Now at the State Fair Grandstand!
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fair Use of This PDF File of Herbaceous
Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut. -
The 1700 Native Plants of Bucks County, PA
The 1700 Native Plants of Bucks County, PA Bucks County, PA is blessed with an enormous range of physiographic regions, soil types, and hydrological conditions. Habitats range from the diabase areas of the Upper Bucks to the coastal plains of Lower Bucks, high palisades of the Delaware River to bog remnants, pristine freshwater ponds to tidal areas. These varied conditions host a dizzying array of species, sub‐species, and naturally‐occurring varieties. Common species are regularly available from ArcheWild; many can be grown under contract. Call ArcheWild at 855‐752‐6862 or e‐mail us for more information at: [email protected] Symbol Scientific Name Common Name ACGR2 Acalypha gracilens slender threeseed mercury ACRH Acalypha rhomboidea common threeseed mercury ACVI Acalypha virginica Virginia threeseed mercury ACNE2 Acer negundo boxelder ACNEN Acer negundo var. negundo boxelder ACPE Acer pensylvanicum striped maple ACRU Acer rubrum red maple ACRUR Acer rubrum var. rubrum red maple ACRUT Acer rubrum var. trilobum red maple ACSA2 Acer saccharinum silver maple ACSA3 Acer saccharum sugar maple ACSAS Acer saccharum var. saccharum sugar maple ACSP2 Acer spicatum mountain maple ACMI2 Achillea millefolium common yarrow ACPA Actaea pachypoda white baneberry ACRA7 Actaea racemosa black baneberry ACRAR Actaea racemosa var. racemosa black bugbane ADPE Adiantum pedatum northern maidenhair ADFU Adlumia fungosa allegheny vine AEFL Aesculus flava yellow buckeye AGAU3 Agalinis auriculata earleaf false foxglove AGPU5 Agalinis purpurea purple false foxglove -
Botanischer Garten Der Universität Tübingen
Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22 -
Nested Whole-Genome Duplications Coincide with Diversification And
ARTICLE https://doi.org/10.1038/s41467-020-17605-7 OPEN Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae Nora Walden 1,7, Dmitry A. German 1,5,7, Eva M. Wolf 1,7, Markus Kiefer 1, Philippe Rigault 1,2, Xiao-Chen Huang 1,6, Christiane Kiefer 1, Roswitha Schmickl3, Andreas Franzke 1, Barbara Neuffer4, ✉ Klaus Mummenhoff4 & Marcus A. Koch 1 1234567890():,; Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phy- logenetic genome-wide association studies to analyze the evolution of morphological form and function. 1 Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany. 2 GYDLE, 1135 Grande Allée Ouest, Québec, QC G1S 1E7, Canada. 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic. -
Selected Plants from the Garden of Colleen Janney
Selected Plants from the Garden of Colleen Janney [ (*W) denotes a Water-Wise plant; (*N) = native plant; (*DR) = Disease–resistant variety] Grasses & Grass-like Plants Microbiota decussata (Siberian Carpet Cypress) *W Bambusa multiplex ‘Golden Goddess’ (Golden Philadelphus lewisii (Mock Orange) *W, *N Clumping Bamboo) Rosa ‘Meidland’ *DR Carex buchananni (Leather-leaf Sedge) Sambucus racemosa (Red Elderberry) *W, *N Carex morrowii ‘Variegata’ (Silver Japanese Sedge) Tropaeolum peregrinum (Climbing Nasturtium) Carex siderosticta ‘Variegata’ (Broad-leaved Sedge) Vaccinium ovatum (Evergreen Huckleberry) *N,*W Chasmanthius latifolium (Northern Sea Oats) *W Vaccinium parvifolium (Red Huckleberry) *N, *W Cyperus albostriatus (Dwarf Umbrella Grass) Weigela florida ‘Elvera’ & ‘Midnight Wine’ Elymus magellanicus (Blue Magellan Grass) *W Hakonechloa macro ‘Aureola’ Trees Helictrotrichon sempervirens (Blue Oat Grass) *W Abies grandis (Grand Fir) *N, *W Imperata cylindrica (Blood Grass) Acer palmatum ‘Senkaki’ (Coral Bark Maple) Liriope muscari ‘Variegata’ (Variegated Lily Turf) Betula ‘Pendula’ (Weeping Birch) Chamaecyparis obtusa ‘Nana Gracilis’ (Dwarf Hinoki) Luzula nivea ‘Snowbird’ (Snowy Woodrush) Miscanthus sinesis ‘Variegatus & ‘Gracillimus’ *W Perennials Ferns & Groundcovers Molinia caerulea arundinacea (Tall Moor Grass) Agastache sp. (Hysop) Molinia caerulea ‘Variegata’ (Variegated Moor Grass) Arachnoiodes simplicior ‘Variegata’ (Indian Holly Fern) Ophiopogon planiscapus ‘Ebony Knight’ (Black Mondo) Artemisia ‘Powis Castle’ & ‘Silverking’ *W Pennisetum alopecuroides ‘Hameln’ (Dwarf Fountain)*W Baptisia australis (Blue False Indigo) *W Phormium colensoi ‘Jack Spratt’ (Dwarf Mt. Flax) *W Blechnum spicant (Deer Fern) *N Phormium tenax ‘Tricolor’ (New Zealand Flax) *W Catananche caerulea (Cupid’s Dart) *W Phormium tenax ‘Pink Stripe’ (NZ Flax) *W Cimicifuga simplex ‘White Star’ P. tenax ‘Rubrum (NZ Flax) *W Coreopsis spp. *W P. tenax ‘Dusky Chief’ (NZ Flax) *W Cotula squalida (New Zealand Brass Buttons) Sisyrinchium bellum, S. -
Dryopteris Goldiana X D. Intermedia, a Natural Fern Hybrid New to Canada
2003 NOTES 649 Stirling, I., Lunn, N., and J. Iacozza . 1999. Long-term Received 1 November 2001 trends in the population of polar bears in western Hudson Accepted 16 April 2004 Bay in relation to climatic change. Arctic 52 : 294-306. Dryopteris goldiana D. intermedia , a Natural Fern Hybrid New to Canada × PAUL M. C ATLING Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6 Canada Catling, Paul M. 2003. a natural fern hybrid new to Canada. Canadian Field-Naturalist Dryopteris goldiana × D. intermedia, 117(4): 649-651. The rare fern hybrid is reported for the first time from Canada on the basis of a collection Dryopteris goldiana × D. intermedia from eastern Ontario. The plant occurred in rich deciduous woods in an extensive seepage area at the base of a slope. The immediate vicinity had an unusually high floristic diversity and 25 associated vascular plants are listed. Distinguishing characteristics of the hybrid are outlined. Key Words: , Goldie’s Fern, Evergreen Wood Fern, hybrid, conservation, biodiversity, Dryopteris goldiana × D. intermedia bioindicator, Canada. Areas of occurrence of natural hybridization of native Distribution and ecology species should be preserved as part of a dynamic eco- Dryopteris goldiana occurs throughout a large por- system (Whitham and Maschinski 1996). Such areas tion of eastern North America, reaching its northern containing plant hybrids are often “hot spots of ecolog- limit in southeastern Canada where it occurs from New ical and evolutionary activity” (Whitham 1991). Hy- Brunswick west to southern Quebec and southern brids are important with regard to genetic diversity and Ontario (Cody and Britton 1989; Carlson and Wagner the conservation of evolutionary potential, and in some 1982 ). -
Manchester Road Redevelopment District: Form-Based Code
TaBle 11: deFiniTionS illuSTraTed manchester road Form-Based Code a. ThoroughFare & FronTageS Building Private Public Vehicular Public Private Building Frontage Frontage Lanes Frontage Frontage Private lot Thoroughfare (r.o.w.) Private lot b. Turning radiuS c. Building diSPoSiTion 3 3 2 2 1 Parking Lane Moving Lane 1- Principal Building 1 1 2- Backbuilding 1-Radius at the Curb 3- Outbuilding 2-Effective Turning Radius (± 8 ft) d. loT LAYERS e. FronTage & loT lineS 4 3rd layer 4 2 1 4 4 4 3 2nd layer Secondary Frontage 20 feet 1-Frontage Line 2-Lot Line 1st layer 3 3 Principal Frontage 3-Facades 1 1 4-Elevations layer 1st layer 2nd & 3rd & 2nd f. SeTBaCk deSignaTionS 3 3 2 1 2 1-Front Setback 2-Side Setback 1 1 3-Rear Setback 111 Manchester Road Form-Based Code ARTICLE 9. APPENDIX MATERIALS MBG Kemper Center PlantFinder About PlantFinder List of Gardens Visit Gardens Alphabetical List Common Names Search E-Mail Questions Menu Quick Links Home Page Your Plant Search Results Kemper Blog PlantFinder Please Note: The following plants all meet your search criteria. This list is not necessarily a list of recommended plants to grow, however. Please read about each PF Search Manchesterplant. Some may Road be invasive Form-Based in your area or may Code have undesirable characteristics such as above averageTab insect LEor disease 11: problems. NATIVE PLANT LIST Pests Plants of Merit Missouri Native Plant List provided by the Missouri Botanical Garden PlantFinder http://www.mobot.org/gardeninghelp/plantfinder Master Search Search limited to: Missouri Natives Search Tips Scientific Name Scientific Name Common NameCommon Name Height (ft.) ZoneZone GardeningHelp (ft.) Acer negundo box elder 30-50 2-10 Acer rubrum red maple 40-70 3-9 Acer saccharinum silver maple 50-80 3-9 Titles Acer saccharum sugar maple 40-80 3-8 Acer saccharum subsp. -
Reader 19 05 19 V75 Timeline Pagination
Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla. -
Journal the New York Botanical Garden
VOL. XXXV SEPTEMBER, 1934 No. 417 JOURNAL OF THE NEW YORK BOTANICAL GARDEN FERNS WITHIN ONE HUNDRED MILES OF NEW YORK CITY JOHN K. SMALL TRIFOLIUM VIRGINICUM IN CULTIVATION T. H. EVERETT THE ELIZABETH GERTRUDE BRITTON MOSS HERBARIUM IS ESTABLISHED E. D. MERRILL SCIENCE COURSE FOR PROFESSIONAL GARDENERS ENTERS THIRD YEAR PUBLIC LECTURES SCHEDULED FOR SEPTEMBER, OCTOBER, AND NOVEMBER A GLANCE AT CURRENT LITERATURE CAROL H. WOODWARD NOTES, NEWS, AND COMMENT PUBLISHED FOR THE GARDEN AT LIME AND GREEN STREETS, LANCASTER, PA. THE SCIENCE PRESS PRINTING COMPANY Entered at the post-office in Lancaster, Pa., as second-class matter. Annual subscription $1.00 Single copies 10 cents Free to members of the Garden THE NEW YORK BOTANICAL GARDEN BOARD OF MANAGERS I. ELECTIVE MANAGERS Until 1935: L. H. BAILEY, THOMAS J. DOLEN, MARSHALL FIELD, MRS. ELON HUNTINGTON HOOKER, KENNETH K. MACKENZIE, JOHN L. MERRILL (Vice-presi dent and Treasurer), and H. HOBART PORTER. Until 1936: ARTHUR M. ANDERSON, HENRY W. DE FOREST (President), CLARENCE LEWIS, E. D. MERRILL (Director and Secretary), HENRY DE LA MON TAGNE, JR. (Assistant Treasurer & Business Manager), and LEWIS RUTHER- FURD MORRIS. Until 1937: HENRY DE FOREST BALDWIN (Vice-president), GEORGE S. BREWSTER, CHILDS FRICK, ADOLPH LEWISOHN, HENRY LOCKHART, JR., D. T. MACDOUGAL, and JOSEPH R. SWAN. II. EX-OFFICIO MANAGERS FIORELLO H. LAGUARDIA, Mayor of the City of New York. ROBERT MOSES, Park Commissioner. GEORGE J. RYAN, President of the Board of Education. III. APPOINTIVE MANAGERS A. F. BLAKESLEE, appointed by the Torrey Botanical Club. R. A. HARPER, SAM F. TRELEASE, EDMUND W. SINNOTT, and MARSTON T. -
Rare and Threatened Pteridophytes of Asia 2. Endangered Species of India — the Higher IUCN Categories
Bull. Natl. Mus. Nat. Sci., Ser. B, 38(4), pp. 153–181, November 22, 2012 Rare and Threatened Pteridophytes of Asia 2. Endangered Species of India — the Higher IUCN Categories Christopher Roy Fraser-Jenkins Student Guest House, Thamel. P.O. Box no. 5555, Kathmandu, Nepal E-mail: [email protected] (Received 19 July 2012; accepted 26 September 2012) Abstract A revised list of 337 pteridophytes from political India is presented according to the six higher IUCN categories, and following on from the wider list of Chandra et al. (2008). This is nearly one third of the total c. 1100 species of indigenous Pteridophytes present in India. Endemics in the list are noted and carefully revised distributions are given for each species along with their estimated IUCN category. A slightly modified update of the classification by Fraser-Jenkins (2010a) is used. Phanerophlebiopsis balansae (Christ) Fraser-Jenk. et Baishya and Azolla filiculoi- des Lam. subsp. cristata (Kaulf.) Fraser-Jenk., are new combinations. Key words : endangered, India, IUCN categories, pteridophytes. The total number of pteridophyte species pres- gered), VU (Vulnerable) and NT (Near threat- ent in India is c. 1100 and of these 337 taxa are ened), whereas Chandra et al.’s list was a more considered to be threatened or endangered preliminary one which did not set out to follow (nearly one third of the total). It should be the IUCN categories until more information realised that IUCN listing (IUCN, 2010) is became available. The IUCN categories given organised by countries and the global rarity and here apply to political India only. -
Phylogenetic Analyses Place the Monotypic Dryopolystichum Within Lomariopsidaceae
A peer-reviewed open-access journal PhytoKeysPhylogenetic 78: 83–107 (2017) analyses place the monotypic Dryopolystichum within Lomariopsidaceae 83 doi: 10.3897/phytokeys.78.12040 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae Cheng-Wei Chen1,*, Michael Sundue2,*, Li-Yaung Kuo3, Wei-Chih Teng4, Yao-Moan Huang1 1 Division of Silviculture, Taiwan Forestry Research Institute, 53 Nan-Hai Rd., Taipei 100, Taiwan 2 The Pringle Herbarium, Department of Plant Biology, The University of Vermont, 27 Colchester Ave., Burlington, VT 05405, USA 3 Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan 4 Natural photographer, 664, Hu-Shan Rd., Caotun Township, Nantou 54265, Taiwan Corresponding author: Yao-Moan Huang ([email protected]) Academic editor: T. Almeida | Received 1 February 2017 | Accepted 23 March 2017 | Published 7 April 2017 Citation: Chen C-W, Sundue M, Kuo L-Y, Teng W-C, Huang Y-M (2017) Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae. PhytoKeys 78: 83–107. https://doi.org/10.3897/phytokeys.78.12040 Abstract The monotypic fern genusDryopolystichum Copel. combines a unique assortment of characters that ob- scures its relationship to other ferns. Its thin-walled sporangium with a vertical and interrupted annulus, round sorus with peltate indusium, and petiole with several vascular bundles place it in suborder Poly- podiineae, but more precise placement has eluded previous authors. Here we investigate its phylogenetic position using three plastid DNA markers, rbcL, rps4-trnS, and trnL-F, and a broad sampling of Polypodi- ineae. -
Sustainable-Plant-List.Pdf
Sustainable Landscape Practices Garden Virginia Tech Hampton Roads Agricultural Research & Extension Center 1444 Diamond Springs Rd., Virginia Beach, VA Sustainable landscaping can also be called low maintenance, green, environmentally friendly, or conservation landscaping. Sustainable Concepts • biological diversity – using many different plants promotes beneficial insects, provides food & habitat for animals, & reduces pest impact • resource conservation – using existing topography, water, plants, & views in the design reduces costs & disturbance to the environment • long term planning – planning for mature plant sizes & the long-term look & use of the landscape reduces costs & minimizes plant crowding & maintenance • low impact / input – disturbing the site as little as possible & using healthy, well- adapted plants reduce maintenance & pesticide & fertilizer use • water conservation – grouping plants with similar water needs, using rain sensors, rain chains, rain barrels, & rain gardens/swales to collect runoff, help to conserve valuable water resources Sustainable Practices Used in this Landscape • Rain chains • Long term planning • Rain sensors • Correct planting • Rain barrel • Minimal site disturbance • Landscaped swales • Grasscycling • Permeable paving • Recycled products • Ground covers • Resource conservation • Mulches • Promote beneficial insects • Compost • Low input lawn • Canopy layering • Reduced fertilizers • Passive solar • Zero pesticides heating/cooling • Solar lights • Plant diversity • Soil testing • Plant selection