Methods for Correcting and Analyzing Gene Families

Total Page:16

File Type:pdf, Size:1020Kb

Methods for Correcting and Analyzing Gene Families Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Methods for correcting and analyzing gene families Akshay Yadav Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Yadav, Akshay, "Methods for correcting and analyzing gene families" (2020). Graduate Theses and Dissertations. 18059. https://lib.dr.iastate.edu/etd/18059 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Methods for correcting and analyzing gene families by Akshay Yadav A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Bioinformatics and Computational Biology Program of Study Committee: Steven Cannon, Co-major Professor David Fernández-Baca, Co-major Professor Karin Dorman Matthew Hufford Oliver Eulenstein The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Akshay Yadav, 2020. All rights reserved. ii DEDICATION To my wife, Prajakta, my brother, Digvijay, and to Aai and Baba for their unconditional support and encouragement. iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ...............................................................................................................v ABSTRACT ................................................................................................................................... vi CHAPTER 1. GENERAL INTRODUCTION ................................................................................1 Homology and Gene Families ................................................................................................... 1 Gene Family Building ............................................................................................................... 2 The Legume Family ................................................................................................................... 4 Protein Domains ........................................................................................................................ 5 References ................................................................................................................................. 7 CHAPTER 2. METHODS FOR ANALYZING, COMPARING AND CORRECTING GENE FAMILIES .....................................................................................................................................11 Abstract .................................................................................................................................... 11 Introduction ............................................................................................................................. 12 Methods ................................................................................................................................... 15 Under-clustering Detection and Correction ....................................................................... 15 Comparison of Family Sets ................................................................................................ 23 Tree-based Over-clustering Detection................................................................................ 23 Results ..................................................................................................................................... 24 Behavior of the Machine Learning Method on “True” YGOB Families ........................... 24 Using the Machine Learning Method to Detect “Pure” but Under-clustered Families ...... 25 Application of the Machine Learning Method to Detect and Correct “Impure” and Under-clustered Families ................................................................................................... 27 Comparing Families Obtained from Existing Methods to Reference Families ................. 29 Application of the Machine Learning Method to Improve Families from Existing Family Building Methods ................................................................................................... 30 Analyzing and Correcting OrthoFinder Legume Families ................................................. 30 Discussion ................................................................................................................................ 36 References ............................................................................................................................... 39 CHAPTER 3. IMPROVING AND ANALYZING CURRENT LEGUME GENE FAMILIES ...45 Abstract .................................................................................................................................... 45 Introduction ............................................................................................................................. 46 Methods ................................................................................................................................... 49 HMM-based Family Merging ............................................................................................ 49 Tree-based Family Scoring and Splitting ........................................................................... 50 Protein-domain-composition-based Family Scoring .......................................................... 52 Results ..................................................................................................................................... 52 Discussion ................................................................................................................................ 56 References ............................................................................................................................... 57 iv CHAPTER 4. CERCIS: A NON-POLYPLOID GENOMIC RELIC WITHIN THE GENERALLY POLYPLOID LEGUME FAMILY ......................................................................61 Abstract .................................................................................................................................... 61 Introduction ............................................................................................................................. 62 Materials and Methods ............................................................................................................ 63 Gene Family Construction, Ks Analysis, and Phylogeny Calculation ............................... 63 Calculation of Ks Values and Modal Ks Peaks ................................................................... 66 Inference of Consensus Branch Lengths from Ks Peaks .................................................... 67 Methods for Mining for Tree Topologies........................................................................... 68 Results ..................................................................................................................................... 68 Ks Peaks from Self-Comparisons of Coding Sequence ...................................................... 68 Genomic Synteny Analysis ................................................................................................ 73 Phylogenomic Analyses ..................................................................................................... 74 Informal Observations About Patterns in Trees ................................................................. 76 Summaries of Sequence Counts for All Gene Families (Legume Phylogeny Working Group et al., 2017) .............................................................................................................. 77 Mining for Tree Topologies Within the Cercidoideae ....................................................... 80 Gene Duplication Patterns Across Diverse Species in the Cercidoideae ........................... 81 Chromosome Counts Across the Legume Phylogeny ........................................................ 84 Genome Sizes in the Cercidoideae ..................................................................................... 89 Discussion ................................................................................................................................ 90 Conclusion ............................................................................................................................... 97 References ............................................................................................................................... 98 CHAPTER 5. FAMILY-SPECIFIC GAINS AND LOSSES OF PROTEIN DOMAINS IN LEGUME AND GRASS PLANT FAMILIES ............................................................................105 Abstract .................................................................................................................................. 105 Introduction ........................................................................................................................... 106 Material and Methods ...........................................................................................................
Recommended publications
  • Multiple Polyploidy Events in the Early Radiation of Nodulating And
    Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown.
    [Show full text]
  • AJAFS E23qcbmp.Pdf
    African Journal of Agriculture and Food Science Volume 2, Issue 1, 2019 (pp. 15-27) www.abjournals.org PHYTOCHEMICAL SCREENING, MINERAL DETERMINATION AND ANTIMICROBIAL SCREENING OF THE LEAVES EXTRACTS OF PILIOSTIGMA THONNONGII (MATURED AND YOUNG) LEAVES Ibrahim Isah Laken1, Musah Monday2, Dagaci M.Z1, Mohammed S.H2, Baba H.F2, Umar M.T1 and Usman R.L1 1Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Niger State, Nigeria 2Deptatment of Chemistry, Niger State College of Education, Minna, Nigeria. ABSTRACT: This paper dwelled on a plant Piliostigma thonningii with reference voucher FNS/0013/ibbu/ 018. The young and matured leaves of Piliostigma thonningii were used in ethno-medicine for the treatment of wounds, ulcers, and gingivitis by some communities in Agaie, Lapai and Bida LGA of Niger State, Nigeria separately. There is no reported scientific register that implicate the equivocal chemical constituent of the leaves. Against this backdrop the young and matured leaves were investigated for chemical constituents, antimicrobial activity and mineral composition. The leaves of the plant were subjected to solvent extraction for ethanolic and aqueous extracts. Both extracts were then subjected to preliminary Phytochemical screening and it was found that the young and matured leaves of the plant both contained alkaloids, flavonoids, Saponins, tannins, Terpenoids, Steroidal nucleus and cardiac glycoside and the absence of Anthraquinone. The matured leave was richer in chemical content than the young leaves. The antimicrobial activity of ethanol and aqueous extracts were studied using isolates of three pathogenic microorganisms and the extracts exhibited activities against two of the three microorganisms with zone of inhibition ranging from 11- 40mm.
    [Show full text]
  • Middle to Late Paleocene Leguminosae Fruits and Leaves from Colombia
    AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Australian Systematic Botany https://doi.org/10.1071/SB19001 Middle to Late Paleocene Leguminosae fruits and leaves from Colombia Fabiany Herrera A,B,D, Mónica R. Carvalho B, Scott L. Wing C, Carlos Jaramillo B and Patrick S. Herendeen A AChicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. BSmithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá. CDepartment of Paleobiology, NHB121, PO Box 37012, Smithsonian Institution, Washington, DC 20013, USA. DCorresponding author. Email: [email protected] Abstract. Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf 5 morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago. Additional keywords: diversity, Fabaceae, fossil plants, legumes, Neotropics, South America. Received 10 January 2019, accepted 5 April 2019, published online dd mmm yyyy Introduction dates for the crown clades ranging from the Cretaceous to the – Leguminosae, the third-largest family of flowering plants with Early Paleogene, c.
    [Show full text]
  • Large‐Scale Genomic Sequence Data Resolve the Deepest Divergences in the Legume Phylogeny and Support a Near‐Simultaneous Evolutionary Origin of All Six Subfamilies
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies Koenen, Erik J M ; Ojeda, Dario I ; Steeves, Royce ; Migliore, Jérémy ; Bakker, Freek T ; Wieringa, Jan J ; Kidner, Catherine ; Hardy, Olivier J ; Pennington, R Toby ; Bruneau, Anne ; Hughes, Colin E Abstract: Phylogenomics is increasingly used to infer deep‐branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep‐branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome‐scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear‐encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coa- lescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as ‘basal’ or ‘early‐diverging’ with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Wildlife Preservation Winter 2011.Indd
    Linda Dennis, Regional Advisor WPSA The northern hairy-nosed wombat (Lasiorhinus krefftii) is one of Australia’s most mysterious animals. Only a hundred or so people have been lucky enough to see one in the wild, and there are none in captivity anywhere in the world. Predator proof fence around Epping Forest. Photo: Linda Dennis In recent years, however, the northern it makes it into the Top 10 of the Xstrata donated a massive $3 million hairy-nosed wombat has become world’s most endangered animals. to assist in the translocation of just that little bit more known in some wombats from Epping Forest Australia and around the world – Every two or so years a northern to the Richard Underwood Nature but unfortunately for all the wrong hairy-nosed hair census is carried out. Refuge, near St George in southern reasons. It is Australia’s second most Volunteers from all corners of Australia Queensland to form a second colony. endangered animal, the rst being – and even the world – converge on the Gilbert’s potoroo of Western Epping Forest National Park (Scienti c) A brief history of the northern Australia. in central Queensland for two weeks to hairy-nosed wombat walk the length of the park, collecting The northern hairy-nosed wombat wombat hair, measuring footprints and Fossil records show that the has the dubious honour of making it counting wombat poo. northern hairy-nosed wombat was to more than one endangered listing: once widespread, living in Victoria, The results of the 2007 hair census New South Wales and Queensland • Endangered in Queensland proclaimed that there are only 138 (DERM).
    [Show full text]
  • Griffonia Simplicifolia in the Treatment of Depression: a Narrative Review
    International Journal of Complementary & Alternative Medicine Research Article Open Access The different roles of Griffonia simplicifolia in the treatment of depression: a narrative review Abstract Volume 14 Issue 3 - 2021 Introduction: Several studies have demonstrated the importance of some plants for the Renata de Melo Guerra Ribas,1 Diélita treatment of depression because they are sources of 5-hydroxytryptophan (5-HTP), among Carla Lopes de Oliveira,1 Paulo César them, Griffonia simplicifolia stands out, especially when dosed and formulated as an herbal 1 1 remedy. da Silva, Hugo André de Lima Martins, Joyce Gomes de Moraes,1 Mayara Paula da Objective: The purpose of this article is to conduct a narrative review on the treatment of Silva,1 Valdenilson Ribeiro Ribas,1 Clenes depression through the phytotherapic Griffonia simplicifolia. de Oliveira Mendes Calafange,2 Ana Elisa Method: A bibliographic review and a search of the electronic index databases MEDLINE/ Toscano Meneses da Silva Castro,2 Raul PubMed, Web of Science, CAPES journal portal, BIREME and Google Scholar were Manhães de Castro2 carried out. 1Brain Institute of Pernambuco (ICerPE), Brazil 2Postgraduate Program in Neuropsychiatry and Behavioral Results: Phytotherapy is only equivalent to allopathy only in the use of the law of the like. Sciences (Posneuro), Brazil However, its substances come only from vegetable origin. Thus, unlike allopathic drugs, it cannot be called a drug, but an active principle. Thus, both allopathy and phytotherapy Correspondence: Valdenilson Ribeiro Ribas, Senador Sérgio agree to increase the availability of 5-HT in the treatment of depression. In this sense, among Guerra, 220, Apt. 132, Piedade - Jaboatão dos Guararapes, these medicinal plants tested in the laboratory, this study chose Griffonia simplicifolia that Tel 54.400-003, Email presents pharmacodynamic conditions for the treatment of depression because it is a source of 5-hydroxytryptophan (5-HTP).
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Contributions to the Solution of Phylogenetic Problem in Fabales
    Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns.
    [Show full text]
  • ISSN: 2230-9926 International Journal of Development Research Vol
    Available online at http://www.journalijdr.com s ISSN: 2230-9926 International Journal of Development Research Vol. 10, Issue, 11, pp. 41819-41827, November, 2020 https://doi.org/10.37118/ijdr.20410.11.2020 RESEARCH ARTICLE OPEN ACCESS MELLIFEROUS PLANT DIVERSITY IN THE FOREST-SAVANNA TRANSITION ZONE IN CÔTE D’IVOIRE: CASE OF TOUMODI DEPARTMENT ASSI KAUDJHIS Chimène*1, KOUADIO Kouassi1, AKÉ ASSI Emma1,2,3, et N'GUESSAN Koffi1,2 1Université Félix Houphouët-Boigny (Côte d’Ivoire), U.F.R. Biosciences, 22 BP 582 Abidjan 22 (Côte d’Ivoire), Laboratoire des Milieux Naturels et Conservation de la Biodiversité 2Institut Botanique Aké-Assi d’Andokoi (IBAAN) 3Centre National de Floristique (CNF) de l’Université Félix Houphouët-Boigny (Côte d’Ivoire) ARTICLE INFO ABSTRACT Article History: The melliferous flora around three apiaries of 6 to 10 hives in the Department of Toumodi (Côte Received 18th August, 2020 d’Ivoire) was studied with the help of floristic inventories in the plant formations of the study Received in revised form area. Observations were made within a radius of 1 km around each apiary in 3 villages of 22nd September, 2020 Toumodi Department (Akakro-Nzikpli, Bédressou and N'Guessankro). The melliferous flora is Accepted 11th October, 2020 composed of 157 species in 127 genera and 42 families. The Fabaceae, with 38 species (24.20%) th Published online 24 November, 2020 is the best represented. Lianas with 40 species (25.48%) and Microphanerophytes (52.23%) are the most predominant melliferous plants in the study area. They contain plants that flower during Key Words: the rainy season (87 species, i.e.
    [Show full text]
  • List of Plant Species List of Plant Species
    List of plant species List of Plant Species Contents Amendment history .......................................................................................................................... 2 1 Introduction ...................................................................................................................................... 3 1.1 Application ........................................................................................................................... 3 1.2 Relationship with planning scheme ..................................................................................... 3 1.3 Purpose ............................................................................................................................... 3 1.4 Aim ...................................................................................................................................... 3 1.5 Who should use this manual? ............................................................................................. 3 2 Special consideration ....................................................................................................................... 3 3 Variations ......................................................................................................................................... 4 4 Relationship ..................................................................................................................................... 4 Appendix A – Explanatory notes & definitions .......................................................................................
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]