarity was found between the alphoid DNA in man and the chromosome being unable to capture microtubules. Thus during minor satellite DNA in M. musculus. Masumoto et al. (1989) cell division the alignment onto the metaphase plate and correct were first to report that both of these repetitive DNAs contained segregation of the chromosome during anaphase is prevented a conserved 17 base pair (bp) motif and that this short sequence (Schulman and Bloom 1991; Rattner, 1991). Errors of this type was responsible for binding the CENP-B centromere protein. can lead to complex genetic disorders in higher organisms. CENP-B is one of the proteins detected by autoantibodies in the 2200 A. R. Mitchell and others serum of some patients with the complex syndrome termed is an important component of some mammalian centromeres CREST (Moroi et al., 1980). Comparison of the CENP-B then the prevention of its binding by DNA methylation may be protein from man and mouse (Sullivan and Glass, 1991) has sufficient to cause centromere inactivation. shown 95% conservation at the amino acid level and from an analysis of its structure Pluta et al. (1992) initially showed that MATERIALS AND METHODS a DNA binding domain is present at the amino terminus. The first 158 amino acids were necessary to target the protein to the Chromosome preparations for indirect centromere. Later, Kitagawa et al. (1995) confirmed these immunofluorescence microscopy results and went on to show that the CENP-B protein had a DBA/2 mice were maintained in Edinburgh. Chromosome prepara- protein-protein dimerisation domain at its carboxy terminus. tions from spleen were prepared as described previously (Mitchell et Because it contains these different functional domains it has al., 1993). Cells were accumulated in mitosis and metaphase spreads been proposed that its biological role within both the alphoid were prepared as described by Jeppesen et al. (1992). Demethylation arrays in man and the minor satellite arrays in M. musculus is of chromosomal DNA was carried out by culturing cells in the presence of 5-aza-2′-deoxycytidine (Sigma) for 72 hours. The to promote condensation of the chromatin containing these optimum condition for growing the lymphocytes in the presence of repetitive DNAs (Kitagawa et al., 1995). this drug was found to be 5×10−6 M. After a period of 36 hours the The relationship between CENP-B and the kinetochore cell cultures were replenished with one half volume of fresh medium remains unclear. The CENP-B protein appears localised to the containing 5-aza-2′-deoxycytidine at the above concentration. Control chromatin beneath the kinetochore plate (Pluta et al., 1990) and cultures were set up at the same time and grown under identical con- it does not seem to be directly associated with this structure. ditions. Both control and treated cells were prepared at the same time Where dicentric chromosomes have been studied it now seems and the antibody reactions were run in parallel. clear that CENP-B can be bound at both active and inactive Indirect immunofluorescence with antisera against CENP-B or centromeres (Earnshaw et al., 1989; Sullivan and Schwartz, CENP-E was carried out essentially as described previously (Jeppesen 1995). In contrast the CENP-C protein appears to be associ- et al., 1992). ated only with the active centromere/kinetochore as deter- Anti-CENP-B raised against cloned human CENP-B (a gift from Professor W. C. Earnshaw) and anti-human CENP-E (a gift from Dr mined by the position of the primary constriction on chromo- Tim Yen) were both polyclonal rabbit antisera raised against bacteri- somes (Earnshaw et al., 1989; Page et al., 1995; Sullivan and ally expressed protein. Schwartz, 1995). The CENP-E protein also seems to bind only Anti-CENP-B or anti-CENP-E were diluted 1:300 or 1:500, respec- to the active kinetochore (Sullivan and Schwartz, 1995). In our tively, in KCM (Jeppesen et al., 1992) + 10% normal goat serum previous work on the DBA/2 mouse (Mitchell et al., 1993) we (NGS). The secondary antibody was FITC-conjugated, affinity- showed that chromosome 1 in this animal differed from the purified, anti-rabbit IgG, raised in goat (Sigma Chemical Co.), diluted other chromosomes in the cell by having two separate blocks 1:20 in KCM + 10% NGS. For double antibody labelling, slides were of minor satellite DNA sequences. These blocks are cytologi- first incubated with KCM + 10% NGS containing a 1:100 dilution of cally distinct and separated from each other by intervening a CREST patient anti-centromere serum (CP) together with either major satellite DNA sequences. Only the more terminal of the anti-CENP-B or anti-CENP-E antiserum (both diluted 1:100). After two arrays has the characteristics of a functional centromere, washing, slides were incubated simultaneously with FITC-conju- gated, affinity-purified, anti-human IgG, raised in goat (Sigma i.e. CREST anti-centromere associated labelling (ACA) and Chemical Co.) to detect the CREST signal, and TRITC goat anti- sister chromatid attachment. However, in situ hybridisation rabbit IgG to detect rabbit antibody binding, both diluted 1:20 in KCM results revealed the presence of 17 bp CENP-B binding sites + 10% NGS. within both arrays of minor satellite DNA. The presence of CENP-B sites in the more internal array conflicted with the Primed in situ hybridisation (PRINS) apparent absence of CREST ACA staining to this region. The original technique of Koch et al.
Recommended publications
  • X-Linked Recessive Inheritance
    X-LINKED RECESSIVE Fact sheet 09 INHERITANCE This fact sheet talks about how genes affect our health when they follow a well understood pattern of genetic inheritance known as X-linked recessive inheritance. The exception to this rule applies to the genes carried on the sex chromosomes called X and Y. IN SUMMARY The genes in our DNA provide the instructions • Genes contain the instructions for for proteins, which are the building blocks of the growth and development. Some gene cells that make up our body. Although we all have variations or changes may mean that variation in our genes, sometimes this can affect the gene does not work properly or works in a different way that is harmful. how our bodies grow and develop. • A variation in a gene that causes a Generally, DNA variations that have no impact health or developmental condition on our health are called benign variants or is called a pathogenic variant or polymorphisms. These variants tend to be more mutation. common in people. Less commonly, variations can change the gene so that it sends a different • If a genetic condition happens when message. These changes may mean that the gene a gene on the X chromosome has does not work properly or works in a different way a variation, this is called X-linked that is harmful. A variation in a gene that causes inheritance. a health or developmental condition is called a • An X-linked recessive gene is a gene pathogenic variant or mutation. located on the X chromosome and affects males and females differently.
    [Show full text]
  • Ring 21 FTNW
    Ring 21 rarechromo.org Sources Ring 21 The information Ring 21 is a rare genetic condition caused by having a in this leaflet ring-shaped chromosome. comes from the Almost half of the people with ring 21 chromosomes medical literature described in the medical literature are healthy and and from develop normally. Their unusual chromosomes are Unique’s discovered by chance, during tests for infertility or after members with repeated miscarriages or after having an affected baby. Ring 21 In other people the ring 21 chromosome affects (referenced U), development and learning and can also cause medical who were problems. In most of these people these effects are surveyed in slight but in some people they can be severe. The 2004. Unique is effects can even vary between different members of the very grateful to same family. The reason for these differences is not yet the families who fully understood. took part in the survey. What is a chromosome? The human body is made up of cells. Inside most cells is References a nucleus where genetic information is stored in genes which are grouped along chromosomes. Chromosomes The text contains are large enough to be studied under a microscope and references to come in different sizes, each with a short (p) and a long articles published (q) arm. They are numbered from largest to smallest in the medical according to their size, from number 1 to number 22, in press. The first- addition to the sex chromosomes, X and Y. A normal, named author healthy cell in the body has 46 chromosomes, 23 from and publication the mother and 23 from the father, including one date are given to chromosome 21 from each parent.
    [Show full text]
  • X-Chromosome Meiotic Drive in Drosophila Simulans: a QTL Approach Reveals the Complex Polygenic Determinism of Paris Drive Suppression
    Heredity (2019) 122:906–915 https://doi.org/10.1038/s41437-018-0163-1 ARTICLE X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression 1 1,2 1 2 2 Cécile Courret ● Pierre R. Gérard ● David Ogereau ● Matthieu Falque ● Laurence Moreau ● Catherine Montchamp-Moreau1 Received: 31 July 2018 / Revised: 14 October 2018 / Accepted: 24 October 2018 / Published online: 5 December 2018 © The Genetics Society 2018 Abstract Meiotic drivers are selfish genetic elements that promote their own transmission into the gametes, which results in intragenomic conflicts. In the Paris sex-ratio system of Drosophila simulans, drivers located on the X chromosome prevent the segregation of the heterochromatic Y chromosome during meiosis II, and hence the production of Y-bearing sperm. The resulting sex-ratio bias strongly impacts population dynamics and evolution. Natural selection, which tends to restore an equal sex ratio, favors the emergence of resistant Y chromosomes and autosomal suppressors. This is the case in the Paris 1234567890();,: 1234567890();,: sex-ratio system where the drivers became cryptic in most of the natural populations of D. simulans. Here, we used a quantitative trait locus (QTL) mapping approach based on the analysis of 152 highly recombinant inbred lines (RILs) to investigate the genetic determinism of autosomal suppression. The RILs were derived from an advanced intercross between two parental lines, one showing complete autosomal suppression while the other one was sensitive to drive. The confrontation of RIL autosomes with a reference XSR chromosome allowed us to identify two QTLs on chromosome 2 and three on chromosome 3, with strong epistatic interactions.
    [Show full text]
  • The 50Th Anniversary of the Discovery of Trisomy 21: the Past, Present, and Future of Research and Treatment of Down Syndrome
    REVIEW The 50th anniversary of the discovery of trisomy 21: The past, present, and future of research and treatment of Down syndrome Andre´Me´garbane´, MD, PhD1,2, Aime´ Ravel, MD1, Clotilde Mircher, MD1, Franck Sturtz, MD, PhD1,3, Yann Grattau, MD1, Marie-Odile Rethore´, MD1, Jean-Maurice Delabar, PhD4, and William C. Mobley, MD, PhD5 Abstract: Trisomy 21 or Down syndrome is a chromosomal disorder HISTORICAL REVIEW resulting from the presence of all or part of an extra Chromosome 21. Clinical description It is a common birth defect, the most frequent and most recognizable By examining artifacts from the Tumaco-La Tolita culture, form of mental retardation, appearing in about 1 of every 700 newborns. which existed on the border between current Colombia and Although the syndrome had been described thousands of years before, Ecuador approximately 2500 years ago, Bernal and Briceno2 it was named after John Langdon Down who reported its clinical suspected that certain figurines depicted individuals with Tri- description in 1866. The suspected association of Down syndrome with somy 21, making these potteries the earliest evidence for the a chromosomal abnormality was confirmed by Lejeune et al. in 1959. existence of the syndrome. Martinez-Frias3 identified the syn- Fifty years after the discovery of the origin of Down syndrome, the term drome in a terra-cotta head from the Tolteca culture of Mexico “mongolism” is still inappropriately used; persons with Down syn- in 500 patients with AD in which the facial features of Trisomy drome are still institutionalized. Health problems associated with that 21 are clearly displayed.
    [Show full text]
  • Biol 1020: Chromosomal Genetics
    Ch. 15: Chromosomal Abnormalities Abnormalities in Chromosomal Number Abnormalities in Chromosomal Structure: Rearrangements Fragile Sites . • Define: – nondisjunction – polyploidy – aneupoidy – trisomy – monosomy . Abnormalities in chromosomal number How does it happen? . Abnormalities in chromosomal number nondisjunction - mistake in cell division where chromosomes do not separate properly in anaphase usually in meiosis, although in mitosis occasionally in meiosis, can occur in anaphase I or II . Abnormalities in chromosomal number polyploidy – complete extra sets (3n, etc.) – fatal in humans, most animals aneuploidy – missing one copy or have an extra copy of a single chromosome three copies of a chromosome in your somatic cells: trisomy one copy of a chromosome in your somatic cells: monosomy most trisomies and monosomies are lethal well before birth in humans; exceptions will be covered . Abnormalities in chromosomal number generally, in humans autosomal aneuploids tend to be spontaneously aborted over 1/5 of human pregnancies are lost spontaneously after implantation (probably closer to 1/3) chromosomal abnormalities are the leading known cause of pregnancy loss data indicate that minimum 10-15% of conceptions have a chromosomal abnormality at least 95% of these conceptions spontaneously abort (often without being noticed) . • Define: – nondisjunction – polyploidy – aneupoidy – trisomy – monosomy . • Describe each of the aneuploidies that can be found in an appreciable number of human adults (chromosomal abnormality, common name of the syndrome if it has one, phenotypes) . aneuploidy in human sex chromosomes X_ female (Turner syndrome) short stature; sterile (immature sex organs); often reduced mental abilities about 1 in 2500 human female births XXY male (Klinefelter syndrome) often not detected until puberty, when female body characteristics develop sterile; sometimes reduced mental abilities; testosterone shots can be used as a partial treatment; about 1 in 500 human male births .
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Evolution on the X Chromosome: Unusual Patterns and Processes
    REVIEWS Evolution on the X chromosome: unusual patterns and processes Beatriz Vicoso and Brian Charlesworth Abstract | Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness. Haldane’s rule Sex-chromosome systems have evolved independently the predictions of theoretical models of X-chromosome The disproportionate loss of many times, and have attracted much attention from evolution will shed light on the assumptions on which fitness to the heterogametic evolutionary geneticists. This work has mainly focused the models are based, such as the degree of dominance of sex in F1 hybrids between on the steps leading to the initial evolution of sex chro- mutations and the existence of opposing forces species. mosomes, and the genetic degeneration of Y and W of selection on males and females, leading to a better 1 Clade chromosomes . Here, we discuss the evolution of the understanding of the forces that shape the evolution of A group of species which share X chromosome in long-established sex-chromosome eukaryotic genomes. a common ancestor.
    [Show full text]
  • Microcephaly Genes and Risk of Late-Onset Alzheimer Disease
    ORIGINAL ARTICLE Microcephaly Genes and Risk of Late-onset Alzheimer Disease Deniz Erten-Lyons, MD,*w Beth Wilmot, PhD,zy Pavana Anur, BS,z Shannon McWeeney, PhD,zyJ Shawn K. Westaway, PhD,w Lisa Silbert, MD,w Patricia Kramer, PhD,w and Jeffrey Kaye, MD*w Alzheimer’s Disease Neuroimaging Initiative ratio=3.41; confidence interval, 1.77-6.57). However, this associa- Abstract: Brain development in the early stages of life has been tion was not replicated using another case-control sample research suggested to be one of the factors that may influence an individual’s participants from the Alzheimer Disease Neuroimaging Initiative. risk of Alzheimer disease (AD) later in life. Four microcephaly We conclude that the common variations we measured in the 4 genes, which regulate brain development in utero and have been microcephaly genes do not affect the risk of AD or that their effect suggested to play a role in the evolution of the human brain, were size is small. selected as candidate genes that may modulate the risk of AD. We examined the association between single nucleotide polymorphisms Key Words: Alzheimer disease, microcephaly genes, cognitive tagging common sequence variations in these genes and risk of AD reserve in two case-control samples. We found that the G allele of (Alzheimer Dis Assoc Disord 2011;25:276–282) rs2442607 in microcephalin 1 was associated with an increased risk of AD (under an additive genetic model, P=0.01; odds Received for publication June 2, 2010; accepted December 2, 2010. enetics has been suggested to play a role in variations From the *Portland Veterans Affairs Medical Center; wDepartment of Gin cognitive function in late life.1 One way in which Neurology; zOregon Clinical and Translational Research Center; genes may play a role in cognitive function in late life is yDivision of Bioinformatics and Computational Biology, Depart- through providing an “initial endowment” that is more ment of Medical Informatics and Clinical Epidemiology; and JDivision of Biostatistics, Department of Public Health and resistant to age-related changes.
    [Show full text]
  • X Chromosome-Linked and Mitochondrial Gene Control of Leber
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 8198-8202, September 1991 Genetics X chromosome-linked and mitochondrial gene control of Leber hereditary optic neuropathy: Evidence from segregation analysis for dependence on X chromosome inactivation (two-locus inheritance/cytoplasmic inheritance/reduced penetrance) XIANGDONG BU AND JEROME I. ROTTER* Medical Genetics Birth Defects Center, Departments of Medicine and Pediatrics, Cedars-Sinai Medical Center and University of California School of Medicine, Los Angeles, CA 90048 Communicated by Giuseppe Attardi, July 1, 1991 ABSTRACT Leber hereditary optic neuropathy (LHON) linkage analysis, Chen et al. (5) excluded an X-linked gene has been shown to involve mutation(s) of mitochondrial DNA, alone as the cause for LHON. Earlier, Imai and Moriwaki (6) yet there remain several confusing aspects of Its inheritance not advanced the theory of cytoplasmic inheritance. The identi- explained by mitochondrial inheritance alone, including male fication of a mtDNA point mutation for LHON by Wallace et predominance, reduced penetrance, and a later age of onset in al. (3) and Singh et al. (4) subsequently proved the decades- females. By extending segregation analysis methods to disor- old hypothesis regarding the cytoplasmic inheritance of ders that involve both a mitochondrial and a nuclear gene LHON (6). As mentioned above, however, a mitochondrial locus, we show that the available pedigree data for LHON are mutation alone still cannot explain many ofthe features ofthe most consistent with a two-locus disorder, with one responsible transmission pattern of LHON, including the strong male gene being mitochondrial and the other nuclear and X chro- bias and the reduced penetrance of LHON in the maternal mosome-linked.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Numerical Chromosome 1, 7, 9, and 11 Aberrations in Bladder Cancer Detected by in Situ Hybridization1
    [CANCER RESEARCH 51, 644-651, January 15. 1991] Numerical Chromosome 1, 7, 9, and 11 Aberrations in Bladder Cancer Detected by in Situ Hybridization1 Anton H. N. Hopman,2 Olof Moesker, A. Wim G. B. Smeets, Ruud P. E. Pauwels, G. Peter Vooijs, and Frans C. S. Ramaekers Department of Pathology, L'niversity //ospitai Nijmegen, fieert Grooteplein Zulu 24, 6525 (iA, .\ijmegen ¡A.H. N. H., O. .\t., C. P. ('./.' Stickling Ziekenkuisapotkeek en Klinisch Laboratorium l'enray [A. H'. G. B. S.J; Department of Urology, Hospital I enlo-1 'enray [R. P. K. P.], and Department of Molecular Cell Biology, L'nirersity ofLimhurg, Maastricht ¡A.H. N. H., F. C. S. R.], The Netherlands. ABSTRACT studies we demonstrated that this approach enables a routine screening of large tumor cell populations in, for example, Forty transitional cell carcinomas of the human urinary bladder (TCCs) TCCs4 (5, 10). Furthermore, ISH enables the detection of minor were examined for numerical aberrations of chromosomes 1, 7, 9, and 11 by in situ hybridization using chromosome-specific probes. Our inter- cell populations or imbalance in chromosome copy number phase cytogenetic study of 24 low-grade, noninvasive TCCs, which were within one tumor. near-diploid by flow cytometry, showed a numerical aberration for at By means of conventional karyotyping nonrandom chromo least I of these chromosomes in 14 of these cases. Most strikingly, a some aberrations involving chromosomes 1, 7, 9, and 11 have monosomy for chromosome 9 was found in 9 of 24 low-grade TCCs. A been detected in bladder cancer.
    [Show full text]
  • Chromosomal Rearrangements Genetic Variation Alterationsalterations Inin Chromosomechromosome Structurestructure
    chromosomal rearrangements Genetic variation AlterationsAlterations inin ChromosomeChromosome StructureStructure ! There are two primary ways in which the structure of chromosomes can be altered – 1. The total amount of genetic information in the chromosome can change " Decrease: Deficiencies/Deletions " Increase: Duplications & Insertions – 2. The genetic material may remain the same, but is rearranged " Inversions " Translocations PeCtoerp Jy.r Riguhsts e©llT, ihGee nMetciGcsr: aCwop-Hyriilgl hCt o©m Ppeaanriseosn, IEndcu.c Pateiromn,i sInsico.,n p ruebqliusihriendg faosr B reenpjarmodinu cCtuiomnm oirn gdsisplay 3 Chromosomal aberations/ rearrangements Chromosomal abberations/ rearrangements deletion Duplication Inversion translocation. Chromosomal abberations/ rearrangements • For chromosomal rearrangement to occur, there has to be two or more double-stranded breaks in the chromosomes of a cell. • DSBs are potentially lethal, unless they are repaired by repair enzymes. Chromosomal rearrangements • If the two ends of the same break are rejoined, the original DNA order is restored. • If the ends of two different breaks are joined together, results in a chromosomal rearrangement. • The only chromosomal rearrangements that survive meiosis are those that produce DNA molecules that have one centromere and two telomeres. • acentric chromosome: Without a centromere • Do not get dragged to either pole at anaphase of mitosis or meiosis Chromosomal • Are not incorporated into either progeny nucleus. rearrangements Therefore acentric chromosomes are not inherited. Chromosomal Re-arragements • Dicentric chromosome: With two centromere • pulled simultaneously to opposite poles at anaphase, forming an anaphase bridge. • Generally do not get incorporated into either progeny cell. • A chromosome lacking a telomere, cannot replicate properly Chromosomal • The larger the segment Re-arragements that is lost or duplicated, the more chance, that it will cause phenotypic abnormalities.
    [Show full text]