<<

APPENDIX I

Methods used in studying modern pyroclastic deposits

1.1 Physical analysis The methods used to measure these, and the major uses of these measurements are set out below. Geologists who work solely on ancient volcanic rocks often have only a limited conception of the techniques 1.1.1 THICKNESS employed to study Recent unconsolidated pyroclastic deposits, and so may not fully understand how the data Maximum thickness of a deposit is are obtained or expressed. Many of the problems measured in centimetres or metres, and the measurements encountered in the study of modern pyroclastic deposits are used to construct an isopach map. In the figures are similar to those found in sedimentary rocks, where accompanying Chapter 6 there are a number of examples grainsize, grain shape, geometry of the deposit and of such maps, which in many cases, are a meaningful internal fabric must be the tools used to determine the indication of: physical processes controlling their formation and de• (a) the vent position, position. The pioneers in this type of approach were (b) the dispersal, which can be related to the type of undoubtedly Japanese (e.g. Kuno 1941, eruption, and Aramaki 1956, Katsui 1959, Murai 1961, Kuno et al. (c) the volume of the deposit. 1964), whereas G. P. L. Walker (e.g. 1971, 1973b) can be credited with extending and developing the approach. The following are properties that are now routinely Construction of an isopach map entails mapping out measured in the physical analysis of modern pyroclastic the deposit, sometimes over large areas. However, by deposits: mapping we do not mean tracing lithological boundaries between deposits, as these are usually so complex that no thickness attempt is made to draw them. Thus, a map of a Recent maximum grain size pyroclastic fall deposit generally shows its inferred grainsize distribution original distribution, and not its present outcrop pattern, proportions of components as between datum points the deposit could be partially or crystal content of clasts completely eroded. Indeed, non-welded pyroclastic density and porosity deposits may be ephemeral (Ch. 10). In addition, outcrops may be so rapidly overgrown and badly

469 470 APPENDIX I: STUDYING MODERN DEPOSITS

weathered that they cannot be used. For example, new 1.l.2 MAXIMUMGRAINSIZE roadcuts in the tropical are sometimes completely overgrown within four or five years. Because Measuring the average maximum juvenile and lithic clast pyroclastic fall deposits can change markedly laterally, it size is an important field technique, which involves is preferable to use reasonably closely spaced datum measuring, at numerous localities, the long axis of several points. Although spacing ultimately depends on the type of the largest clasts in a deposit. In some detailed sections of eruption, for the large plinian fall deposits localities the variation in grainsize between different layers of one within 1 km of each other are favoured. Within these deposit is measured. Usually the sizes of the three or five distances correlation is more certain, and internal largest clasts are then averaged, and this would closely changes can be carefully documented. This is very approximate the coarsest one-percentile often quoted by important in correlating deposits between localities and sedimentologists. Average maximum pumice (or scoria) in understanding the eruption and its . and lithic sizes can be plotted up as isopleth maps (Chs The volumes of air-fall deposits have been calculated 6-8). As with isopach maps, maximum-size isopleth from isopach maps in various ways. A common method maps are important in locating the vent from which involves measuring the area enclosed by each isopach and pyroclastic fall deposits were erupted, and for comparing then to plot area against thickness on a log-log 'area plot' their dispersal in order to characterise the type of (Fig. 6.18). A curve, or two straight lines (Rose et al. eruption. However, for pyroclastic fall deposits, such 1973), are fitted to the data, and integration of this curve isopleth maps have certain advantages over an isopach gives the volume. Other methods include plots of volume map, because at some localities it may not be the original against thickness and plots based on theoretical isopach depositional thickness that is being measured. The top of shape (Froggatt 1982). All of these methods involve a deposit may have been eroded by either a later surge or extrapolation of isopachs to the low-thickness distal limits flow, which is sometimes common with near-vent plinian of the deposit where outcrop may be poorly eroded. This deposits, or by later local or soil-forming introduces major uncertainty for larger, more widely processes. It may also have been overthickened by dispersed types of deposits, especially where secondary secondary slumping, especially if the fall was deposited thickening might have been important (Ch. 6). To try to on a steep slope. Also, some extremely widely dispersed resolve this, G. P. L. Walker (1980, 1981b, c) developed (ultraplinian) deposits may be thickest just down-wind of an independent method for estimating the total volume of the vent (Chs 6 & 8), and secondary thickening of distal plinian deposits, based on crystal concentration studies ash may occur (Ch. 6). (see below) of the Taupo ultraplinian, and Waimihia and Measurements of maximum clast size are also used to Hatepe plinian deposits. Once the total volume erupted analyse the energetics of pyroclastic fall eruptions. This is had been estimated from the proportion of free crystals especially so for large ballistic clasts; that is, those clasts relative to the magmatic ratio as represented in pumice which are so heavy that they follow ballistic trajectories clasts, a straight-line extrapolation could be made at the and are unaffected by wind drift. The distance at which low thickness end on an area plot to a selected limiting ballistics fall from the vent (that is, their range) can be thickness value, so giving the same volume as would be used to estimate initial gas thrust velocities from the vent, calculated by integration of the area curve. It was found or the muzzle velocities of the ballistics from the vent that for all three deposits extrapolations to the same lower (Ch. 6). L. Wilson (1972) presented tables of calculated limiting thickness of 1 Ilm had nearly identical slopes. ranges for particles of varying radii and density, launched Total erupted volumes of other plinian deposits can be at speeds between 10 and 1000 m S-l and various conveniently estimated on an area plot by extrapolation angular elevations. These are reproduced in Table 1.1, parallel to this slope, using the same limiting thickness of and cover most ballistic clast sizes (Ch. 6). 1 Ilm (G. P. L. Walker 1981b; Table 6.2). For plinian deposits the muzzle velocity can be Measurements of the variation in the thickness of conveniently calculated from measurements of maximum and surge deposits are less meaningful in clast size using the equation of L. Wilson (1976, 1978): terms of an indicator of vent location. This is because (8grooo) both are gravity-controlled mass flows, which therefore uij= (Ll) tend to pond in depressions. However, thickness is 3CQo important in calculation of the volumes of such deposits. where Uo is the velocity of the gas (or muzzle velocity), C is the drag coefficient (-1 for plinian velocities), Qo is the PHYSICAL ANALYSIS 471

Table 1.1 Logarithms (base 10) of the ranges of larger pyroclastic particles (after L. Wilson 1972).

Velocity Density Launched at 45° radius Launched at 66° radius Launched at 37° radius (m S~l) (g cm-3) (cm) (cm) (cm)

1.0 3.0 10.0 30.0 100.0 1.0 3.0 10.0 30.0 100.0 1.0 3.0 10.0 30.0 100.0

3.5 2.9556 3.0032 30075 2.8261 2.8736 2.8786 1.9790 20211 2.0268 2.5 2.9369 3.0017 3.0070 2.8073 2.8719 2.8785 1.9614 2.0207 2.0267 10 1.0 2.8559 2.9914 30060 2.7242 2.8601 2.8770 1.8830 2.0099 2.0254 0.5 2.7579 2.9760 30043 2.6222 2.8427 2.8753 1.7846 1.9937 2.0236

3.5 3.6440 3.9315 3.9583 3.4896 3.8010 3.8290 2.6641 2.9505 2.9775 2.5 3.5719 3.9208 3.9571 3.4235 3.7897 3.8276 2.5897 2.9395 2.9762 30 1.0 3.3383 3.8680 3.9483 3.1834 3.7329 3.8180 2.3497 2.8843 2.9673 0.5 3.1364 3.7965 3.9356 2.9752 3.6544 3.8036 2.1373 2.8070 2.9540

3.5 4.0418 4.6867 4.9660 3.8644 4.5529 4.8358 3.0228 3.7156 3.9873 2.5 3.7372 4.6173 4.9514 3.7468 4.4821 4.8195 2.9034 3.6437 3.9721 100 1.0 3.6042 4.3999 4.8817 3.4194 4.2548 4.7461 2.5717 3.4116 3.9026 0.5 3.3549 4.2139 4.7912 3.1673 4.0556 4.6504 2.4068 3.2078 3.8097

3.5 4.23894.7075 5.0257 5.3861 5.6581 4.04104.5111 4.86735.23575.5274 3.1877 3.6669 4.0293 4.3988 4.6906 2.5 4.11104.58494.9177 5.2957 5.5914 3.91114.38524.75735.13685.4571 3.05683.53943.91574.30004.6212 300 1.0 3.7592 4.2319 4.6183 5.0127 5.3732 3.5575 4.0304 4.4499 4.8381 5.2261 2.69973.17703.59934.00064.3900 0.5 3.4931 3.9647 4.3891 4.7744 5.1779 3.29063.75904.21034.59205.0199 2.43022.90153.35493.75214.1815

3.5 4.29594.77445.13235.54045.9162 4.0926 4.5719 4.9631 5.3820 5.7887 3.2356 3.7238 4.1204 4.5432 4.9575 2.5 4.1652 4.6458 5.0139 5.4302 5.8157 3.9602 4.4406 4.8427 5.2624 5.6795 3.10243.59123.99644.42274.8464 600 1.0 3.8073 4.2817 4.6933 5.1087 5.5245 3.60134.07584.51554.92565.3690 2.74043.2191 3.66074.08364.5308 0.5 3.5373 4.0098 4.4526 4.8524 5.2928 3.3309 3.8005 4.2660 4.6621 5.1253 2.4679 2.9400 3.4069 3.8174 4.2831

3.5 4.34264.82755.21125.65106.1029 4.1354 4.6207 5.0348 5.4885 5.9963 3.27553.76934.18814.64825.1767 2.5 4.21004.6948 5.0861 5.5273 5.9760 4.0014 4.4857 4.9075 5.3542 5.8474 3.1407 3.6332 4.0573 4.5119 5.0191 1000 1.0 3.8477 4.32314.75175.18105.6329 3.63844.11394.56704.9921 5.4732 2.7752 3.2547 3.7089 4.1463 4.6333 0.5 3.5749 4.0479 4.5032 4.9130 5.3772 3.36543.83584.31084.71735.2033 2.5003 2.9732 3.4489 3.8687 4.3578

effective density of the in the vent I.1.3 GRAINSIZE DISTRIBUTION (0.25 kg m-3 for dusty gas), g is the acceleration due to gravity, ro is the radius of the average maximum clast at Mechanical or granulometric analyses are used as the vent and 00 is its density (generally taken as 2.5 g cm-3 main source of data when examining the grainsize for lithics). Because of inaccessibility, it is usually variations in non-welded and unconsolidated pyroclastic impossible to measure ro, but it can be estimated by deposits. Generally, the methods described by G. P. L. plotting a graph of the product rooo of the largest clasts Walker (1971) are followed. Analyses are made with a set against distance from the vent, and extrapolation to the of sieves with mesh sizes spaced at one-phi ( = -logzd, d being the grainsize in millimetres) gives the maximum muzzle velocity during the eruption, and ranging in size from -5 to 4 phi (32 to is mm). and the average velocity is taken as half this value. Sieving is usually carried out by hand to avoid excessive Measurements of the average maximum lithic size are breakage of juvenile vesiculated fragments, which can also important in locating the vent position for some occur during mechanical sieving, as indicated by pyroclastic flows and surges, and their distribution can be G. P. L. Walker (1971). The material retained in each important in understanding and quantifying some of the sieve (each size class) is then weighed to 0.01 g on a transport and eruption processes (Chs 7 & 8). Maximum laboratory balance and the weight percentage calculated. pumice size seems to be of less value in locating vents in Sometimes the 16 mm and 32 mm size classes are sieved this type of deposit. in the field, and weighed on a portable balance to 0.1 g. In this case the <16 mm fraction can be split, so reducing the sample size that needs to be transported. For measuring clasts coarser than 64 mm a number of 472 APPENDIX I: STUDYING MODERN DEPOSITS

Table 1.2 Details of sieve analyses of a sample of a pyroclastic fall. surge and flow deposit. The samples are all from the Upper Bandelier collected from the locality shown in Plate 8. These data are used as a basis for the graphical analysis of the size distributions shown in Figure 1.1.

Grainsize Fall Surge Flow

Cumulative Cumulative Cumulative (mm) (<1» wt% wt% wt% wt% wt% wt%

>16 >-4 2.49 2.49 7.96 7.96 >8 >-3 7.01 9.50 2.88 10.84 >4 >-2 11.27 20.77 5.69 16.53 >2 >-1 12.25 33.02 2.48 2.48 5.87 22.40 >1 >0 28.17 61.19 6.10 8.58 13.57 35.97 >0.5 >1 23.61 84.80 11.30 19.88 17.56 53.53 >0.25 >2 9.10 93.90 15.23 35.11 10.80 64.33 >0.125 >3 2.92 96.82 19.34 54.45 10.58 74.91 >0.0625 >4 1.38 98.20 23.50 77.95 13.97 88.88 <0.0625 <4 1.80 100.00 22.05 100.00 11.13 100.01

techniques are used: field sieves can be used if available, gramSlZe distribution on arithmetic probability paper linear point traverses can be made in the field, or (Fig. 1.1), and to determine the Inman (1952) parameters photographs of the deposit can be taken and used to of median diameter (Md = ( against 0<1> is determined by the practicalities of the amount of (Fig. 5.3), as was done by G. P. L. Walker (1971) material that can be transported back to a field camp or in an important study which set out the major laboratory. Obviously, the sample size needed to give a grainsize differences between pyroclastic fall and representative sieve analysis of a deposit becomes larger pyroclastic flow deposits. Because of their sim• with increasing maximum grainsize, and is also larger if plicity, these two parameters are still mainly chosen and the sorting in a deposit is apparently poor. For very most of the major grain size studies of pyroclastic deposits coarse deposits, samples weighing several kilogrammes have used them (Murai 1961, G. P. L. Walker 1971, may be required, and these would have to be initially Sparks 1976). The validity of these statistics relies on the sieved in the field and a split of the finer sizes taken. For assumption that the grain size distribution is approxi- coarse plinian fall deposits (Ch. 6) within a few kilometres of the vent, samples between 0.5 and 2.0 kg Table 1.3 Grainsize parameters for our three pyroclastic would be collected. In some very poorly sorted deposits samples. derived graphically from the cumulative curves in larger clasts can be measured (for instance, by linear Figure 1.1 (a). traverses) and then much smaller samples of just the matrix taken. For fine-grained deposits only containing Inman Fall Surge Flow ash-sized particles «2 mm) samples weighing a few parameter grammes to a few tens of grammes may be adequate. -0.35 2.8 0.8 From the raw grain size data (Table 1.2) the usual 1.65 1.85 2.8 procedure is to construct cumulative curves of the PHYSICAL ANALYSIS 473

(0) (b) Foil Flow

30 30

II> ~ 20 20 N 'iii ~ c= 84 10 o .s: -l• - 4 -2 0 2 40 - 4 -2 0 2 40 II> 16 4 I 1/4 1/16 mm 16 4 I 114 1116 mm ~ 50 1--+---+---14 o Groin diameter Gro in diameter o (.) ~ Surge i 16 f--t--n "-- -hf--1

II> > o pumice crYllols :;o o E IiIhics ::J U - 4 -2 o 4 J5 16 4 1/4 I/l6mm - 2 0 2 4J5 Groin diameter 4 I 1/4 1116 mm Groin diameter Figure 1.1 Graphical representation of the three grainsize analyses from samples of the Upper Bandelier Tuff in Table 1.2. (a) Cumulative plot on probability ordinate. The 16th, 50th and 84th percentiles are drawn, and their intersection with the grainsize distribution curves gives the grain diameters used to derive the Inman parameters in Table 1.3. (b) Histograms for components separated by methods described in the text. The components have their own grainsize distributions, while each deposit has an overall distribution which is the combined distributions of the three components. The fall deposit is well sorted for a pyroclastic deposit. and is distinctively unimodal, having a high proportion of crystals within a limited size range in the 0.5 and 1 mm size classes. The flow deposit is poorly sorted and polymodal. The sub-populations reflect more than one transport process affecting the various grainsizes and components differently in the moving pyroclastic flow (Ch. 7); note that ngain there is a peak in the proportion of crystals in the 0.5 and 1 mm size classes. The surge deposit is unimodal, but the distribution has an extended coarse tail, or is negatively skewed. It is quite well sorted, but not as good as the fall deposit. This sample is also a core sample through several laminae which make up this depositional unit mately log normal. In many analyses, the central 68% of Walker (1971), which showed that better sorted pyro• the distribution approximates a straight line, and it is clastic fall deposits generally had values of Gq, < 2.0, argued that the statistics are useful for comparison while less well sorted pyroclastic flow deposits had values between different samples. If used with care, such greater than 2.0 (Fig. 5.3). Table 1.4 shows the essential statistical information can also be used to aid genetic interpretation of pyroclastic deposits (Sparks 1976, Bond Table 1.4 Differences in descriptive summaries of sorting & Sparks 1976). used by sedimentologists and volcanologists. Most pyroclastic deposits, when compared with normal sedimentary grain aggregates, are poorly sorted (Ch. I). Sorting Sedimentary Pyroclastic This has led to unfortunate differences in the descriptive (0<1» deposits deposits assessment of sorting given by sedimentologists and 0- 1 very well sorted to very well sorted volcanologists to sedimentary and pyroclastic deposits, moderately sorted respectively. To most sedimentologists, any deposit with 1- 2 poorly sorted well sorted a value of Gq, > 1.0 would be described as poorly sorted. To a , the division between good and poor 2-4 very poorly sorted poorly sorted sorting in pyroclastic deposits is Gq, = 2.0, and this value > 4 extremely poorly sorted very poorly sorted partly stems from the original Mdq/ocp plot of G. P. L. 474 APPENDIX I: STUDYING MODERN DEPOSITS

differences in descriptive summaries of sorting between volcanologists and sedimentologists. Also, see Chapter I 1.1.4 PROPORTIONS OF COMPONENTS for a discussion on the differences between size sorting The relative proportions of the different components in a and hydraulic particle sorting. pyroclastic deposit reflect its mode of formation, and Fluidisation experiments on materials have details of the transport process. Different techniques are recently suggested that the most useful statistical used to separate pumice, crystals and lithics in the parameters to be used on are those of Folk different size classes (Fig. Lib). The larger size classes and Ward (1957), where: (>4 mm) are hand picked, but forceps are used for the fine end of this size range. Quite often with the> 16 mm <1>16 + <1>50 + <1>84 • (1.5) Mz = = graphic mean size classes this is done in the field, if field sieving and 3 weighing can be carried out. For the size classes 2 mm to .hI <1>84 - <1>16 <1>95 - <1>5 • I· h· (I 6) 't' = + = mc USlve grap IC • 0.5 mm, hand picking is carried out under a binocular microscope using fine forceps or a camel-hair brush. The 4 6.6 stan d ar d d eVlaUon.. main prublem is to separate out as much material as is (a measure of sorting) needed to produce a satisfactory result, while keeping to a During experiments, C. J. N. Wilson (1981, Ch. 7) minimum the time involved, so as to be able to treat a found that the addition of fines to a coarse sample could large enough number of samples. This usually involves have changed its fluidisation behaviour. Although the making tests to determine the minimum weight of split dynamic behaviour of the sample had changed, as had its sample that will give consistent results, or the minimum grainsize make-up, these grain size changes were not weight for routine analysis (for the 2 mm class this is detected in the Inman parameters, making their use in between 5 and 10 g). Weighings are usually carried out interpreting depositional processes and conditions doubt• accurately on an analytical balance. In the finest size ful. At the other extreme, more accurate sedimentological classes, grains are usually counted either under a parameters, such as the method of moments, proved binocular microscope (0.25 and 0.125 mm) or under a oversensitive. Adding a small amount of fines to a coarse petrological microscope (0.063 and <0.063 mm). This sample may make no appreciable change to its fluidisation entails, first determining the minimum number of counts behaviour, yet have an inordinate effect on method of needed for routine analysis (for the 0.25 mm size class moments grainsize parameters. C. J. N. Wilson (1981) this is usually up to about 500 grains) and, secondly, concluded that the Folk and Ward parameters were the determining a conversion factor for pumice to convert the best compromise, and the use of these are a necessary counted percentage of pumice grains present into equiv• step in studies attempting to understand the dynamics of alent weight percentages. This is usually arrived at by ignimbrites. comparing the weights of equal numbers of pumice and For samples containing a large amount of fine ash (e.g. lithic fragments counted from the 2 mm size class. >50% finer than fs mm, which is, conventionally, the Conversion factors are usually between about 0.5 and finest grainsize sieved) analyses can be completed by 0.75. However, there are no standard techniques used in pipetting or with a Coulter counter. For samples with component analysis, and workers often substitute their lesser amounts of ash the distribution curve is usually own variations depending on the needs of the study (for simply extrapolated to <1>84 as a straight line. However, for instance, water panning to separate pumice from crystals the more-refined studies that are now being carried out and lithics first). on pyroclastic deposits, and with the increased availability Measurement of the proportions of components in an of Coulter counters, accurate analysis of the fine end of air-fall deposit enables particles to be grouped according the grainsize distribution is desirable and easier than it to their terminal fall velocities (Ch. 6). Terminal fall used to be. With more-detailed grain size studies it will be velocities have been determined experimentally for more appropriate to sieve at half-phi mesh intervals, and various sizes of pumice, lithic clasts and crystals, and perhaps, in some cases, even quarter-phi intervals. theoretically computed for a range of sizes and densities For further information and discussion of the size by G. P. L. Walker et al. (1971). Theoretical curves for properties of grain aggregates in general, the reader is cylindrical particles, which were found to approximate referred to the relevant parts in standard most closely the behaviour of pyroclastic particles, are textbooks. Particularly useful is the unique manual of shown in Figure 1.2. L. Wilson (1972) also computed the Folk (1980), and also Pettijohn et al. (1972) and Leeder fall times of particles of various sizes and density (1982), and the references therein. corresponding to five release heights (Fig. 1.3). PHYSICAL ANALYSIS 475

1.1 .5 CRYSTAL CONTENT OF PUMICE The weight percentage of crystals separated from artific• ially crushed large pumice clasts is assumed to represent , the original magmatic crystal content (G. P. L. Walker III E 1972). Together with component analysis, these data are - 1 0 ~----+-----~~~~~~~----~-- important in determining the amount of crystal enrich• ment or depletion, or glass (vitric) enrichment or depletion in particular types of porphyritic pumice deposit. Enrichment or depletion in either of these o components is controlled by, and therefore can be used to c assess , aeolian fractionation processes in falls, and 'E ().II:--N'++------+-----!----t---~- ... transport processes in flows and surges. Also, from these ~ data, total erupted volumes can be better calculated. Most pumice deposits (falls, flows and surges) have lost some 0.01/---+----+----!----t vitric component, usually transported far beyond where the thickness of the deposit can be measured or isopachs drawn, and therefore the amount of crystal enrichment is 001 0·1 1 10 100 a means of estimating this loss. Diameter (em) Usually, large weighed pumice clasts are crushed to Figure 1.2 Computed terminal fall velocities for cylindrical free all the crystals. Tests can be made to determine the particles, which show good agreement with the behaviour of minimum clast size that gives the true magmatic pyroclastic particles. The curves are for grains ranging in crystal: glass ratio. Ratios may be inconsistent in small density from 0.313 to 5 g cm-3 (After G. P. L. Walker et ai. clasts. For most routine studies, a number of clasts from 1971.) the> 16 mm size classes are suitable; with very coarsely (a) O·5gcm- 3 (b) I·Ogem-3 porphyritic larger clasts may be needed. Crystals 3 4-:::::--1---+---+ i=:---I---+------t can then be separated from the vitric fraction by panning under water, or if the vitric fragments prove too dense to be hydraulically separated this can be supplemented by 2 hand picking or counting with a binocular microscope. The weight of the loose crystals can then be expressed as

~ III 1 a percentage weight of the original clasts or, together with III :; results from component analysis, used to define the c enrichment of crystals in a deposit, expressed as an 'E 0 +-----1r----+---i- -I-----;----t---+ enrichment factor, EF (G. P. L. Walker 1972), given by - 2 -I 0 I -2 -I o III ~ (c) 2·5 g em -3 (d) 3·5 g em- 3 C2 PI EF= - x• (I. 7) P2 C1 =o where C/PI is the weight ratio of free crystals to glass in -o - 2 artificially crushed pumice and CiP2 is the same ratio in 01 o the deposit. For pyroclastic deposits that are depleted in ..J crystals relative to the magmatic proportion, it is more appropriate to define a depletion factor, DF, which is the reciprocal of EF, and quantifies the enrichment in the glass component. -I o 1 -2 -I o The weight percentage of vitric material lost (VL) L0910 particle radius (em) during the eruption and emplacement of an ignimbrite is Figure 1.3 Computed fall times of particles ranging in given by density from 0.5 to 3.5 g cm-3 . The curves (from bottom to top) are for particles released from heights of 5, 10, 20, 30 (1.8) and 50 km. (After L. Wilson 1972.) 476 APPENDIX I: STUDYING MODERN DEPOSITS

where K is the weight percentage of grainsizes in the map yields the total mass of free crystals (C') in the ignimbrite finer than 2 mm (crystal concentration data accessible parts of the deposit. A fourth map is construc• only applying to the matrix). This material is lost into a ted from the lithic content of sieved samples, and the total co-ignimbrite ash-fall (Chs 6 & 8), the volume of which mass of <2 mm lithics (L'<.2) is derived. The method needs to be added to that of the ignimbrite to estimate the used to calculate total erupted mass and volume is total volume erupted during the ignimbrite-forming summarised in Table 1.5 using the Hatepe pumice as our event. example (Fig. 104; G. P. L. Walker 1981c). The method For widely dispersed pumice fall deposits, crystal depends on the fact that liberated crystals fall closer to concentration studies can be used to estimate the total source than similar sized pumice or glass shards (Fig. mass and volume erupted, without the need for extra• 1.3), and because of their rather restricted size range polation of isopachs at the distal limits (as discussed crystals are not a large component in the most widely earlier). In practice, using the isopach map of the deposit dispersed size classes. Assuming that C' is equal to the and measured bulk densities of samples of the deposit total quantity of crystals liberated (C), the total erupted (see below), an isopleth map is constructed to show the quantity of vitric particles in the <2 mm size classes mass of deposit per square centimetre (Fig. 1.4a). From (P <2) can be determined. A second calculation assumes sieve analyses a second map can be derived showing the 20% of the crystals erupted fell outside the mapped area. mass per unit area of pumice that is <2 mm in size (Fig. lAb). Integration of this map, by estimating the value at I.l.6 DENSITY AND POROSITY the intersection points of grid lines, yields the total mass of <2 mm pumice. From the crystal content of sieved The standard procedure for determining the density and samples, another map showing the mass per unit area of porosity of a welded tuff (or ) sample is, first, to oven• free crystals is derived (Fig. lAc), and integration of this dry the sample at about 100°C for 24 h and then to allow it to cool in a desiccator, after which it is weighed to (a) Moss of deposit (b) Moss of sub- determine the dry weight in air (M I)' The sample is then 2mm pumice placed in a container from which the air is evacuated, to extract air from the pore spaces. This container is flooded with deaerated water and the sample is left immersed under pressure for two days to allow water to be absorbed. The sample is removed from the water and quickly weighed in air, after removing the excess water from the surface, to give the wet weight in air (M1) . The sample is then weighed while immersed in water to obtain the wet weight in water (M3)' Then:

(c) Moss of free (d) Mass of sub- density = M/(Ml - M 3) (1.9) crystals 2mm IIthics Ml -MI porosity --''----'-- x 100% (1.10) Ml - M3

However, the porosity measured by this method only measures open, connected pore space, and unconnected vesicles formed before or after emplacement are not included. To determine the bulk density of an unconsolidated Figure 1.4 Maps showing the basic data for the determina• pyroclastic deposit, a dried sample is placed in a suitably• tion of the total mass and volume of the Hatepe plinian sized beaker with a graduated volumetric scale. The deposit erupted from Lake Taupo. New Zealand (Chs 6 & 8). beaker is tapped gently to ensure that all the void space is Map (a) is derived from isopachs of the deposit (Fig. 8.51 a) and bulk density data. The other maps give isopleths filled, and when no further compaction occurs the (g cm -2) for the different components in the fractions of the volume is measured. For coarse plinian deposits a deposit finer than 2 mm. The figures in the bottom right• void age correction will be required. The sample is hand corner of each map give the total mass for the on-land weighed, and the weight divided by the volume gives the part of the deposit (After G. P. L. Walker 1981 c.) density. A useful technique actually to collect samples of STRATIGRAPHIC ANALYSIS 477

Table 1.5 Mass and volume calculations for the Hatepe and above or, if the apparatus is not available, by plinian deposit based on crystal concentration studies (after simple displacement in water. Each clast from a sample is G. P. L. Walker 1981 c). weighed individually (oven-dry), and then soaked in water for at least half an hour to ensure that all connected 3 V' volume within mapped area* (km ) 2.33 vesicle space has been flooded, otherwise intake during M' mass within mapped area* 1.13 measurement would increase the apparent volume of the P'.c2<2 mm pumice*t 0044 C' free crystals 0.09 clast. The clast is then immersed in a container or L'.c2 <2 mm lithics* 0.11 measuring cylinder and the volume of water displaced equals the volume of the clast. Other methods used Calculation assuming C' = C involve coating the clasts in waterglass, or cutting cubes P<2 total <2 mm pumiceH 2.64 out of the clasts (but both of these methods destroy the mass outside mapped area pumices for further use), or approximating their volumes P' pumice, all <2 mmt§ 2.20 to that of equivalent ellipsoids. L" lithics, all <2 mm~ 0.37 Sometimes it is necessary to know the bulk density of M" total outside mapped area 2.57 the matrix «2 mm) of samples of pyroclastic flow V' volume outside mapped area[[ (km 3 ) 3.67 deposits. This can again be determined using a measuring Mtotal mass of deposit (=M' + M") 3.70 cylinder; no voidage correction is necessary. V total volume (= V' + V') (km 3 ) 6.00 DRE volume (assuming Q = 2.5 g cm-3) (km 3 ) 1.48

Calculation assuming C' = 80% of C P<2 total <2 mm pumicet:(: 3.22 1.2 Stratigraphic analysis mass outside mapped area P' pumice, all <2 mmt§ 2.78 This type of analysis comes under the broad heading of C' free crystals 0.02 tephrochronology. However, tephrochronology has a L" lithics, all <2 mm~ 0.47 M" total outside mapped area 3.27 wide variety of applications, and is an important tool in a V' volume outside mapped area[[ (km 3 ) 4.67 number of disciplines. For example, ash layers have been M total mass of deposit (= M' + M") 4040 used in dating archaeological sites, measuring rates of Vtotal volume (= V' + V') (km 3) 7.00 sedimentation in oceanic and other sedimentary basins, DRE volume (assuming Q = 2.5 g cm-3 ) (km 3) 1.76 and in palaeoecological studies. The pioneer in this field was Sigvaldur Thorarinsson, who introduced the term Values of mass are all in units of 1015 g. *By integration of the appropriate map (Figs 8.51a & 104). tlncluding glass '' and the study of tephrochronology in 1944 in his shards. tEquals C' x magmatic glass: crystal ratio (96.7/3.3). doctoral thesis. He promoted the use of tephra as an §By difference, equals P<2 - P~2. important tool in volcanological, pollen-analytical, glaci• ~Some 8% lithics have also been assumed lost outside the ological, geomorphological and archaeological research. mapped area. [[Assuming the same bulk density (0.7 g cm-3 ) as in the eastern part of the mapped area. For a historical perspective, the reader is referred to Thorarinsson (1981). . The aim of stratigraphic analysis of modern pyroclastic known volume in the field is by forcing a tub of known successions is to divide them into eruptive units and to volume into the outcrop. facilitate their correlation. This can involve much more In certain studies, knowledge of the density of pumice than just determining the 'ash stratigraphy', because the clasts is required, sometimes in the different size classes. measurements of thickness, grain size and constitution of In the 16 mm to O.S mm classes, bulk pumice density is a deposit, which are necessary for correlation, are of great determined by placing samples of picked pumice from volcanological value in assessing the style and scale of one size class into a small graduated beaker or measuring explosive volcanic activity, and in understanding pro• cylinder and gently tapping until no further compaction cesses (Section 1.1). Two papers which set out this occurs. The sample weight is then divided by volume. approach are G. P. L. Walker and Croasdale (1971) and Usually some tests are made initially to determine a Booth et ai. (1978). However, we should acknowledge void age correction for individual size classes, this correct• some of the pioneering Japanese work in this field, for ion obviously increasing with increasing grainsize. example, Nakamura (1962) and Aramaki (1963). For the >32 mm size classes pumice clast density can The deposits of different eruptions can be separated be measured by the method described for welded tuffs from one another by recognition of intervening: 478 APPENDIX I: STUDYING MODERN DEPOSITS

(a) soils, outcrop or contact maps drawn of individual pyroclastic (b) erosion surfaces, deposits. Most maps group together large parts of the (c) (epiclastic) sediments and stratigraphy. For example, the terms 'newer' or 'older (d) lavas. pyroclastics' may be used to subdivide the stratigraphy, but each probably represents the deposits of many Different deposits can be identified from one another eruptions, and their epiclastic derivatives. by differences in: Where possible, stratigraphic sections should be dated. This can be most important for correlation, and for such (a) composition and mineralogy, things as volcanic hazard assessment and determination (b) grain size , of production rates. The three most important (c) thickness, dating methods used are 14C dating, which has been most (d) colour, important for young deposits «50 000 years BP); and (e) degree and style of welding and fission-track and K-Ar dating, which have been used for (f) relative stratigraphic position. Quaternary pyroclastic deposits. The fission-track method can routinely date glass shards and zircon older than It is often found that no single characteristic is indicative 100000 years. The usefulness of K-Ar dating depends of a particular fall, flow or surge deposit, and some are so on the material to be dated. Sanidine can be routinely similar that they can only be distinguished once their dated where ages are older than 70 000 years; the relative stratigraphic position to a distinctive or key practical younger limit of plagioclase is 200 000 years; in deposit have been determined. rare cases some minerals with high potassium contents Stratigraphic relations can be very complex (Chs 1, l3 can be reliably dated if they are as young as 30000 years. & 14). The usual technique is to construct logged sections For a full discussion of these dating techniques applied to of all available outcrops (including digging pits, Plate 5) Quaternary tephra, and their limitations, see the and piece together the pyroclastic stratigraphy from a excellent review by Naeser et al. (1981). number of key locations (e.g. Figs 8.7 & l3.40). In this In some studies of pyroclastic deposits geochemical way studies can be made on the whole succession, or just fingerprinting can be essential for correlation and tephro• on the separate layers accumulated during different chronology, and has been very successively used, for phases of the same eruption. The deposits of different example, in correlation of deep-sea ash layers (Ch. 9). eruptions are often dispersed differently around a , Rapid and routine electron microprobe analysis of in• and transport and depositional mechanisms (fall, flow or dividual glass shards now provides a particularly surge) will also control distribution. The deposits ac• powerful correlative tool. Again, as with dating, a cumulated during the same eruption can show just as discussion of these methods is beyond the scope of this many spatial complexities in their distribution. It is book. For the reader interested in geochemical correlation therefore very unlikely that anyone section will show the there is an excellent review by Westgate and Gorton whole stratigraphy of a volcano, or even a large part of it. (1981). Naeser et al. (1981), Westgate and Gorton (1981) Where volcanoes are in close proximity, deposits erupted and Thorarinsson (1981) all feature in Self and Sparks from different centres will also overlap and interfinger. (1981), to which we refer the reader for a number of other The whole stratigraphy is further complicated by epi• papers detailing methods that can be used in correlation, clastic processes of reworking and mass-wastage. and for an up-to-date picture of the applications of tephra It is therefore no surprise that there are very few studies and tephrochronology. APPENDIX II

Grainsize textural classes of volcaniclastic rocks) some possible origins) and suggested diagnostic characteristics

Grainsize-textural Origin Essential characteristics Preservation Recognition class potential potential

A Conglomerate - Epiclastic reworking heterogeneous clast composition; very good very good closed framework (fluvial, shoreline) tractional structures; (rounded clasts (Ch.10) well-rounded clasts; essential) context with and within sedimentary succession

2 Epiclastic mass-flow heterogeneous clast composition; very good very good redeposition disorganised to graded- (subaqueous) stratified facies (Ch. 10); (Ch.10) association with other mass-flow facies 3 Pumice and scoria homogeneous composition; good in welded moderate concentration zones in clast support of pumice or scoria; ignimbrites ignimbrites (upper part sheet to lensoidal geometry; of layer 2b) and scoria- fines depleted; crystal-enriched flow deposits ICh. 7) if magma porphyritic; intercalated with other recognisable ignimbrite facies; usually at tops of flow units; thickness <2 m 4 Fines-depleted homogeneous composition; low poor ignimbrite (Ch. 7) crystal-rich matrix if magma porphyritic; massive - occasional bedding; thickness - several to >10 m; succeeded by volcanic (lithic-rich ground layer of ignimbrite) 479 480 APPENDIX II: GRAINSIZE TEXTURAL CLASSES

Grainsize textural Origin Essential characteristics Preservation Recognition class potential potential

B Conglomerate• 5 Epiciastic reworking similar to 1 and 2 very good very good open framework and mass-flow redeposition (rounded clasts (deposits with granular essential) matrix) (Ch. 7)

6 Cohesive pebbly mud pebbly mudstones texturally; good if formed poor flows and composition of clasts (Ch.7) heterogeneous to homogeneous; intemally massive; up to a few tens of metres thick; lack evidence of hot state emplacement (hot blocks, thermal colour alteration thermal remanent magnetisation); no gas segregation structures 7 Non-welded (uncollapsed compositionally homogeneous often very poor poor pumice) ignimbrite and (subject to variation in content scoria-flow deposits and composition of lithics (Ch. 5) (Fig. 5.24a) which may form breccia horizons); intemally massive (with exception of ignimbrite veneer deposits in violent ignimbrites (Ch. 7) which may be crudely layered); up to a few tens of metres thick; may contain gas segregation pipes & pods with clast-supported fabric; accretionary may be present; gradational downwards into 4 or 17

C Breccia• 8 Epiciastic redeposition compositionally homogeneous to moderate moderate closed framework and mass-wastage heterogeneous; disorganised to (angular clasts) (includes gravitational graded-stratified facies for collapse, including redeposited units; massive to margin collapse diffusely layered for mass-wastage (Chs 8 & 13) (e.g. scree slopes, , (Ch. 10) (Fig. 10.10) surface mounds on debris flows); local lobate geometry to more extensive for redeposited facies and where large-scale has occurred; thickness up to hundreds of metres; associated epiclastic facies may contain tractional structures

9 Aa lavas (Ch. 4) compositionally homogeneous poor for moderate (Fig. 4.6) (basaltic); very irregular spinose spinose top clast morphology; variation in surface vesicularity; accidental ciasts incorporated from substrate; margins brecciated and interior massive; usually less than 10m thick APPENDIX II: GRAIN SIZE TEXTURAL CLASSES 481

Grainsize textural Origin Essential characteristics Preservation Recognition class potential potential

10 Block lavas and as for 9 except that clasts are good good autobrecciated lavas angular blocks; intermediate or (Ch. 4) (Figs 3.26, silicic composition; thickness up to 4.18a & b) 100 m or more

11 /flow-front as for 10; diffuse layering in scree good good talus deposits (Chs 4 & slope talus deposits; association 10) (Fig. 10.12) with dome lava

12 Agglutinates homogeneous composition moderate very good (Chs 3 & 5) (basaltic, rarely peralkaline); (Figs 3.13 & 6.8) moulded fluidal clast shapes and accommodation (Chs 3 & 5); sector to annular geometry around vent; variable thickness up to tens of metres; interbedded massive lavas (clastogenic lavas, Ch. 4)

13 only diagnostic criterion is shaped poor very difficult (Chs 5 & 12) bombs or 'hot' breadcrusted or (Fig. 6.6) jointed blocks that have not been redeposited

14 Quench-fragmented compositionally homogeneous; good very good lavas, cryptodomes, very angular to splintery clasts; shallow intrusives coarse blocks to finely granulated (hyaloclastites) (Chs 3 & 4) glassy aggregates; may be (Figs 3.12 & 25) crystal-rich if porphyritic

'jigsaw puzzle' fit of clasts where good very good there has been no redistribution from site of fragmentation by turbulent mixing; gradational to intercalated with unfragmented lava (massive, pillowed, jointed); may be pervasively altered in ancient rocks

15 Hydrothermal explosion diverse clast types and poor poor breccias (Chs 3 & 13) morphology; clasts variably altered; matrix of hydrothermally altered clays; may be associated with surge deposits; accretionary lapilli may occur

16 Hydraulic fracture compositionally homogeneous to very good very good breccias (Ch. 14) partially heterogeneous; clasts (Fig. 14.5) variably altered; angular to splintery clasts; 'jigsaw puzzle' fit of clasts where little transport of clasts has occurred; confined to cross-cutting zones centimetres to metres wide 482 APPENDIX II: GRAINSIZE TEXTURAL CLASSES

Grainsize textural Origin Essential characteristics Preservation Recognition class potential potential

17 Pumice-fall deposits homogeneous clast composition poor except poor, (subplinian, plinian, (but variable accessory lithics); where covered recognised by ultraplinian) (Chs 5 & 6) identical crystal types in both by co-eruptive context; good (Figs 6.14, 41c & 8.49, pumice clasts and matrix; massive welded for welded Plate 8) to diffusely layered; no cross- ignimbrites; deposits stratification; thickness up to 25 m, excellent but usually< <10 m; susceptible to where welded weathering and alteration with breakdown of glass to clays, etc.; susceptible to tectonic deformation and layer shortening; where welded, eutaxitic texture also present, and local distribution around the vent

18 Scoria-fall deposits as for 16, but even more very poor very poor (hawaiian, strombolian) susceptible to weathering and (Chs 5 & 6) (Figs 3.16, alteration 5.4, 6.6 & 6.10, Plate 5)

19 Lithic concentration homogeneous to heterogeneous good for good if zones (base of layer 2b) lithic clast composition; lithic preserved and ground layers of gradational upwards into matrix- concentration violent ignimbrites supported and lithic-poor breccia zones in welded (Chs 7 & 8) (upper part of layer 2b); ignimbrites; (Figs 7.10 & 26) interbedded with other ignimbrite otherwise poor facies - underlain by basal layer (sand to microbreccia grainsize); thickness generally <1 m; ground layer of violent ignimbrites may overlie 4 or 21, and is sharply overlain by layer 2b ignimbrite facies

20 Co-ignimbrite breccias as for 19, but deposits thicker and good if good if (lag breccias and ground clasts coarser; thickness up to capped by preserved breccias) (Ch. 8) 20+ m(?); upper contact sharp to welded (Fig. 820) gradational into open framework ignimbrite co-ignimbrite breccias and other ignimbrite facies

21 Fines-depleted as for 4, but pumice clasts poor poor ignimbrite angular (Chs 7 & 8) (Figs 7.28 & 30b) APPENDIX II: GRAINSIZE TEXTURAL CLASSES 483

Grainsize textural Origin Essential characteristics Preservation Recognition class potential potential

0 Breccia - 22 Glacial till and heterogeneous clast composition; moderate moderate open framework moraines (diamictites) clast shape variable from angular to good (angular clasts (Ch.10) to rounded; matrix includes large essential) (Figs 10.2, 13 & 15) proportion of fine rock powder; unlikely to contain significant pumice or shards; massive to crudely bedded; associated striated pavements, pebbles and fluvioglacial facies; variable thickness

23 Glacial dropstone as for 22, but thinner and matrix good very good deposits (Ch. 10) may be coarser, and contained (structure (Figs 10.2 & 13) within lacustrine and marine facies; distinguished dropstones may show impact sags; from pyroclastic may be reworked bomb sags by context)

24 Epiclastic reworking as for 5 (also see 1). but clasts very good moderate and/or mass-flow angular to sub-rounded redeposition with granular matrix (Ch. 10) (Figs 10.28a & 31 b)

25 Cohesive debris flows as for 6, but clasts angular to very good moderate and lahars (Ch. 10) sub-rounded (Figs 2.13, 10.30 & 31)

26 Ignimbrite (layer 2b). homogeneous clast composition excellent for excellent for and other (denser clast) (but variable accessory and welded welded pyroclastic flow deposits accidental lithics); crystal types ignimbrites, ignimbrites, (block and ash flows, same in pumice clasts and matrix; otherwise poor otherwise poor scoria flows) (Chs 5, massive depositional units (with 7 & 8) (Figs 5.14,15, exception of veneer deposits in 16, 7.31, 8.38 & 10.32, violent ignimbrites which show Plate 8) crude stratification); thickness variable - ignimbrites <5 m to hundreds of metres; denser clast flow deposits up to several tens of metres; evidence of hot state emplacement (see 6). and in the case of welded ignimbrites, development of eutaxitic texture and columnar jointing; gas segregation pipes and pods (with clast support); association with other ignimbrite facies (layer 2a) and co-eruptive fall and surge deposits

27 Co-ignimbrite breccias as for 18 and 20 but matrix- good if capped good if and proximal ignimbrites supported; presence of large by welded preserved (Ch. 8) (Fig. 8.20) segregation pipes and pods ignimbrite (metre-sized) 484 APPENDIX II: TEXTURAL CLASSES

Grainsize textural Origin Essential characteristics Preservation Recognition class potential potential

28 Near-vent base surge compositionally homogeneous to poor good if deposits (Chs 5 & 7) heterogeneous; variable preserved (Figs 5.21, 22, 7.40, 43) vesicularity of juvenile clasts (Ch. 3); presence of ballistics and impact sags; cored lapilli; massive, bedded and cross-bedded intemal structures; thickness of multiple base-surge piles (tuff rings) up to tens of metres

29 Ground or ash-cloud compositionally homogeneous to good when good, but not in surge deposits heterogeneous microbreccias capped by or tectonically (Chs 5 & 7) (dependent on composition of within welded deformed units (Fig. 5.23, Plate 8) parent pyroclastic flows and lithic ignimbrite content); stratified and cross- succession stratified; position below and above, respectively, pyroclastic flow facies; thickness generally <2 m

30 Giant pumice beds uniform composition of pumice moderate very good in (Ch. 13) (Fig. 13.46) clasts; enclosing matrix sediments within thick undeformed are stratified; lacustrine (or marine) caldera lake terrains setting; radial jointing in some successions individual clasts; chilled glassy sheath on margins of some clasts; clasts up to several metres

E Sandstones 31 Epiclastic reworking abundant tractional structures; very good very good (sand-sized framework (Ch. 10) (Figs 10.19 & 24) cross-stratification is either high grains predominant) angle of repose or hummocky cross-stratification (cf. surge cross-stratification); body and trace fossils

32 Epiclastic mass-flow mass-flow facies characteristics; very good very good redeposition (Ch. 10) body and trace fossils (Fig. 10.28, Plate 11)

33 Weathered and/or generally granular texture; even very good recognition as devitrified lava/dykes distribution of phenocrysts if lavas difficult (Ch. 14) (Fig. 2.10) crystallised; thick massive character; in instances (?)relic flow banding; lithophysae, spherulites (Chs 4 & 14); radiate fibrous to granophyric ground mass of quartz and feldspar

34 Fine-grained ignimbrite gross granular texture; thick poor unless recognition of (Chs 5 & 8) (Fig. 5.16c) massive character; rare shard welded origin may be textures in thin section and may difficult be eutaxitic shard texture if originally welded; gradational into other ignimbrite facies (lithic concentration zones, gas segregation structures) APPENDIX II: GRAINSIZE TEXTURAL CLASSES 485

Grainsize textural Origin Essential characteristics Preservation Recognition class potential potential

35 Air-fall ashes and tuffs homogeneous composition; rare good if in moderate; (Chs 5 & 6) shards preserved; possible welded difficulty in (Figs 6.32 & 35) intemal diffuse lamination; ignimbrite distinguishing thickness generally <1 m; successions from re- accretionary lapilli (co-ignimbrite deposited origin ashes) and in for subaqueous lacustrine and ashes deep marine successions

36 Base-surge deposits as for 28, but finer-grained; poor good if (Chs 5 & 7) (Figs 7.40, 43) presence of cogenetic air-fall ash preserved layers with accretionary lapilli

37 Ground and ash-cloud as for 29 but finer see 29 see 29 surge deposits (Chs 5 & 7) (Plate 8)

F Mudstones 38 Epiclastic as for 31 and 32 very good very good (mud-sized grade (Ch. 10) (Fig. 1020) predominant

39 Fine-grained ignimbrite as for 34 poor unless recognition may (Chs 5 & 8) (Fig. 5.16c) welded be difficult

40 Air-fall ashes and tuffs as for 35 see 35 see 35 (Chs 5 & 6) (Figs 6.35 & 8.52)

41 Surge deposits as for 36 and 37 see 36 and 37 (Chs 5 & 7) REFERENCES

Aberg, G., L. Aguirre, B. Levi and J. O. Nystrom Andrews, J. E., G. H. Packham et al. 1975. Initial 1984. Spreading-subsidence and generation of reports of the Deep-Sea Drilling Project. Vol. 30. ensialic marginal basins: an example from the Early Washington, DC: US Government Printing Office. Cretaceous of central Chile. In Kokelaar and Howells Aramaki, S. 1956. The activity of Asama volcano, Pt. l. (1984), 185-93. Jap. J. Geol. Geogr. 27, 189-229. Allen, J. R. L. 1968. Current ripples. Their relations to Aramaki, S. 1963. of Asama volcano. Fac. Sci. patterns and sediment motion. Amsterdam: North• Univ. Tokyo J. 2, 229-443. Holland. Aramaki, S. and M. Yamasaki 1963. Pyroclastic flows in Allen, J. R. L. 1970a. Physical processes of sedimentation Japan. Bull. Volcanol. 26, 89-99. - an introduction. London: Allen & Unwin. Archambault, C. and J. c. Tanguy 1976. Comparative Allen, J. R. L. 1970b. The sequence of sedimentary temperature measurements on lavas: structures in turbidites, with special reference to problems and techniques. J. Volcanol. Geotherm. dunes. Scot. J. Geol. 6, 146-6l. Res. 1, 113-25. Allen, J. R. L. 1971. Mixing at heads, Arndt, N. T. and E. G. Nisbet (eds) 1982. . and its geological implications. J. Sed. Petrol. 41, London: Allen & Unwin. 97-113. Arndt, N. T., A. J. Naldrett and D. R. Pyke 1977. Allen, J. R. L. 1982. Developments in sedimentology. Komatiitic and iron-rich tholeiitic lavas of Munro Vols 30A & B: Sedimentary structures. Their character Township, northeast Ontario. J. Petrol. 18, 319-69. and physical basis. Amsterdam: Elsevier. Atkinson, A., T. J. Griffin and P. J. Stephenson 1975. Almond, D. C. 1971. Ignimbrite vents in Sabaloka A major lava tube system from Undara volcano, Cauldron, Sudan. Geol. Mag. 108, 159-76. north Queensland. Bull. Volcanol. 39, 1-28. Amos, R. c., S. Self and B. Crowe 1981. Pyroclastic Aziz-Ur-Rahman and I. McDougall 1972. Potassium activity of Sunset Crater: evidence for a large argon ages on the Newer Volcanics of Victoria. Proc. magnitude, high dispersal . R. Soc. Victoria 85, 61-70. EOS 62, 1085. Anderson, D. J. and D. H. Lindsley 1981. A valid Bacon, C. R. 1983. Eruptive history of Margules formulation for an asymmetric ternary and Crater Lake caldera, Cascade Range, U.S.A. In solution: revision of the olivine-ilmenite thermo• Arc , S. Aramaki and I. Kushiro (eds), J. meter, with application. Geochim. Cosmochim. Acta Volcanol. Geotherm. Res. 18, 57-115. 45, 847-53. Bailey, R. A., G. B. Dalrymple and M. A. Lanphere Anderson, R. N., J. Honnorez, K. Becker, A. C. 1976. Volcanism, structure and geochronology of Adamson, J. C. Alt, R. Emmermann, P. D. , Mono County, California. J. Kempton, H. Kinoshita, C. Laverne, M. J. Mottl Geophys. Res. 81, 725-44. and R. L. Newmark 1982. DSDP Hole 504B, the Baker, B. H., P. A. Mohr and L. A. J. Williams 1972. first reference section over 1 km through layer 2 of Geology of the eastern rift system of Africa. Geol. Soc. the oceanic . Nature 300, 589-94. Am. Spec. Pap., no. l36.

487 488 REFERENCES

Baker, M. C. W. 1981. The nature and distribution of Bierwirth, P. N. 1982. Experimental welding of volcanic Upper Cenozoic ignimbrite centres in the central ash. Unpubl. B.Sc. Hons. thesis, Monash Andes.]. Volcanol. Geothenn. Res. 11, 293-315. University. Baker, P. E. 1969. The geological history of Mt. Misery Birch, W. D. 1978. Petrogenesis of some Palaeozoic volcano, St. Kitts, West Indies. Overseas Geol. in Victoria.]. Geol. Soc. Aust. 25, 75-87. Miner. Resources 10, 207-17. Black, P.M. 1970. Observations on White Island. Bull. Ball, E. E. and R. W. Johnson 1976. Volcanic history Volcanol. 34, 158-67. of Long Island, Papua New Guinea. In R. W. Blackburn, E., L. Wilson and R. S. J. Sparks 1976. Johnson (1976), 133-47. Mechanisms and dynamics of strombolian activity.]. Ballance, P. F. and H. G. Reading (eds) 1980. Sedi• Geol. Soc. Land. 132, 429-40. mentation in oblique-slip mobile zones. Int. Assoc. Sed. Blackburn, G., G. B. Alison and F. W. J. Learey 1982. Spec. Publn 4. London: Blackwell. Further evidence on the age of tuff at Mt. Gambier. Ballard, R. D. and T. H. van Andel 1977. Morphology Trans R. Soc. S. Aust. 106, 163-8. and tectonics of the inner rift valley at lat. 36°50' N Blake, S. 1981a. Volcanism and the dynamics of open on the Mid-Atlantic Ridge. Geol. Soc. Am. Bull. 88, magma chambers. Nature 289, 783-5. 507-30. Blake, S. 1981b. Eruption from zoned magma Ballard, R. D., R. D. Holcomb and T. H. van Andel chambers. ]. Geol. Soc. Lond. 138, 281-7. 1979. The Galapagos Rift at 86°W: 3. Sheet flows, Blatt, H., G. V. Middleton and R. Murray 1980. Origin collapse pits and lava lakes of the rift valley. ]. of sedimentary rocks. Englewood Cliffs, New Jersey: Geophys. Res. 84, 5407-22. Prentice-Hall. Ballard, R. D., R. Hekinian and J. Francheteau 1984. Bloomfield, K., G. Sanchez Rubio and L. Wilson 1977. Geological setting of hydrothermal activity at 12 Plinian eruptions of Nevado de Toluca volcano, degrees 50' N on the East Pacific Rise - a Mexico. Geol. Rundsch. 66, 120-46. submersible study. Earth & Planet. Sci. Letts. 69, Board, S. J., C. L. Farmer and D. H. Poole 1974. 176-86. Fragmentation in thermal explosions. Int. ]. Heat Banks, N. G. and R. P. Hoblitt 1981. Summary of Mass Transfer 17, 331-9. temperature studies of 1980 deposits. In Lipman & Bonatti, E. 1967. Mechanisms of deep-sea volcanism in Mullineaux (1981),295-313. the South Pacific. In Researches in geochemistry, Vol. Barberi, F., F. Innocenti, L. Lirer, R. Munro, T. 2, P. H. Abelson (ed.), 453-91. New York: Wiley. Pescatore and R. Santacroce 1978. The Campanian Bond, A. and R. S. J. Sparks 1976. The Minoan ignimbrite: a major prehistoric eruption in the eruption of Santorini, Greece. ]. Geol Soc. Lond. Neapolitan area (Italy). Bull. Volcanol. 41, 10-32. 132, 1-16. Bartholomew, D. S. and J. Tarney 1984. Crustal Booth, B. 1973. The Granadilla pumice deposit of extension in the southern Andes (45°-46°S). In southern , Canary Islands. Proc. Geol Assoc. Kokelaar & Howells (1984). Lond. 84, 353-70. Basaltic Volcanism Study Project 1981. Basaltic Booth, B., R. Croasdale and G. P. L. Walker 1978. A volcanism on the terrestrial planets. New York: quantitative study of five thousand years of volcanism Pergamon. on Sao Miguel, . Phil Trans R. Soc. Lond. (A) Batiza, R. and D. Vanko 1983. Volcanic development of 288, 271-319. small oceanic central volcanoes on the flanks of the Bottinga, Y. and D. F. Weill 1970. Densities of liquid East Pacific Rise inferred from narrow-beam echo• silicate systems calculated from partial molar sounder surveys. Marine Geol. 54, 53-90. volumes of oxide components. Am. ]. Sci. 269, Bauer, G. R. 1970. The geology of Tofua Island, 169-82. Tonga. Pacific Sci. 24, 333-50. Bottinga, Y. and D. F. Weill 1972. The viscosity of Beane, R. E. 1982. Hydrothermal alteration in silicate magmatic silicate liquids: A model for calculation. rocks: southwestern North America. In Advances in Am. ]. Sci. 272, 438-75. geology of the porphyry copper deposits: southwestern Bouma, A. H. 1962. Sedimentology of some flysch North America, S. R. Titley (ed.), ll7-37. Tucson: deposits. Amsterdam: Elsevier. Univ. Arizona Press. Bracey, D. R. and T. A. Ogden 1972. Southern Bennett, F. D. 1974. On formation. Am.]. Mariana arc: geophysical observations and hypo• Sci. 274, 1-120. thesis of evolution. Geol Soc. Am. Bull. 83, 1509-22. Benson, G. T. and L. R. Kittleman 196R. Geometry of Branch, C. D. 1976. Development of porphyry copper flow layering in silicic lavas. Am.]. Sci. 266, 265-76. and stratiform volcanogenic ore bodies during the life Bibee, L. D., G. G. Shor and R. S. Lu 1980. Inter-arc cycle of andesitic stratovolcanoes. In R. W. Johnson spreading in the Mariana Trough. Marine Geol. 35, (1976), 337-42. 183-97. Brazier, S. A., A. N. Davis, H. Sigurdsson and REFERENCES 489

R. S.]. Sparks 1982. Fall-out and deposition of Burns, R. E.,]. E. Andrews et al. 1973. Initial reports volcanic ash during the 1979 of of the Deep-Sea Drilling Project. Vol. 21. Washington, the Soufriere of St. Vincent.]. Volcanol. Geotherm. DC: US Government Printing Office. Res. 14, 335-59. Busby-Spera, C. 1984. Large-volume ash-flow Brazier, S., R. S. J. Sparks, S. N. Carey, H. Sigurdsson eruptions and submarine caldera collapse in the and J. A. Westgate 1983. Bimodal grain size distri• lower Mesozoic Sierra Nevada, California. ]. bution and secondary thickening in air-fall ash Geophys. Res. 89, 8417-27. layers. Nature 301, 115-9. Bussell, M. A. 1983. Timing of Tectonic and magmatic Briden, J. c., D. C. Rex, A. M. Fallar and J. F. events in the central Andes of Peru. ]. Geol Soc. Tomblin 1979. K-Ar geochronology and paleo• Lond. 140, 279-86. magnetism of volcanic rocks in the Lesser Antilles Byers, F. M. Jr, W.]. Carr, P. P. Orkitt, W. D. island arc. Phil Trans R. Soc. Lond. (A) 291, Quinlivan and K. A. Sargent 1976. Volcanic suites 485-528. and related cauldrons of Timber Mountain - Oasis Briggs, N. D. 1976. Welding and crystallisation zona• Valley Caldera Complex, southern Nevada. US Geol tion in Whakamaru ignimbrite, central North Island, Surv. Prof. Pap., no. 919. New Zealand. N.Z. ]. Geol. Geophys. 19, 189-212. Bristow, ]. W. and E. P. Saggerson 1983. A review of Carey, S. N. and H. Sigurdsson 1978. Deep-sea Karoo vulcanicity in southern Africa. Bull. Volcanol. evidence for distribution of tephra from the mixed 46, 135-59. magma eruption of the Soufriere on St. Vincent Brookfield, M. E. 1984. Eolian facies. In R. G. Walker 1902: ash turbidites and air fall. Geology 6, 271-4. (1984), 91-103. Carey, S. N. and H. Sigurdsson 1980. The Roseau Ash: Brooks, D. A., R. L. Carlson, D. L. Harry, P.]. deep-sea tephra deposits from a major eruption on Melia, R. P. Moore, J. E. Rayhorn and S. G. Tull Dominica, Lesser Antilles arc.]. Volcanol. Geotherm. 1984. Characteristics of back-arc regions. Tectono• Res. 7, 67-86. physics 102, 1-16. Carey, S. N. and H. Sigurdsson 1982. Influence of Brugman, M. M. and M. F. Meier 1981. The 1980 particle aggregation on deposition of distal tephra eruptions of Mount St. Helens. Response of glaciers from the May 18, 1980, eruption of Mount St. to the eruptions of Mount St. Helens. In Lipman & Helens volcano.]. Geophys. Res. 87, 7061-72. Mullineaux (1981), 743-56. Carey, S. N. and H. Sigurdsson 1984. A model of Bryan, W. B., G. D. Stice and A. Ewart 1972. Geology, volcanogenic sedimentation in marginal basins. In petrography and geochemistry of the volcanic islands Kokelaar & Howells (1984), 37-58. of Tonga.]. Geophys. Res. 77, 1566-85. Carmichael, I. S. E., F. J. Turner and J. Verhoogen Buchanan, D. J. 1974. A model for fuel-coolant inter• 1974. Igneous petrology. New York: McGraw-Hill. actions.]. Phys. D: Appl. Phys. 7, 1441-57. Carozzi, A. V. 1960. Microscopic sedimentary petro• Bullard, F. M. 1947. Studies on Paricutin volcano, graphy. New York: Wiley. Michoacan, Mexico. Geol Soc. Am. Bull. 58, 433-50. Carr, R. G. 1981. A scanning electron microscope study Bullard, F. M. 1976. Volcanoes of the earth. St Lucia: of post-depositional changes in the Matahina ignim• Univ. Queensland Press. brite, North Island, New Zealand. N.Z. ]. Geol. Bultitude, R. J. 1976a. Eruptive history of Bagana Geophys. 24, 429-34. volcano, Papua New Guinea, between 1882 and Carter, R. M. 1975. A discussion and classification of 1975. In R. W. Johnson (1976), 317-36. subaqueous mass transport with particular applica• Bultitude, R. J. 1976b. of probable early tion to grain-flow, slurry-flow, and fluxoturbidites. Cambrian age in northern Australia. In R. W. Earth Sci. Rev. 11, 145-77. Johnson (1976), 1-20. Cas, R. A. F. 1977. The Merrions Tuff - its genesis and Burke, K. 1978. Evolution of continental rift systems in palaeogeographic setting. Unpubl. Ph.D. thesis, the light of plate tectonics. In Ramberg & Neumann Macquarie University. (1978), 1-9. Cas, R. A. F. 1978a. Silicic lavas in Palaeozoic flysch• Burnham, C. W. 1972. The energy of explosive erup• like deposits in New South Wales, Australia: beha• tions. Earth, Mineral Sci. (Pennsylvania State Univ.) viour of deep subsqueous silicic flows. Geol Soc. Am. 41, 69-70. Bull. 89, 1708-14. Burnham, C. W. 1979. The importance of volatile Cas, R. A. F. 1978b. Basin characteristics of the Early constituents. In The evolution of the igneous rocks, Devonian part of the Hill End Trough based on a H. S. Yoder, Jr (ed.), 439-82. Princeton, New stratigraphic analysis of the Merrions Tuff. ]. Geol Jersey: Princeton University Press. Soc. Aust. 24, 381-401. Burnham, C. W. 1983. Deep submarine pyroclastic Cas, R. A. F. 1979. Mass-flow arenites from a Palaeozoic eruptions. In Ohmoto and Skinner (1983), 142-8. interarc basin, New South Wales, Australia: mode 490 REFERENCES

and environment of emplacement.]' Sed. Petrol. 49, 1980 eruptions of Mount St. Helens. Chronology of 29-44. the 1980 eruptive activity. In Lipman & Mullineaux Cas, R. A. F. 1983a. Submarine 'crystal-tuffs': their (1981), 17-67. origin using a Lower Devonian example from Clemens, J. D. and V. J. Wall 1981. Origin and southeastern Australia. Geol Mag. 120, 471-86. crystallisation of some peraluminous (S-type) granite Cas, R. A. F. 1983b. A review of the palaeogeographic . Can. Mineral. 19, 111-31. and tectonic development of the Palaeozoic Lachlan Fold Clemens, J. D. and V. J. Wall 1984. Origin and Belt of southeastern Australia. Geol Soc. Aust. Spec. evolution of a peraluminous silicic ignimbrite suite: Publn, no. 10. the Violet Town Volcanics. Contr. Miner. Petrol. 88, Cas, R. A. F. and J. G. Jones 1979. Palaeozoic interarc 354--71. basin in eastern Australia and a modern New Clifton, H. E., R. E. Hunter and R. L. Phillips 1971. Zealand analogue. N.z.]. Geol. Geophys. 22, 71-81. Depositional structures and processes in the non• Cas, R. A. F., R. H. Flood and S. E. Shaw 1976. Hill barred high energy near shore. ]. Sed. Petrol. 41, End Trough: new radiometric ages. Search (Aust.) 7, 651-70. 205-7. Clough, B. J. 1981. The geology of La Primavera volcano, Cas, R. A. F., C. McA. Powell and K. A. W. Crook Mexico. Unpubl. Ph.D. thesis, Imperial College, 1980. Ordovician palaeogeography of the Lachlan University of London. Fold Belt: a modern analogue and tectonic con• Clough, B. J., J. V. Wright and G. P. L. Walker 1981. straints.]. Geol Soc. Aust. 27, 19-31. An unusual bed of giant pumice in Mexico. Nature Cas, R. A. F., C. McA. Powell, C. L. Fergusson, J. G. 289,49-50. Jones, W. D. Roots and J. Fergusson 1981. The Clough, B. J., J. V. Wright and G. P. L. Walker 1982. Kowmung : a deep-water sequence of Morphology and dimensions of the young comendite mass-flow origin. ]. Geol Soc. Aust. 28, 271-88. lavas of La Primavera Volcano, Mexico. Geol Mag. Cathles, L. M., A. L. Guber, T. C. Lenagh and F. O. 119, 477-85. Dudas 1983. Kuroko-type massive sulfide deposits of Coates, R. E. 1968. The Circle Creek rhyolite, a Japan: products of an aborted island-arc rift. In volcanic dome complex in Northern Elko county, H. Ohmoto and B. J. Skinner (1983), 96--114. Nevada. In Coats et al. (1968), 69-107. Chapin, C. E. and W. E. Elston (eds) 1979. Ash flow Coats, R. R., R. L. Hay and C. A. Anderson (eds) tuffs. Geol Soc. Am. Spec. Pap., no. 180. 1968. Studies in (Howell Williams volume). Chapin, C. E. and G. R. Lowell 1979. Primary and Geol Soc. Am. Mem., no. 116. secondary flow structures in ash-flow tuffs of the Cole, J. W. 1970. Structure and eruptive history of the Gribbles run paleovalley, Central Colorado. In Tarawera volcanic complex. N.Z. ]. Geol. Geophys. Chapin & Elston (1979), 137-54. 13, 879-902. Chappell, B. W. and A. J. R. White 1974. Two Cole, J. W. 1979. Structure, petrology and genesis of contrasting granite types. Pacific Geol. 8, 173-4. Cenozoic volcanism, , New Cheshire, S. G. and J. D. Bell 1977. The Speedwell Zealand - a review. N.Z. ]. Geol. Geophys. 22, vent, Castleton, Derbyshire: a Carboniferous littoral 631-57. cone. Proc. Yorks. Geol Soc. 41, 173-84. Cole, J. W. 1981. Genesis oflava of the Taupo Volcanic Choubey, V. D. 1973. Long-distance correlation of Zone, North Island, New Zealand. ]. Volcanol. Deccan flows, central India. Geol Soc. Am. Geotherm. Res. 1,317-37. Bull. 84, 2785-90. Cole, J. W. 1984. Taupo-Rotorua depression - an Chouet, B., N. Hamisevicz and T. R. McGetchin 1974. ensialic marginal basin of North Island, New Photo ballistics of volcanic jet activity at Stromboli, Zealand. In Kokelaar & Howells (1984), 109-20. Italy. ]. Geophys. Res. 79, 4961-76. Coleman, R. G. 1971. Plate tectonic emplacement of Christiansen, R. L. 1979. Cooling units and composite upper mantle peridotites along continental edges. ]. sheets in relation to caldera structure. In Chapin & Geophys. Res. 76, 1212-22. Elston (1979), 29-42. Coleman, R. G. 1977. Ophiolites. Berlin: Springer. Christiansen, R. L. and P. W. Lipman 1966. Emplace• Colgate, S. A. and T. Sigurgeirsson 1973. Dynamic ment and thermal history of a rhyolite lava flow near mixing of water and lava. Nature 244, 552-4. Fortymile Canyon, southern Nevada. Geol Soc. Am. Colley, H. 1976. Classification and exploration guide for Bull. 77, 671-84. Kuroko-type deposits based on occurrences in Fiji. Christiansen, R. L. and P. W. Lipman 1972. Cenozoic Trans Inst. Min. Metal. 85, B190-9. volcanism and plate-tectonic evolution of the western Collins, W. J., S. D. Beams, A. J. R. White and B. W. United States. II. Late Cenozoic. Phil Trans R. Soc. Chappell 1982. Nature and origin of A-type granites Lond. A 271, 249-84. with particular reference to southeastern Australia. Christiansen, R. L. and D. W. Peterson 1981. The Contr. Miner. Petrol. 80, 189-200. REFERENCES 491

Collinson, J. D. and D. B. Thompson 1982. Sedi• Davies, D. K., M. W. Quearry and S. B. Bonis 1978a. mentary structures. London: Allen & Unwin. Glowing avalanches from the 1974 eruption of Compston, W. and B. W. Chappell 1979. Sr-isotope volcano Fuego, Guatemala. Geol Soc. Am. Bull. 89, evolution of granitoid source rocks in: The Earth, its 369-84. origin, structure and evolution, M. W. McElhinny Davies, D. K., W. R. Almon, S. B. Bonis and B. E. (ed.), 377-426. New York: Academic Press. Hunter 1978b. Deposition and diagenesis of Conybeare, C. E. B. and K. A. W. Crook 1968. Tertiary-Holocene volcaniclastics, Guatemala. In Manual of sedimentary structures. Bur. Miner. Resour. Aspects of diagenesis, P. A. Scholle and P. R. (Australia) Geol. Geophys. Bull., no. 102. Schluger (eds), 281-306. SEPM Spec. Publn, no. 26. Cooper, A. K., M. S. Marlow and D. W. Scholl 1977. Davies, D. K., R. K. Vessell, R. C. Miles, M. G. The Bering sea - a multiforious marginal basin. In Foley and S. D. Bonis 1978c. Fluvial transport and Island arcs, deep sea trenches and back-arc basins, M. downstream sediment modifications in an active Talwani and W. C. Pitman, III (eds) , 437-50. volcanic region. In Miall (1978), 61-84. Washington, DC: Am. Geophys. Union. Davies, H. L. and L. E. Smith 1971. Geology of eastern Corradini, M. L. 1981. Phenomological modelling of Papua. Geol Soc. Am. Bull. 83, 3299-312. the triggering phase of small-scale steam explosion Dawson, J. B. and D. G. Powell 1969. The Natron• experiments. Nucl. Sci. Engng. 78, 154-70. Engaruka explosion crater area, Northern Tanzania. Cousineau, P. and E. Dimroth 1982. Interpretation of Bull. Volcanol. 33,791-817. the relations between massive, pillowed and Day, R. A. 1983. Petrology and geochemistry of the Older brecciated facies in an Archean submarine Volcanics, Victoria (distribution, characterisation and volcano-Amulet andesite, Rouyn-Noranda, Canada. petrogenesis). Unpubl. Ph.D. thesis, Monash ]. Volcanol. Geotherm. Res. 13, 83-102. University. Cox, K. G., J. D. Bell and R. J. Pankhurst 1979. The Delaney, P. T. and D. D. Pollard 1982. Solidification of interpretation of igneous rocks. London: Allen & basaltic magma during flow in a dyke. Am. ]. Sci. Unwin. 282, 856--85. Cox, S. F. 1981. The stratigraphic and structural setting de Rosen-Spence, A. F., G. Provost, E. Dimroth, K. of the Mt. Lyell volcanic-hosted sulfide deposits. Gochnauer and V. Owen 1980. Archean subaqueous Econ. Geol. 76, 231-45. felsic flows, Rouyn-Noranda, Quebec, Canada, Crandell, D. R. 1971. Post-glacial lahars from Mount their Quaternary equivalents. Precamb. Res. 12, Rainier volcano, Washington. US Geol Surv. Prof. 43-77. Pap., no. 677. de Wit, M. J. and C. Stern 1978. Pillow talk. ]. Crandell, D. R. and R. D. Miller 1964. Post-hysithermal Volcanol. Geotherm. Res. 4, 55-80. glacier advances at , Washington, 110-4. Dewey, J. F. 1963. The Lower Palaeozoic stratigraphy US Geol Surv. Prof. Pap., no. SOl-D. of Central Murrisk, County Mayo, Ireland, and the Crandell, D. R. and R. D. Miller 1974. Quaternary evolution of the South Mayo Trough. Q.]. Geol Soc. stratigraphy and extent of glaciation in the Mount London. 119, 313-43. Rainier region, Washington. US Geol Surv. Prof. Dickinson, W. R. (ed.) 1974. Tectonics and sedimenta• Pap., no. 847. tion. SEPM Spec. Publn 22, 1-27. Cross, T. A. and R. H. Pilger 1982. Crontrols of Dickinson, W. R. 1979. Cenozoic plate tectonic setting subduction geometry, location of magmatic arcs, and of the Cordilleran region in the United States. In tectonics of arc and back-arc regions. Geol Soc. Am. Cenozoic palaeogeography of the western United States, Bull. 93, 545-62. J. M. Armentrout, M. R. Cole and H. Terbest (eds), Crowe, B. M. and R. V. Fisher 1973. Sedimentary 1-13. Pacific Coast Palaeogeography Symp. 3. structures in base-surge deposits with special Dimroth, E., P. Cousineau, M. Leduc and Y. reference to cross-bedding, Ubehebe Craters, Death Sanschagrin 1978. Structure and organisation of valley, California. Geol Soc. Am. Bull. 84, 663-82. Archean subaqueous basalt flows, Rouyn-Noranda Cummings, D. 1964. Eddies as indicators of local flow area, Quebec, Canada. Can. ]. Earth Sci. 15, direction in rhyolite, D70-2. US Geol Surv. Prof. 902-18. Pap., no. 475-D. Di Paola, G. M. 1972. The Ethiopian Rift Valley Curtis, G. H. 1968. The stratigraphy of the from (between roO' and 8°40' lat. North). Bull. Volcanol. the 1912 eruption of and , 36,517-60. Alaska. In Coats et al. (1968), 153-210. Donaldson, C. H. 1982. Spinifex-textured komatiites: a review of textures, compositions and layering. In Dalziel, 1. W. D. 1981. Back-arc extension in the Arndt & Nisbet (1982), 213-44. southern Andes: a review and critical reappraisal. Douglas, J. G. and J. A. Ferguson (eds) 1976. Geology Phil Trans R. Soc. Lond. (A) 300, 319-35. of Victoria. Geol Soc. Aust. Spec. Publn, no. 5. 492 REFERENCES

Doumas, C. (ed.) 1978. Thera and the Aegean World. H20 in CaMgSi20 6 (diopside) liquids and vapours at Vol. I. London: Thera and the Aegean World. pressures to 40 kb. Am. ]. Sci. 278, 64--94. Doumas, C. (ed.) 1980. Thera and the Aegean World. Eguchi, T. 1984. Seismotectonics around the Mariana Vol. II. London: Thera and the Aegean World. Trough. Tectonophysics 102, 33-52. Doyle, L. J. and O. H. Pilkey (eds) 1979. Geology of Eichelberger, J. C. 1980. Vesiculation of mafic magma continental slopes. SEPM Spec. Publn, no. 27. during replenishment of silicic magma reservoirs. Drake, R. E. 1976. Chronology of Cenozoic igneous Nature 288, 446--50. and tectonic events in the central Chilean Andes - Eichelberger, J. C. and F. G. Koch 1979. Lithic Latitudes 35°30' to 36°S.]. Volcanol. Geothenn. Res. fragments in the Bandelier Tuff, Jemez Mountains, 1, 265-84. New Mexico.]. Volcanol. Geothenn. Res. 5, 115-34. Drexler, J. W., W. I. Rose Jr, R. S. J. Sparks and Elliot, D. 1970. Determination of finite strain and initial M. T. Ledbetter 1980. The Los Chocoyos Ash, shape from deformed elliptical objects. Geol Soc. Am. Guatemala: a major stratigraphic marker in middle Bull. 81, 2221-36. America and three ocean basins. Quatern. Res. 13, Ellwood, B. B. 1982. Estimates of flow direction for 327-45. calc-alkaline welded tuffs and palaeomagnetic data Druitt, T. H. 1985. Vent evolution and lag breccia reliability from anisotropy of magnetic susceptibility formation during the Cape Riva eruption of measurements: central San Juan Mountains, south• Santorini, Greece.]. Geol. 93, 439-54. west Colorado. Earth Planet. Sci. Lett. 59, 303-14. Druitt, T. H. and R. S. J. Sparks 1982. A proximal Elston, W. E. and E. I. Smith 1970. Determination of ignimbrite breccia facies on Santorini volcano, flow direction of rhyolite ash-flow tuffs from fluidal Greece.]. Volcanol. Geothenn. Res. 13, 147-71. textures. Geol Soc. Am. Bull. 81, 3393-406. Druitt, T. H. and R. S. J. Sparks 1985. On the Ewart, A. 1979. A review of the mineralogy and formation of during ignimbrite eruptions. chemistry of Tertiary-Recent dacitic, latitic, rhyolitic Nature 310, 679-81. and related salic volcanic rocks. In Trondhjemites, Duffield, W. A., E. K. Gibson and G. H. Heiken 1977. and related rocks, F. Baker (ed.), 113-21. The Some characteristics of Pele's hair. ]. Res. U.S. Hague: Elsevier. Geol. Surv. 5, 93-101. Ewart, A. and J. J. Stipp 1968. Petrogenesis of the Duffield, W. A., C. R. Bacon and G. R. Roquemore volcanic rocks of the central North Island, New 1979. Origin of reverse-graded bedding in air-fall Zealand, as indicated by a study of Sr 87/Sr 86 ratios pumice, Coso Range, California. ]. Volcanol. and Sr, Rb, K, U, and Th abundances. Geochim. et Geothenn. Res. 5, 35-48. Cosmochim. Acta 32, 699-736. Duffield, W. A., L. Stieltjes and J. Varet 1982. Huge Ewart, A., W. B. Bryan and J. B. Gill 1973. Mineralogy blocks in the growth of Piton de la and geochemistry of the younger volcanic islands of Fournaise, La Reunion and Kilauea volcano, . Tonga, S.W. Pacific. ]. Petrol. 14, 429-65. ]. Volcanol. Geothenn. Res. 12, 147-60. Ewart, A., R. N. Brothers and A. Mateen 1977. An Duncan, A. R. and H. M. Pantin 1969. Evidence for outline of the geology and geochemistry and the submarine geothermal activity in the Bay of Plenty. possible petrogenetic evolution of the volcanic rocks N.Z. ]. Marine Freshwat. Res. 3, 602-6. of the Tonga-Kermadec-New Zealand island arc. ]. Dunett, D. 1969. A technique of finite strain analysis Volcanol. Geothenn. Res. 2, 205-50. using elliptical particles. Tectonophysics 7, 114--36. Eyles, N., C. H. Eyles and A. D. Miall 1983. Litho• Duyverman, H. J. and M. J. Roobol 1981. Gas pipes in facies types and vertical profile models: an alternative Eocambrian volcanic breccias. Geol Mag. 118, approach to the description and environmental 265-70. interpretation of glacial diamict and diamicitite sequences. Sedimentology 30, 393-410. Eyles, N. and A. D. Miall1984. Glacial facies. In R. G. Eaton, G. P. 1982. The Basin and Range Province: Walker (1984), 15-34. origin and tectonic significance. A. Rev. Earth Planet. Sci. 10, 409-40. Eaton, G. P. 1984. The Miocene Great Basin of western Fahnestock, R. K. 1963. Morphology and hydrology of a North America as an extending back-arc region. glacier stream - White River, Mount Rainier, Tectonophysics 102, 275-95. Washington. US Geol Surv. Prof. Pap., no. 422-A. Edney, W. 1984. The geology of the Tower Hill volcanic Fahnestock, R. K. 1978. Little Tahoma Peak rockfalls centre, western Victoria. Unpubl. M.Sc. thesis, and avalanches, Mount Rainier, Washington, U.S.A. Monash University. In Voight (1978), 181-96. Eggler, D. H. and M. Rosenhauer 1978. Carbon Feigenson, M. D. and F. J. Spera 1981. Dynamical dioxide in silicate melts: II. Solubilities of CO2 and model for temporal variation in magma type and REFERENCES 493

eruption interval at Kohala volcano, Hawaii. Geology and surges. J. Volcanol. Geotherm. Res. 13, 339-71. 9, 531-3. Fisher, R. V. and H.-U. Schmincke 1984. Pyroclastic Fenner, C. N. 1920. The Katmai region, Alaska, and rocks. Berlin: Springer-Verlag. the great eruption of 1912. ]. Geol. 28, 569-606. Fisher, R. V. and A. C. Waters 1970. Base surge Fenner, C. N. 1948. Incandescent tuff flows in southern bedforms in volcanoes. Am. J. Sci. 268, Peru. Geol Soc. Am. Bull. 59, 879-93. 157-80. Fenner, R. E. 1932. Concerning basaltic glass. Am. Fisher, R. V., H.-U. Schmincke and P. V. Bogard Mineral. 17, 104-7. 1983. Origin and emplacement of a pyroclastic flow Fergusson, C. L., R. A. F. Cas, W. J. Collins, G. Y. and surge unit at , Germany.]. Volcanol. Craig, K. A. W. Crook, C. McA. Powell, P. A. Geotherm. Res. 17,375-92. Scott and G. C. Young 1979. The Late Devonian Fisher, R. V., A. L. Smith and M. J. Roobol 1980. Boyd Volcanic Complex, Eden, N.S.W.: a reinter• Destruction of St. Pierre, by ash-cloud pretation. ]. Geol Soc. Au/t. 26, 87-105. surges, May 8 and 20, 1902. Geology 8, 472-6. Fernandez, H. E. 1969. Notes on the submarine ash• Fiske, R. S. 1963. Subaqueous pyroclastic flows in the flow tuff in Siargao Island, Surigao del Norte Ohanapecosh Formation, Washington. Geol Soc. Am. (Philippines). Philippine Geol. 23, 29-36. Bull. 74, 391-406. Fink, J. H. 1980a. Surface folding and viscosity of Fiske, R. S. 1969. Recognition and significance of rhyolite flows. Geology 8, 250-4. pumice in marine pyroclastic rocks. Geol Soc. Am. Fink, J. H. 1980b. Gravity instability in the Holocene Bull. 80, 1-8. Big and Little Glass Mountain rhyolitic Fiske, R. S. and T. Matsuda 1964. Submarine equi• flows, northern California. Tectonophysics 66, 147-66. valents of ash flows in the Tokiwa Formation, Japan. Fink, J. H. 1983. Structure and emplacement of a Am. ]. Sci. 262, 76-106. rhyolitic obsidian flow - Little Glass Mountain, Fiske, R. S., C. A. Hopson and A. C. Waters 1963. Medicine Lake Highland, Northern California. Geol Geology of Mount Rainier National Park, Washington. Soc. Am. Bull. 94, 362-80. US Geol Surv. Prof. Pap., no. 444. Fink, J. H. and R. C. Fletcher 1978. Ropy pahoehoe: Folk, R. L. 1980. Petrology of sedimentary rocks. Austin: surface folding of a viscous fluid. J. Volcanol. Hemphills. Geotherm. Res. 4, 151-70. Folk, R. L. and W. C. Ward 1957. Brazos river bar: a Fisher, R. V. 1960. Classification of volcanic breccias. study of the significance of grainsize parameters. J. Geol Soc. Am. Bull. 71, 973-82. Sed. Petrol. 27, 3-26. Fisher, R. V. 1961. Proposed classification of volcano• Fornari, D. J., D. W. Peterson, J. P. Lockwood, A. clastic sediments and rocks. Geol Soc. Am. Bull. 72, Malahoff and B. C. Heezen 1979. Submarine exten• 1409-14. sion of the southwest rift zone of Mauna Loa Fisher, R. V. 1966a. Mechanism of deposition from volcano, Hawaii: visual observations from U.S. Navy pyroclastic flows. Am. J. Sci. 264, 350-63. deep submergence vehicle DSV Sea Cliff. Geol Soc. Fisher, R. V. 1966b. Rocks composed of volcanic Am. Bull. 90, 435-43. fragments and their classification. Earth-Sci. Rev. 1, Francheteau, J., H. D. Needham, P. Choukroune, T. 287-98. Juteau, M. Seguret, R. D. Ballard, P. J. Fox, W. Fisher, R. V. 1968. Puu Hou littoral cones, Hawaii. Normark, A. Carranza, D. Cordoba, J. Guerrero, C. Geol. Rundsch. 57, 837-64. Rangin, H. Bougault, P. Cambon and R. Hekinian Fisher, R. V. 1977. Erosion by volcanic base-surge 1979. Massive deep-sea sulphide ore deposits dis• density currents: U-shaped channels. Geol Soc. Am. covered on the East Pacific Rise. Nature 277, 523-8. Bull. 88, 1287-97. Francis, E. H. 1983. Magma and sediment - II. Fisher, R. V. 1979. Models for pyroclastic surges and Problems of interpreting palaeovolcanics buried in pyroclastic flows. ]. Volcanol. Geotherm. Res. 6, the stratigraphic column. J. Geol Soc. Lond. 140, 305-18. 165-83. Fisher, R. V. 1984. Submarine volcaniclastic rocks. In Francis, E. H. and M. F. Howells 1973. Transgressive Kokelaar & Howells (1984), 5-27. welded ash-flows tuffs among the Ordovician sedi• Fisher, R. V. and D. W. Charleton 1976. Mid-Miocene ments of N.E. Snowdonia. ]. Geol Soc. Lond. 129, Blance Formation, Santa Cruz Island, California. In 621-41. Aspects of the geological history of the California Francis, P. W. and M. C. W. Baker 1977. Mobility of continental borderland, D. G. Howell (ed.), 228-40. pyroclastic flows. Nature 270, 164-5. Pacific Section Am. Assoc. Petroleum Geologists, Francis, P. W., M. Gardeweg, C. F. Ramirez and Misc. Publns, no. 24. D. H. Rothery 1985. Catastrophic debris Fisher, R. V. and G. Heiken 1982. Mt Pelee, deposit of volcano, northern Chile. Geology Martinique: May 8 and 20, 1902, pyroclastic flows 13, 600-3. 494 REFERENCES

Francis, P. W., L. O'Callaghan, G. A. Kretzchmar, the ongm of in ignimbrites. Nature 215, R. S. Thorpe, R. S. J. Sparks, R. N. Page, R. E. de 1473-4. Barrio, G. Gillou and O. E. Gonzalez 1983. The Gibson, 1. L. and G. P. L. Walker 1963. Some com• Cerro Galan ignimbrite. Nature 301, 51-3. posite rhyolitelbasalt lavas and related composite Francis, P. W., M. J. Roobol, G. P. L. Walker, P. R. dykes in eastern Iceland. Proc. Geol Assoc. 74, Cobold and M. P. Coward 1974. The San Pedro and 301-18. San Pablo volcanoes of North Chile and their hot Gilbert, C. M. 1938. Welded tuff in eastern California. avalanche deposits. Geol. Rundsch. 63, 357-88. Geol Soc. Am. Bull. 49, 1829-62. Franklin, J. M., J. W. Lydon and D. F. Sangster 1981. Gill, J. B. 1976. Composition and age of Lau Basin and Volcanic-associated sulphide deposits. In Economic Ridge volcanic rocks: implications for evolution of an Geology seventy-fifth anniversary volume, B. J. Skinner inter-arc basin and remnant arc. Geol Soc. Am. Bull. (ed.), 485-627. New Haven, Connecticut: The 87, 1384--95. Economic Geology Pub!. Co. Gill, J. B. 1981. Orogenic and plate tectonics. Freundt, A. and H.-U. Schmincke 1985. Hierarchy of Berlin: Springer. facies of pyroclastic flow deposits generated by Gill, J. B., A. L. Stork and P. M. Whelan 1984. Laacher See-type eruptions. Geology 13, 278-81. Volcanism accompanying back-arc development in Frey, F. A. and D. A. Clague 1984. Geochemistry of the southwest Pacific. Tectonophysics 102, 207-24. diverse basalt types from Loihi Seamount, Hawaii• Gorshkov, G. S. 1959. Gigantic eruption of the volcano petrogenetic implications. Earth Planet. Sci. Lett. 66, . Bull. Volcanol. 20, 77-112. 337-55. Gorshkov, G. S. and Y. M. Dubik 1970. Gigantic Friedman, G. M. and J. E. Sanders 1978. Principles of directed blast at Sheveluch volcano (Kamchatka). sedimentology. New York: Wiley. Bull. Volcanol. 34, 261-8. Friedman, 1. and W. Long 1976. Hydration rate of Greeley, R. 1977a. Volcanic morphology. In Greeley & obsidian. Science 191, 347-52. King (1977), 5-22. Friedman, 1., W. Long and R. L. Smith 1963. Viscosity Greeley, R. 1977b. Basaltic 'plains' volcanism. In and water contents of rhyolite glass. J. Geophys. Res. Greeley & King (1977), 23-44. 68, 6523-35. Greeley, R. 1982. The Snake River Plain, Idaho: Friedman, J. D., G. R. Olhoeft, G. R. Johnson and D. representative of a new category of volcanism. J. Frank 1981. Heat content and thermal energy of the Geophys. Res. 87, 2705-12. June dacitic dome in relation to total energy yield Greeley, R. and J. S. King (eds) 1977. Volcanism of the May-October 1980. In Lipman & Mullineaux (1981), eastern Snake River Plain, Idaho: a comparative 557-67. planetary geology guidebook. Washington, DC: NASA. Froggatt, P. C. 1982. Review of methods of estimating Green, D. H. and A. E. Ringwood 1967. The genesis of rhyolitic tephra volumes: applications to the Taupo basaltic magmas. Contr. Miner. Petrol. 15, 103-90. volcanic zone, New Zealand. J. Volcanol. Geotherm. Greene, R. C. and D. Plouff 1981. Location of a caldera Res. 14, 301-18. source for the Soldier Meadow Tuff, northwestern Froggatt, P. c., c. J. N. Wilson and G. P. L. Walker Nevada, indicated by gravity and aeromagnetic data: 1981. Orientation of logs in the Taupo Ignimbrite as Summary. Geol Soc. Am. Bull. 92, 4--6. indicator of flow direction and vent position. Geology Gregg, D. R. 1960. The geology of the Tongariro 9, 109-11. subdivision. N.Z. Geol Surv. Bull. 40. Fudali, R. F. and W. G. Melson 1972. Ejecta velocities, Grindley, G. W. 1960. Sheet 8, Taupo. Geological map of magma chamber pressure and kinetic energy asso• New Zealand 1 : 250,000. Wellington: Dept Sci. ciated with the 1968 eruption of Arenal volcano. Ind. Res. Bull. Volcanol. 35, 383-401. Guber, A. L. and S. Merill 1983. Palaeobathymetric Fuller, R. E. 1931. The aqueous chilling of basaltic lava significance of the foraminifera from the Hokuroku on the Columbia River Plateau. Am. J. Sci. 21, district. In The Kuroko and related volcanogenic 281-300. massive sulphide deposits, H. Ohmoto and B. J. Furnes, H. and B. A. Sturt 1976. Beach/shallow marine Skinner (eds), 55-70. Econ. Geo!. Mon. 5. hyaloclastite deposits and their geological significance Guest, J. E. and J. Sanchez 1969. A large dacitic lava - an example from Gran Canaria. J. Geol. 84, flow in northern Chile. Bull. Volcanol. 33, 778-90. 439-53. Gunnarsson, A. 1973. Volcano. Ordeal by in Iceland's Furnes, H., 1. B. Friedliefsson and F. B. Atkins 1980. Westmann Islands. Reykjavik: Iceland Review. Subglacial volcanics - on the formation of acid hyaloclastites. J. Volcanol. Geotherm. Res. 8,95-110. Hall, S. H. 1978. The stratigraphy of northern Lipari and the structure of the Rocche Rosse rhyolite flow and its Gibson, 1. L. and H. Tazieff 1967. Additional theory on implications. Unpub!. B.Sc. thesis, University of Leeds. REFERENCES 495

Hamilton, W. 1979. Tectonics of the Indonesian region. Healy, J., E. F. Lloyd, D. E. H. Rishworth, C. P. Geol Surv. Prof. Pap., no. 1078. Wood, R. B. Glover and R. R. Dibble 1978. The Hampton, M. A. 1972. The role of subaqueous debris eruption of Ruapehu, New Zealand, on 22 June 1969. flow in generating turbidity currents. ]. Sed. Petrol. N.Z. D.S.I.R. Bull., no. 224. 42, 775-93. Heiken, G. H. 1971. Tuff rings: examples from Fort Hampton, M. A. 1975. Competence of fine-grained Rock-Christmas Lake Valley basin, south central . ]. Sed. Petrol. 45, 834-44. Oregon. ]. Geophys. Res. 76, 5615-26. Hampton, M. A. 1979. Buoyancy in debris flows. ]. Heiken, G. H. 1972. Morphology and petrology of Sed. Petrol. 49, 753-8. volcanic ashes. Geol Soc. Am. Bull. 83, 1961-88. Hargraves, R. B. (ed.) 1980. Physics of magmatic Heiken, G. H. 1974. An atlas of volcanic ash. processes. Princeton, New Jersey: Princeton Smithsonian Contr. Earth Sci., no. 12. University Press. Heiken, G. H. 1978. Characteristics of tephra from Hargreaves, R. and L. D. Ayres 1979. Morphology of , Lassen Volcanic National Park, Archean metabasalt flows, Utik Lake, Manitoba. California. Bull. Volcanol. 41, 119-30. Can. ]. Earth Sci. 16, 1452-66. Heim, A. 1932. Bergsturz und Menschenleben. Zurich: Harms, J. C. and R. K. Fahnestock 1965. Stratification, Fretz und Wasmuth. bed forms, and flow phenomena (with an example Hekinian, R., M. Fevrier, J. L. Bischoll, P. Picot and from the Rio Grande). In Primary sedimentary W. C. Shanks 1980. Sulphide deposits from the East structures and their hydrodynamic interpretation, G. V. Pacific Rise near 21 ON. Science 207, 1433-44. Middleton (ed.), 84-15. SEPM Spec. Publn, no. 12. Henley, R. W. and A. J. Ellis 1983. Geothermal Harms, J. C., J. B. Southard and R. G. Walker 1982. systems ancient and modern: a geochemical review. Structures and sequences in clastic rocks. SEPM Short Earth Sci. Rev. 19, 1-50. Course no. 9. Hermance, J. F. 1983. The Long Valley/Mono Basin Harris, D. M., W. I. Rose Jr, R. Rose and M. R. complex in eastern California: status of present Thompson 1981. Radar observations of ash erup• knowledge and future research needs. Rev. Geophys. tions. In Lipman & Mullineaux (1981), 323-33. Space Phys. 21, 1545-65. Hatch, F. H., A. K. Wells and M. K. Wells 1972. Hess, P. C. 1980. Polymerisation model for silicate Petrology of the igneous rocks. London: George Allen melts. In Hargraves (1980), 1-48. & Unwin. Hickson, C. J., P. Hickson and W. C. Barnes 1982. Hawkins, J. W. and J. Melchior 1984. Petrology of Weighted vector analysis applied to surge deposits basalts from Loihi Seamount, Hawaii. Earth Planet. from the May 18, 1980 eruption of Mt. St. Helens, Sci. Lett. 66, 356-68. Washington. Can. ]. Earth Sci. 19, 829-36. Hawkins, J. W., S. H. Bloomer, C. A. Evans and J. T. Hildreth, W. 1981. Gradients in silicic magma Melchior 1984. Evolution of intra-oceanic arc-trench chambers: implications for lithospheric magmatism. systems. Tectonophysics 102, 175-205. ]. Geophys. Res. 86, 10153-92. Hay, R. L. 1959. Formation of the crystal-rich glowing Hiscott, R. N. and G. V. Middleton 1979. Depositional avalanche deposits of St. Vincent, B.W.I. ]. Geol. mechanics of thick-bedded sandstones at the base of 67, 540-62. a submarine slope, Tourelle Formation (Lower Hay, R. L. and A. Iijima 1968. Nature and origin of Ordovician), Quebec, Canada. In Doyle & Pilkey palagonite tuffs of the Honolulu group on Oahu, (1979), 307-26. Hawaii. In Coats et al. (1968), 331-76. Hobbs, B. E., W. D. Means and P. F. Williams 1976. Hay, R. L., W. Hildreth and R. N. Lambe 1979. An outline of . New York: Wiley. Globule ignimbrite of Mount Suswa, Kenya. In Hoblitt, R. P. and K. S. Kellogg 1979. Emplacement Chapin & Elston (1979), 167-75. temperatures of unsorted and unstratified deposits of Hays, J. D. and D. Ninkovich 1970. North Pacific deep• debris as determined by palaeo• sea ash chronology and age of present Aleutian under• magnetic techniques. Geol Soc. Am. Bull. 90, thrusting, 263-90. Geol Soc. Am. Mem., no. 126. 633-42. Healy, J. 1962. Structure and volcanism in the Taupo Hoblitt, R. P. and C. D. Miller 1984. Comment on volcanic zone, New Zealand. In Crust of the Pacific Walker & McBroome 1983. Geology 12, 692-3. Basin, G. A. Macdonald and H. Kuno (eds) , Hoblitt, R. P., C. D. Miller and J. W. Vallance 1981. 151-157. Am. Geophys. Un., Mon. 6. Origin and stratigraphy of the deposit produced by Healy, J. 1963. Welded at Tongariro. the May 18 directed blast. In Lipman & Mullineaux N.z. ]. Geol. Geophys. 6, 712-4. (1981), 401-19. Healy, J., J. C. Schofield and B. N. Thompson 1964. Hogg, S. E. 1982. Sheetfloods, sheetwash, sheetflow, or Geological map of New Zealand 1 : 250,000 Sheet 5 ... ? Earth Sci. Rev. 18, 59-76. Rotorua. Wellington: N.Z. Dept Sci. Ind. Res. Hollister, C. D., M. F. Glenn and P. F. Lonsdale 1978. 496 REFERENCES

Morphology of seamounts in the western Pacific and by influx of hot, dense ultrabasic magma. Contrib. Philippine Basin from multi-beam sonar data. Earth Miner. Petrol. 75, 279-89. Planet. Sci. Lett. 41, 405-18. Huppert, H. E. and R. S. J. Sparks 1980b. Restrictions Holmes, A. 1920. The nomenclature of petrology. London: on the composition of mid-ocean ridge basalts: a fluid T. Murby. dynamical investigation. Nature 286, 46-8. Honnorez, J. and P. Kirst 1975. Submarine basaltic Huppert, H. E. and R. S. J. Sparks 1984. Double• volcanism: morphometric parameters for discriminat• diffusive convection due to crystallisation in magmas. ing hyaloclastites from hyalotuffs. Bull. Volcanol. 39, A. Rev. Earth Planet. Sci. 12, 11-37. 1-25. Huppert, H. E., R. S. J. Sparks and J. S. Turner Houghton, B. F. and W. R. Hackett 1984. Strombolian 1982a. Effects of volatiles on mixing in calc-alkaline and phreatomagmatic deposits of Ohakune craters, magma systems. Nature 297, 554-7. Ruapehu, New Zealand: a complex interaction Huppert, H. E., J. B. Shepherd, H. Sigurdsson and between external water and rising basaltic magma. J. R. S. J. Sparks 1982b. On lava dome growth, with Volcanol. Geotherm. Res. 21, 207-31. application to the 1979 lava extrusion of the Soufriere Howard, K. 1973. Avalanche mode of motion: implica• of St. Vincent. J. Volcanol. Geotherm. Res. 14, tions from lunar examples. Science 180, 1052-5. 199-222. Howells, M. F., B. E. Leveridge and C. D. R. Evans Huppert, H. E., R. S. J. Sparks, J. S. Turner and 1973. Ordovician ash-flow tuffs in eastern Snowdonia. N. T. Arndt 1984. Emplacement and cooling of Inst. Geol. Sci. Rep. No. 73/3. lavas. Nature 309, 19-22. Howells, M. F., B. E. Leveridge, R. Addison, Hussong, D. M., S. Uyeda et al. 1981. Initial reports of C. D. R. Evans and M. J. C. Nutt 1979. The Capel the Deep-Sea Drilling Project. Vol. 60. Washington, Curig Volcanic Formation Snowdonia, North Wales; DC: US Government Printing Office. variations in ash-flow tuffs related to emplacement Hutchinson, R. W. 1973. Volcanogenic sulphide environment. In The Caledonides of the British Isles - deposits and their metallogenic significance. Eean. reviewed, A. L. Harris, C. H. Holland and B. E. Geol. 68, 1223-45. Leake (eds), 611-8. Geol Soc. Lond. Spec. Publn, Hutchinson, R. W. 1980. Massive base metal sulphide no. 8. deposits as guides to tectonic evolution. In D. W. Howells, M. F., S. D. G. Campbell and A. J. Strangway (1980), 659-81. Reedman 1985. Isolated pods of subaqueous welded Hutchinson, R. W. 1984. Hydrothermal concepts ash-flow tuff: a distal facies of the Capel Curig the old and the new. Econ. Geol. 78, 1734-41. Volcanic Formation (Ordovician), North Wales. GeoT Mag. 122, 175-80. Inman, D. L. 1952. Measures for describing the size Hsti, K. J. 1975. Catastrophic debris streams (sturz. distribution of sediments. J. Sed. Petrol. 22, 125-45. stroms) generated by rock falls. Geol Soc. Am. Bull. International Association of Volcanology and Chemistry 86, 129-40. of the Earth's Interior (IA VCEI) 1951-present. Hsti, K. J. 1978. Albert Heim: observations on land• Catalogue of active volcanoes of the world, including slides and relevance to modern interpretations. In solfatara fields. 22 volumes to date. Rome: IAVCEI. Voight (1978), 70-93. Irvine, T. N. and W. R. A. Baragar 1971. A guide to Huang, T. C., N. D. Watkins and D. M. Shaw 1975. the chemical classification of the common volcanic Atmospherically transported glass in deep-sea sedi• rocks. Can. J. Earth Sci. 8, 523-48. ments: volcanism in sub-Antarctic latitudes of the Izen, G. A. 1981. Volcanic ash beds: recorders of South Pacific during late Pliocene and Pleistocene Upper Cenozoic silicic volcanism in the western time. Geol Soc. Am. Bull. 86, 1305-15. United States. J. Geophys. Res. 86, 10200-23. Huang, T. C., N. D. Watkins and L. Wilson 1979. Deep-sea tephra from the Azores during the past Jakobsson, S. 1978. Environmental factors controlling 300,000 years: eruptive cloud height and ash volume the palagonitisation of the Surtsey tephra, Iceland. estimates. Geol Soc. Am. Bull. 90, part II, 235-88. Bull. Geol. Soc. Denmark 27,91-105. Hughes, C. J. 1983. Igneous Petrology. Amsterdam: Jakobsson, S. P. and J. G. Moore 1980. Unique hole Elsevier. shows how volcano grew. Geotimes April 1980, Hulme, G. 1974. The interpretation of lava flow 14-16. morphology. Geophys. J. R. Astr. Soc. 39, 361-83. James, D. E. 1971. Andean crustal and upper mantle Hunter, R. E. 1985. A kinematic model for the structure. J. Geophys. Res. 76, 3246-71. structure of lee side deposits. Sedimentology 32, Janda, R. J., K. M. Scon, K. M. Nolan and H. A. 409-22. Martinson 1981. The 1980 eruptions of Mount St. Huppert, H. E. and R. S. J. Sparks 1980a. The fluid Helens movement, effects and deposits. In dynamics of a basaltic magma chamber replenished Lipman & Mullineaux (1981), 461-78. REFERENCES 497

Johnson, A. M. 1970. Physical processes in geology. San implications for arc evolution and ophiolite deVelop• Francisco: Freeman, Cooper. ment. In Leggett (1982), 563-76. Johnson, R. W. (ed.) 1976. Volcanism in Australasia. Karig, D. E. and G. F. Sharman 1975. Subduction and Amsterdam: Elsevier. accretion in trenches. Geol Soc. Am. Bull. 86, Johnson, R. W. (ed.) 1981. Cooke-Ravian volume of 377-89. volcanological papers. Geol. Surv. Papua New Guinea Karig, D. E., J. c. Ingle et al. 1975. Initial reports of the Mem.lO. Deep-Sea Drilling Project. Vol. 31. Washington, DC: Jones, B. L., S. S. W. Chinn and J. c. Brice 1984. US Government Printing Office. Olekele rock avalanche, island of Kauai, Hawaii. Katili, J. A. 1973. On fitting certain geological and Geology 12, 209-11. geophysical features of the Indonesian island arc to Jones, J. G. 1966. Intraglacial volcanoes of south-west the new global tectonics. In The Western Pacific: Iceland and their significance in the interpretation of island arcs, marginal seas, geochemistry, P. J. Coleman the form of marine basaltic volcanoes. Nature 212, (ed.), 287-305. University of Western Australia 586-8. Press. Jones, J. G. 1967a. A lacustrine volcano of central Kato, I., I. Muroi, T. Yamazaki and M. Abe 1971. France, and the nature of peperites. Proc. Geol Assoc. Subaqueous pyroclastic flow deposits in the Upper 80, 177-88. Donzurubo Formation, Nijosan district, Osaka, Jones, J. G. 1967b. Clastic rocks of Espiritu Santo Japan.]. Geol Soc. Jpn 77, 193-206. Island, New Hebrides. Geol Soc. Am. Bull. 78, Katsui, Y. 1959. On the Shikotsu pumice-fall deposit. 1281-8. Bull. Volcanol. Soc. Jap. 4, 33-48. Jones, J. G. 1968. Pillow lava and pahoehoe. ]. Geol. Kawachi, Y., I. J. Pringle and D. S. Coombs 1983. 76,485-8. Pillow lavas of the Eocene Oamaru volcano, North Jones, J. G. 1969. Intraglacial volcanoes of the Otago. Tour Bh 3. Pacific Sci. Congr., Dunedin, New Laugarvatn region, southwest Iceland, I. Q. ]. Zealand. Geol Soc. Lond. 124, 197-211. Kent, D. V., D. Ninkovich, T. Pescatore and R. S. J. Jones, J. G. 1970. Intraglacial volcanoes of the Sparks 1981. Palaeomagnetic determination of Laugarvatn region, southwest Iceland, II. ]. Geol. emplacement temperature of Vesuvius A.D. 79 78, 127-40. pyroclastic deposits. Na,ture, 290, 393-6. Jones, J. G. and P. H. H. Nelson 1970. The flow of Kent, P. E. 1966. The transport mechanism of cata• basalt lava from air into water - its structural strophic rock falls.]' Geol. 74, 79-83. expression and stratigraphic significance. Geol Mag. Kieffer, G. 1971. Apen;;u sur la morphologie des regions 107, 13-21. volcaniques du Massif Central. In: Symposium Jean Joyce, E. B. 1975. Quaternary volcanism and tectonics Jung: Geologie, geomorphologie et structure profonde du in southeastern Australia. In Quaternary studies, Massif Central franfais, Clermont-Ferrand, 479-510. R. P. Suggate and M. M. Cresswell (eds), 169-76. Kienle, J. and G. E. Shaw 1979. Plume dynamics, Wellington: R. Soc. New Zealand. thermal energy and long-distance transport of clouds from Augustine volcano, Alaska.]' Volcanol. Geotherm. Res. 6, 139-64. Kamata, H. and K. Mimura 1983. Flow directions Kienle, J., P. R. Kyle, S. Self, R. J. Motyka and V. inferred from imbrication in the Handa pyroclastic Lorenz 1980. Ukinrek , Alaska, I. April 1977 flow deposit in Japan. Bull. Volcanol. 46, 277-2. eruption sequence, petrology and tectonic setting. J. Kantha, L. H. 1980. A note on the effect of viscosity on Volcanol. Geotherm. Res. 7, 11-37. double-diffusive processes. J. Geophys. Res. 85, King, B. C. 1970. Vulcanicity and rift tectonics in East 4398-404. Africa. In African magmatism and tectonics, T. W. Kantha, L. H. 1981. 'Basalt fingers' - origin of Clifford and I. G. Gass (eds), 263-83. Edinburgh: columnar joints? Geol Mag. 118, 251-64. Oliver & Boyd. Karig, D. E. 1970. Ridges and basins of the Tonga• Klein, G. de V. 1975. Sedimentary tectonics in Kermadec island arc system. ]. Geophys. Res. 75, southwest Pacific marginal basins based on leg 30 239-54. Deep Sea Drilling Project cores from the South Fiji, Karig, D. E. 1971. Structural history of the Mariana Hebrides, and Coral Sea Basins. Geol Soc. Am. Bull. island arc system. Geol Soc. Am. Bull. 82, 323-44. 86, 1012-8. Karig, D. E. 1972. Remnant arcs. Geol Soc. Am. Bull. Klein, G. de V. and Y. Lee 1984. A preliminary 83, 1057-68. assessment of geodynamic controls on depositional Karig, D. E. 1974. Evolution of arc systems in the systems and sandstone diagenesis in back-arc basins, western Pacific. A. Rev. Earth Planet. Sci. 2,51-75. western Pacific Ocean. Tectonophysics 102, 119-52. Karig, D. E. 1982. Initiation of subduction zones: Kokelaar, B. P. 1982. Fluidisation of wet sediments 498 REFERENCES

during the emplacement and cooling of various Kushiro, I. 1976. Changes in viscosity and structure of igneous bodies. J. Geol Soc. Lond. 139, 21-33. melt of NaAISi20 6 composition at high pressures. J. Kokelaar, B. P. 1983. The mechanism of surtseyan Geophys. Res. 81,6347-50. volcanism. J. Geol Soc. Lond. 140, 939--44. Kushiro, I. 1978. Density and viscosity of hydrous calc• Kokelaar, B. P. and M. F. Howells (eds) 1984. alkalic andesite magma at high pressures. Carnegie Marginal basin geology: volcanic and associated sedi• Inst. Washington Ybk 77, 675-77. mentary and tectonic processes in modem and ancient Kushiro, I. 1980. Viscosity, density and structure of marginal basins. Geol Soc. Lond. Spec. Publn, silicate melts at high pressures, and their petrological no. 16. applications. In Hargraves (1980), 93-120. Kokelaar, B. P., M. F. Howells, R. E. Bevins and Kushiro, I., H. S. Yoder Jr and B. O. Mysen 1976. R. A. Roach 1984. Volcanic and associated sedi• Viscosities of basalt and andesite melts at high mentary and tectonic processes in the Ordovician pressures. J. Geophys. Res. 81,6351-6. marginal basin of Wales: a field guide. In Kokelaar & Howells (1984), 291-322. La Croix, A. 1903. Sur les principaux resultats de la Kokelaar, B. P., R. E. Bevins and R. A. Roach 1985. mission de la Martinique. C.R. Acad. Sci. Paris 135, Submarine silicic volcanism and associated sedi• 871-76. mentary and tectonic processes, Ramsey Island, SW La Croix, A. 1904. La Montagne Petee et ses eruptions. Wales. J. Geol Soc. Lond. 142, 591-613. Paris: Masson. Komar, P. D. 1970. The competence of turbidity La Croix, A. 1930. Remarques sur les materiaux de currents. Geol Soc. Am. Bull. 81, 1555-62. projection des volcans et sur la genese des roches Kono, Y. and Y. Osima 1971. Numerical experiments pyroclastiques qu'ils constituent. Soc. Geol. Fr., on the welding processes in pyroclastic flow deposits. Livre Jubliaire Centenaire 2, 431-72. Bull. Volc. Soc. Jpn 16, 1-14. Lajoie, J. 1984. Volcaniclastic rocks. In R. G. Walker Korgen, B. J. 1972. Geological oceanography - student (1984), 39-52. notes to 35 mm colour slide set. New York: Harper & Larsson, W. 1936. Vulkanische asche vom Ausbruch Row. des ChilenischenVolkans Quizapu. Bull. Geol Inst. Korringa, M. K. 1973. Linear vent area of the Soldier Univ. Upsala 26, 27-52. Meadow Tuff, an ash-flow sheet in northwestern Laughlin, A. W., M. J. Aldrich and D. T. Vaniman Nevada. Geol Soc. Am. Bull. 84, 3849-66. 1983. Tectonic implications of mid-Tertiary dykes in Kouda, R. and H. Koide 1978. Ring structures, west-central New Mexico. Geology 11, 45-8. resurgent cauldron, and ore deposits in the Laughton, A. S., W. A. Berggren et al. 1972. Initial Hokuroku , northern Akita, Japan. reports of the Deep Sea Drilling Project Vol. XII. Min. Geol. 28, 233--44. Washington, DC: US Government Printing Office. Kozu, S. 1934. The great activity of Komagatake 1929. Ledbetter, M. T. 1985. Tephrochronology of marine Mineralog. Petrog. Mitteil. 45, 133-74. tephra adjacent Central America. Geol Soc. Am. Bull. Krishnamurthy, P. and G. R. Udas 1981. Regional 96,77-82. geochemical characters of the Deccan Trap lavas and Ledbetter, M. T. and R. S. J. Sparks 1979. Duration of their genetic implications. In K. V. Subbarao and large-magnitude explosive eruptions deduced from R. N. Sukheswa1a (1981), 394--418. graded bedding in deep-sea ash layers. Geology 7, Kuenzi, W. D., O. H. Horst and R. V. McGehee 1979. 240--4. Effect of volcanic activity in fluvial-deltaic sedimenta• Leeder, M. R. 1982. Sedimentology. Process and product. tion in a modern arc-trench gap, southwestern London: George Allen & Unwin. Guatemala. Geol Soc. Am. Bull. 90, 827-38. Leggett, J. K. (ed.) 1982. Trench-forearc geology: sedi• Kulm, L. D., J. M. Resig, T. M. Thornburg and H.-J. mentation and tectonics on modem and ancient active Schrader 1982. Cenozoic structure, stratigraphy and plate margins. Geol Soc. Lond. Publn, no. 10. tectonics of the central Peru forearc. In Leggett Lewis, J. V. 1914. Origin of pillow lavas. Geol Soc. Am. (1982), 151-69. Bull. 25, 591-654. Kunii, D. and O. Levenspiel1969. Fluidisation engineer• Leys, C. A. 1982. Volcanic and sedimentary processes in ing. New York: Wiley. phreatomagmatic volcanoes. Unpubl. Ph.D. thesis, Kuno, H. 1941. Characteristics of deposits formed by University of Leeds. pumice flows and those by ejected pumice. Bull. Lipman, P. W. 1965. Chemical comparison of glassy and Earthq. Res. Inst. Univ. Tokyo 19, 144-8. crystalline volcanic rocks. US Geo1 Surv. Bull., Kuno, H., T. Ishikawa, Y. Katsui, Y. Yago, M. no. 1201-D. Yamasaki and S. Taneda 1964. Sorting of pumice Lipman, P. W. 1967. Mineral and chemical variations and lithic fragments as a key eruptive and emplace• within an ash-flow sheet from Aso Caldera, South ment mechanisms. Jap. J. Geol. Geogr. 35, 223-38. Western Japan. Contrib. Miner. Petrol. 16, 300-27. REFERENCES 499

Lipman, P. W. 1975. Evolution of the Platoro caldera volcano. National Park Service, California: complex and related volcanic rocks, southeastern San Department of the Interior. Juan Mountains, Colorado. US Geol Surv. Prof. Pap., Lorenz, V. 1973. On the formation of maars. Bull. no. 852. Volcanol. 37, 183-204. Lipman, P. W. 1976. Caldera-collapse breccias in the Lorenz, V. 1974. Vesiculated tuffs and associated western San Juan Mountains, Colorado. Geol Soc. features. Sedimentology 21, 273-9l. Am. Bull. 87, 1397-1410. Lorenz, V., A. R. McBirney and H. Williams 1970. An Lipman, P. W. 1980. Rates of volcanic activity along investigation of volcanic depressions. Part III: Maars, the southwest rift zone of Mauna Loa volcano, tuff-rings, tuff-cones and diatremes. NASA Progress Hawaii. Bull. Volcanol. 43, 703-25. Rep. NGR-38-003-012. Lipman, P. W. 1984. The roots of ash flow calderas in Lowder, G. G. and I. S. E. Carmichael 1970. The western North America: windows into the tops of volcanoes and caldera of Talasea, New Britain: granitic batholiths. J. Geophys. Res. 89, 8801-4l. geology and petrology. Geol Soc. Am. Bull. 81, Lipman, P. W. and R. L. Christiansen 1964. Zonal 17-38. features of an ash-flow sheet in the Piapi Canyon Lowe, D. R. 1975. Water escape structures in coarse• Formation, southern Nevada, B74-8. US Geol Surv. grained sediments. Sedimentology 22, 157-204. Prof. Pap., no. SOlE. Lowe, D. R. 1976. Grain flow and grain flow deposits. Lipman, P. W. and D. R. Mullineaux (eds) 1981. The ]. Sed. Petrol. 46, 188-99. 1980 eruptions of Mount St. Helens, Washington. US Lowe, D. R. 1979. Sediment gravity flows: their Geol Surv. Prof. Pap., no. 1250. classification and some problems of application to Lipman, P. W. and R. L. Christiansen and J. T. natural flows and deposits. In Doyle & Pilkey (1979), O'Connor 1966. A compositionally zoned ash-flow sheet 75-82. in southern Nevada. US Geol Surv. Prof. Pap., Lowe, D. R. 1982. Sediment gravity flows: II, deposi• no. 524-F. tional models with special reference to the deposits of Lipman, P. W., S. Self and G. Heiken (eds) 1984. high density turbidity currents. J. Sed. Petrol. 52, Calderas and associated igneous rocks. J. Geophys. Res. 279-97. 89 BlO, 8219-342. Lowman, R. D. W. and T. W. Bloxam 1981. The Lirer, L., T. Pescatore, B. Booth and G. P. L. Walker petrology of the Lower Palaeozoic Fishguard 1973. Two plinian pumice-fall deposits from Somma Volcanic Group and associated rocks E. of Fishguard, Vesuvius, Italy. Geol Soc. Am. Bull. 84, 759-72. N. Pembroke shire (Dyfed), South Wales. J. Geol Lisitzin, A. P. 1962. Bottom sediments of the Antarctic. Soc. Lond. 138, 47-68. Am. Geophys. Un. Geophys. Mon. 7, 81-8. Luyendyk, B. P. and K. C. Macdonald 1977. Physio• Lisle, R. J. 1977. Estimation of the tectonic strain ratio graphy and structure of the inner floor of the Famous from the mean shape of deformed elliptical markers. rift valley: observations with a deep-towed instru• Geol. Mijnbouw 56, 140-4. ment package. Geol Soc. Am. Bull. 88, 648-63. Lock, B. E. 1972. A Lower Palaeozoic rheo-ignimbrite from White Bay, Newfoundland. Can. ]. Earth Sci. McBirney, A. R. 1963. Factors governing the nature of 9, 1495-503. submarine volcanism. Bull. Volcanol. 26, 455-69. Lockwood, J. P. and P. W. Lipman 1980. Recovery of McBirney, A. R. 1971. Oceanic volcanism: a review. datable charcoal beneath young lavas: lessons from Geophys. Space Phys. Rev. 9, 523-56. Hawaii. Bull. Volcanol. 43, 609-15. McBirney, A. R. 1973. Factors governing the intensicy Lofgren, G. 1970. Experimental devitrification rates of of explosive andesitic eruptions. Bull. Volcanol. 37, rhyolitic glass. Geol Soc. Am. Bull. 81, 553-60. 443-53. Lofgren, G. 1971a. Spherulitic textures in glassy and McBirney, A. R. 1980. Mixing and unmixing of crystalline rocks. J. Geophys. Res. 76, 5635-48. magmas. J. Volcanol. Geotherm. Res. 7, 357-7l. Lofgren, G. 1971b. Experimentally produced devitri• McBirney, A. R. and T. Murase 1970. Factors govern• fication textures in natural rhyolitic glass. Geol Soc. ing the formation of pyroclastic rocks. Bull. Volcanol. Am. Bull. 82, 111-24. 34, 372-84. Loney, R. A. 1968. Flow structure and composition of McBirney, A. R. and T. Murase 1984. Rheological the Southern Coulee, Mono craters, California - a properties of magmas. A. Rev. Earth Planet. Sci. 12, pumiceous rhyolite flow. In Coats et al. (1968), 337-57. 153-210. McBirney, A. R. and R. M. Noyes 1979. Crystallisation Lonsdale, P. and R. Batiza 1980. Hyaloclastite and lava and layering of the Skaergaard intrusion. ]. Petrol. flows on young seamounts examined with a sub• 20, 487-554. mersible. Geol Soc. Am. Bull. 91, 545-54. Macdonald, G. A. 1967. Forms and structures of Loomis, B. F. 1948. Pictorial history of the Lassen extrusive basalt rocks. In The Poldervaart Treatise on 500 REFERENCES

rocks of basaltic composltlon, H. H. Hess and A. Marsh, B. D. 1981. On the crystallinity, probability of Poldervaart (eds) , Vol. 1, 1-61. New York: occurrence, and rheology of lava and magma. Interscience. Contrib. Mineral. Petrol. 78, 85-98. Macdonald, G. A. 1968. Composition and origin of Marshall, P. 1935. Acid rocks of the Taupo-Rotorua Hawaiian lavas. Geol Soc. Am. Bull. 116, 477-522. volcanic district. Trans. R. Soc. N.Z. 64, 323-66. Macdonald, G. A. 1972. Volcanoes. Englewood Cliffs, Martin, D. P. and W. I. Rose Jr 1981. Behavioural New Jersey: Prentice-Hall. patterns of Fuego volcano, Guatemala. J. Volcanol. Macdonald, G. A. and A. T. Abbott 1979. Volcanoes in Geotherm. Res. 10, 67-81. the sea - the geology of Hawaii. Honolulu: University Mathews, W. H. 1947. 'Tuyas.' Flat topped volcanoes Press of Hawaii. in northern British Columbia. Am. J. Sci. 245, Macdonald, G. A. and A. Alcaraz 1956. Nuees ardentes 560-70. of the 1948-1953 eruption of Hibok-Hibok. Bull. Mathisen, M. E. and C. F. Vondra 1983. The fluvial Volcanol. 18, 169-78. and pyroclastic deposits of the Cagayan Basin, Macdonald, K. C. 1982. Mid-ocean ridges: fine-scale northern Luzon, Philippines - an example of non-. tectonic, volcanic and hydrothermal processes within marine volcaniclastic sedimentation in an interarc the plate boundary zone. A. Rev. Earth Planet. Sci. basin. Sedimentology 30, 369-92. 10, 155-90. Mattson, P. H. and W. Alvarez 1973. Base surge Macdonald, K. C. and B. P. Luyendyk 1977. Deep-tow deposits in Pleistocene volcanic ash near Rome. Bull. studies of the structure of the mid-Atlantic Ridge Volcanol. 37, 553-72. crest near Lat. 37°N. Geol Soc. Am. Bull. 88, Menard, H. W. 1964. Marine geology of the Pacific. New 621-36. York: McGraw-Hill. McDougall, I. 1974. Potassium argon ages from lavas of Menard, H. W. 1969. Growth of drifting volcanoes. J. the Hawaiian Islands. Geol Soc. Am. Bull. 75, Geophys. Res. 74, 4827-37. 107-28. Miall, A. D. (ed.) 1978. Fluvial sedimentology. Can. Soc. McGeary, S., A. Nur and Z. Ben-Avraham 1985. Petrol. Geol. Mem., no. 5. Spatial gaps in arc volcanism: the effect of collision Michel, R. 1948. Etude geologique du plateau de or subduction of oceanic plateaus. Tectonophysics 119, Gergoria. Rev. Sci. Nat. Auvergne 14, 1-68. 195-221. Michel-Levy, A. 1890. Compte rendu de l'excursion du McGetchin, T. R. and M. Settle 1975. Cinder cone 16 Septembre a Gergorie et Veyre-Monton. Bull. separation distances: implications for the depth of Soc. Geol. Fr. 18, 891-7. formation of gabbroic xenoliths. EOS 56, 1070. Middleton, G. V. 1966. Experiments on density and McGetchin, T. R. and W. G. Ullrich 1973. Xenoliths in turbidity currents, I. Can. J. Earth Sci. 3, 523-46. maars and diatremes with inferences for the , Middleton, G. V. and M. A. Hampton 1976. Sub• Mars and Venus. J. Geophys. Res. 78, 1833-53. aqueous sediment transport and deposition by sedi• McGetchin, T. R., M. Settle and B. H. Chouet 1974. ment gravity flows. In Marine sediment transport and Cinder cone growth modeled after Northeast crater, environmental management, D. J. Stanley and Mt. Etna, Sicily. J. Geophys. Res. 79, 3257-72. D. J. P. Swift (eds), 197-218. New York: Wiley. MacKenzie, W. S., C. H. Donaldson and C. Guilford Middleton, G. V. and J. B. Southard 1978. Mechanics of 1982. Atlas of igneous rocks and their textures. London: sediment movement. SEPM (Eastern Section) short Longman. course, no. 3. Macpherson, D. W. 1984. A model for predicting the Miller, T. P. and R. L. Smith 1977. Spectacular volumes of vesicles in submarine basalts. J. Geol. 92, mobility of ash flows around Aniakchak and Fisher 73-82. Calderas, Alaska. Geology 5, 173-6. Macpherson, G. J. 1983. The Snow Mountain Volcanic Mills, H. H. 1976. Estimated erosion rates on Mount Complex: an on-land seamount in the Franciscan Rainier, Washington. Geology 4, 401-6. terrain, California. J. Geol. 91, 73-92. Minakami, T. 1950. On explosive activities of andesitic McPhie, J. 1983. Outflow ignimbrite sheets from Late volcanoes and their forerunning phenomena. Bull. Carboniferous calderas, Currabubula Formation, New Volcanol. 10, 59-87. South Wales, Australia. Geol Mag. 120, 487-503. Minakami, T., T. Ishikawa and K. Yagi 1951. The 1944 McTaggart, K. C. 1960. The mobility of nuees eruption of Volcano Usu in Hokkaido, Japan. Bull. ardentes. Am. J. Sci. 258, 369-82. Volcanol. 11, 45-160. Mahood, G. A. 1980. Geological evolution of a Pleisto• Mitchell,' A. H. G. 1970. Facies of an early Miocene cene Rhyolite Center - Sierra La Primavera, Jalisco, , Malekula Island, New Hebrides. Mexico. J. Volcanol. Geotherm. Res. 8, 199-230. Sedimentology 14, 201-43. Mahood, G. A. and W. Hildreth 1983. Nested Miyashiro, A. 1972. Metamorphism and related calderas and trapdoor uplift at Pantelleria, Strait of magmatism in plate tectonics. Am. J. Sci. 272, Sicily. Geology II, 722-726. 629-56. REFERENCES 501

Miyashiro, A. 1974. Volcanic rock series in island arcs ophiolites. Rev. Geophys. Space Phys. 20, 735-60. and active continental margins. Am. ]. Sci. 274, Morton, B. R., G. Taylor and l S. Turner 1956. 321-55. Turbulent gravitational convection from maintained Moberly, R., G. L. Shepherd and W. T. Coulbourn and instantaneous sources. Proc. R. Soc. Land. (AJ 1982. Forearc and other basins, continental margin 234, 1-23. of northern and southern Peru and adjacent Ecuador Mullineaux, D. R. and D. R. Crandell 1962. Recent and Chile. In Leggett (1982), 171-89. lahars from Mount St. Helens, Washington. Geol Mohr, P. 1983. Ethiopian flood basalt province. Nature Soc. Am. Bull. 73, 855-70. 303, 577-84. Murai, 1. 1961. A study of the textural characteristics of Mohr, P. A. and C. A. Wood 1976. Volcano spacings pyroclastic flow deposits in Japan. Bull. Earthq. Res. and lithospheric attenuation in the Eastern Rift of Inst. 39, 133-254. Africa. Earth Planet. Sci. Letts. 33, 126-44. Murase, T. 1962. Viscosity and related properties of Moore, D. G. 1978. Submarine slides. In Voight volcanic rocks at 800° to 1400°C. Hokkaido Univ. (1978), 563--604. Fac. Sci. ]., Ser. 7 1, 487-584. Moore, G. F. and D. E. Karig, 1980. Structural geology Murase, T. and A. R. McBirney 1973. Properties of of Nias Island, Indonesia: implications for subduc• some common igneous rocks and their melts at high tion zone tectonics. Am. ]. Sci. 280, 193-223. temperatures. Geol Soc. Am. Bull. 84, 3563-92. Moore, J. c., J. S. Watkins, T. H. Shipley, S. B. Murata, K. J., c. Dondoli and R. Saenz 1966. The Bachman, F. W. Beghtel, A. Butt, B. M. Didyk, 1963--65 eruption of Irazu volcano Costa Rica. (The l K. Leggett, N. Lundberg, K. l McMillen, N. period from March 1963-0ctober 1964.) Bull. Niitsuma, L. E. Shephard, l-F. Stephan and H. Volcanol. 29, 765-96. Stradner 1979. Progressive accretion in the Middle Mutti, E. 1965. Submarine flood tuffs (ignimbrites) America Trench, southern Mexico. Nature 281, associated with turbidites in Oligocene deposits of 638-42. Rhodes Island (Greece). Sedimentology 5, 265-88. Moore, J. G. 1964. Giant submarine on the Mutti, E. and F. Ricci Lucchi 1978. Turbidites of the Hawaiian ridge, 95-8. US Geol Surv. Res. Pap., Northern Apennines. Int. Geol Rev. 20, 125--66. SOl-D. Mysen, B. O. 1977. The solubility of H20 and CO 2 Moore, J. G. 1966. Rate of palagonitisation of submarine under predicted magma genesis conditions and some basalt adjacent to Hawaii, D163-7l. US Geol Surv. petrological and geophysical implications. Rev. Prof. Pap., no. 550-D. Geophys. Space Phys. 15, 351-6l. Moore, l G. 1967. Base surge in recent volcanic Mysen, B. 0., D. Virgo and F. A. Seifert 1982. The eruptions. Bull. Volcanol. 30, 337-63. structure of silicate melts: implications for chemical Moore, l G. 1975. Mechanism of formation of pillow and physical properties of natural magma. Rev. lava. Am. Sci. 63,269-77. Geophys. Space Phys. 20, 353-83. Moore, l G. and R. S. Fiske 1969. Volcanic substruc• ture inferred from dredge samples and ocean bottom Naeser, C. W., N. D. Briggs, J. D. Obradovich and photographs, Hawaii. Geol Soc. Am. Bull. 80, G. A. Izett 1981. Geochronology of Quaternary 1191-202. tephra deposits. In Self & Sparks (1981), 13-47. Moore, J. G. and W. G. Melson 1969. Nuees ardentes Nairn, 1. A. 1972. Rotoehu Ash and the Rotoiti Breccia of the 1968 eruption of Volcano, Philippines. formation, Taupo volcanic zone, New Zealand. N.2. Bull. Volcanol. 33, 600-20. ]. Geo!. Geophys. 15,251-61. Moore, J. G. and D. L. Peck 1962. Accretionary lapilli Nairn, 1. A. 1976. Atmospheric shock waves and in volcanic rocks of the western United States. ]. condensation clouds from Ngauruhoe explosive erup• Geol. 70, 182-93. tions. Nature 259, 190-2. Moore, l G. and T. W. Sisson 1981. Deposits and Nairn, 1. A. 1979. Rotomahana- Waimangu eruption effects of the May 18 . In Lipman & 1886: base surge and basalt magma. N.Z. ]. Geo!. Mullineaux (1981), 421-38. Geophys. 22, 363-78. Moore, J. G., K. Nakamura and A. Alcaraz 1966. The Nairn, 1. A. 1981. Some studies of the geology, volcanic 1965 eruption of Taal volcano. Science 155, 955-60. history and geothermal resources of the Okataina Moore, l G., R. L. Phillips, R. W. Grigg, D. W. volcanic centre, Taupo volcanic zone, New Zealand. Peterson and D. A. Swanson 1973. Flow of lava into Unpub!. Ph.D. thesis, Victoria University. the sea, 1969-71, Kilauea volcano, Hawaii. Geol Soc. Nairn, 1. A. and S. Self 1978. Explosive eruptions and Am. Bull. 84, 537-46. pyroclastic avalanches from Ngauruhoe in February Moorhouse, W. W. 1970. A comparative atlas of 1975.]. Volcanol. Geotherm. Res. 3, 39--60. textures of Archean and younger volcanic rocks. Geo!. Nairn, 1. A. and S. Wiradiradja 1980. Late Quaternary Assoc. Can. Spec. Pap., no. 8. hydrothermal explosion breccias at Kawerau geo• Moores, E. M. 1982. Origin and emplacement of thermal field, New Zealand. Bull. Volcanol. 43, 1-14. 502 REFERENCES

Nairn, I. A., C. P. Wood and C. A. Y. Hewson 1979. Ninkovich, D. and B. C. Heezen 1965. Santorini Phreatic eruptions of Ruapehu: April 1975. N.Z. J. tephra. In: Submarine geology and geophysics, W. F. Geol. Geophys. 22, 155-73. Whittand and R. Bradshaw (eds), 413-53. Proc. 17th Nakamura, K. 1962. Volcano-stratigraphic study of Symp. Colston Res. Soc. London: Butterworths. Oshima volcano, Izu. Bull. Earthq. Res. Inst. Univ. Ninkovich, D. and N. J. Shackleton 1975. Distribution, Tokyo. 42, 649-728. stratigraphic position and age of ash layer 'L', in the Nakamura, K. 1977. Volcanoes as possible indicators of Panama Basin region. Earth Planet. Sci. Lett. 27, tectonics stress orientation - principle and proposal. 20-34. J. Volcanol. Geothenn. Res. 2, 1-16. Ninkovich, D., R. S. J. Sparks and M. J. Ledbetter Nakamura, Y. 1978. Geology and petrology of Bandai 1978. The exceptional magnitude and intensity of the and Nekoma volcanoes. Tohuku Univ. Sci. Rep., Ser. Toba eruption, Sumatra: an example of the use of 3 14,67-119. deep-sea tephra layers as a geological tool. Bull. Naldrett, A. K. and A. J. Macdonald 1980. Tectonic Volcanol. 41, 286-98. settings of Ni-Cu sulphide ores: their importance in Ninkovich, D., N. D. Opdyke, B. C. Heezen and J. H. genesis and exploration. In D. W. Strangway (ed.), Foster 1966. Paleomagnetic stratigraphy, rates of 631-57. deposition and tephro-chronology in the North Nardin, T. R., F. J. Hein, D. S. Gorsline and B. D. Pacific deep-sea sediments. Earth Planet. Sci. Lett. 1, Edwards 1979. A review of mass movement pro• 476-92. cesses, sediment and acoustic characteristics, and Nixon, G. T. 1982. The relationship between Quater• contrasts in slope and base-of-slope systems versus nary volcanism in central Mexico and the seismicity canyon-fan-basin floor systems. In Doyle & Pilkey and structure of subducted ocean lithosphere. Geol (1979), 61-73. Soc. Am. Bull. 93,514-23. Nathan, S. (ed.) 1976. Volcanic and geothermal geology Noble, D. C. 1967. Sodium, potassium and ferrous iron of the central North Island, New Zealand. 25th Int. contents of some secondarily hydrated natural silicic Geol. Congr. Excurs. Guide 55A & 56C. glasses. Am. Mineral. 52, 230-85. Neall, V. E. 1979. Sheets P19, P20 and P21 New Noble, D. c., E. H. Mckee, E. Farrer and U. Petersen Plymouth, Egmont and Manaia (lst ed). Geological 1974. Episodic Cenozoic volcanism and tectonism in Map of New Zealand 1 : 500,000. 3 maps and notes Andes of Peru. Earth & Planet. Sci. Letts. 21, (36 pp.). Wellington: N.Z. Dept Sci. Ind. Res. 213-20. Nelson, S. A. 1981. The possible role of thermal Nur, A. and Z. Ben-Avraham 1983. Volcanic gaps due feedback in the eruption of siliceous magmas. ]. to oblique consumption of aseimic ridges. Tectono• Volcanol. Geothenn. Res. 11, 127-37. physics 99, 355-62. Nelson, S. A. and I. S. E. Carmichael 1979. Partial molar volumes of oxide components in silicate O'Hara, M. J. and R. E. Matthews 1981. Geochemical liquids. Contrib. Miner. Petrol. 71, 117-24. evolution in an advancing, periodically replenished, Nesbitt, R. W., J. Bor-ming and A. C. Purvis 1982. periodically tapped, continuously fractionated Komatiites: an early Precambrian phenomenon. ]. magma chamber.]. Geol Soc. Lond. 138, 237-77. Volcanol. Geothenn. Res. 14, 31-45. Ohmoto, H. 1978. Submarine calderas: a key to the Neumann, E. R. and I. B. Ramberg (eds) 1977. formation of volcanogenic massive sulphide deposits? Petrology and geochemistry of continental rifts. Holland: Mining Geol. (Jap) 28, 219-31. D. Reidel. Ohmoto, H. and B. J. Skinner (eds) 1983. The Kuroko Neumann van Padang, M. 1933. De uitbarsting van den and related volcanogenic massive sulphide deposits. Merapi (Midden Java) in de jaren 1930-31. Ned. Econ. Geol. Mon. 5. Indes. Dienst Mijnbouwk. Vulkan. Seism. Mededel., Ohmoto, H. and T. Takahashi 1983. Geologic setting of no. 12. the Kuroko deposits, Japan. III Submarine calderas Newhall, C. G. and W. G. Melson 1983. Explosive and Kuroko genesis. In Ohmoto & Skinner (1983), activity associated with the growth of volcanic 39-54. domes. J. Volcanol. Geothenn. Res. 17, 111-31. OIlier, C. D. 1967a. Maars, their characteristics, Newmark, R. L., R. N. Anderson, D. Moos and M. D. varieties and definition. Bull. Volcanol. 31, 45-73. Zoback 1985. Structure, porosity and stress regime Ollier, C. D. 1967b. Landforms of the Newer Volcanic of the upper oceanic crust: sonic and ultrasonic logging Province of Victoria. In Landfann studies from of DSDP Hole 504B. Tectonophysics 118, 1-42. Australia and New Guinea. J. N. Jennings and J. A. Niem, A. R. 1977. Mississippian pyroclastic flow and Mabbutt (eds), 315-39. Canberra: Aust. Natn. Univ. ash-fall deposits in the deep-marine Ouachita flysch Press. basin, Oklahoma and Arkansas. Geol Soc. Am. Bull. Ollier, C. D. 1969. Volcanoes. Canberra: Australian 88, 49-61. National University Press. REFERENCES 503

Oilier, C. D. and M. C. Brown 1965. Lava caves of of terrestrial volcanoes and a catalog of topographic Victoria. Bull. Volcanol. 28, 215-29. dimensions with new results on edifice volume. US Geol Oilier, C. D. and E. B. Joyce 1964. Volcanic physio• Surv. Open File Rep., OF 81-1038. graphy of the Western Plains of Victoria. Proc. R. Pilger, R. H. 1982. The origin of traces: Soc. Victoria 77, 357-766. evidence from eastern Australia. J. Geophys. Res. Orsi, G. and M. F. Sheridan 1986, The Green Tuff of 37(B3), 1825-34. Pantelleria; an example of rheoignimbrite. (abstr.). Pinkerton, H. and R. S. J. Sparks 1976. The 1975 sub• Abstr. IA VGEI Int. Volcanol. Gong, New Zealand. terminal lavas, Mount Etna: a case history of the formation of a compound lava field. J. Volcanol. Packham, G. H. 1968. The Lower and Middle Geotherm. Res. I, 167-82. Palaeozoic stratigraphy and sedimentary tectonics of Pinkerton, H. and R. S. J. Sparks 1978. Field measure• the Sofala-Hill End-Euchareena region N.S.W. ments of the rheology of lava. Nature 276, 383-6. Proc. Linn. Soc. N.S.W. 93, 111-63. Pirrson, L. V. 1915. The microscopical characters of Pantin, H. M. and A. R. Duncan 1969. Evidence for volcanic tuffs - a study for students. Am. J. Sci. submarine geothermal activity in the Bay of Plenty. (4th Ser.) 40, 191-211. N.Z. J. Marine Freshwater Res. 3, 473-505. Plafker, G. and G. E. Ericksen 1978. Nevados Parsons, W. H. 1969. Criteria for the recognition of Huascanin avalanches, Peru. In Voight (1978), volcanic breccias: Review. Geol Soc. Am. Mem. 115, 277-314. 263-304. Porter, S. C. 1972. Distribution, morphology and size Paton, T. R. 1978. The formation of soil material. frequency of cinder cones on Mauna Kea volcano, London: Allen & Unwin. Hawaii. Geol Soc. Am. Bull. 83, 3607-12. Peacock, M. A. and R. R. Fuller 1928. Chlorophaeite, Porter, S. C. 1973. Stratigraphy and chronology of Late sideromelane and palagonite from the Columbia Quaternary tephra along the south rift zone of Mauna River Plateau. Am. Mineral. 13, 360--83. Kea volcano, Hawaii. Geol Soc. Am. Bull. 84, Pearce, J. A. and J. R. Cann 1973. Tectonic setting of 1923-40. basic volcanic rocks determined using trace element Porter, S. C. 1979. Quaternary stratigraphy and chrono• analyses. Earth Planet. Sci. Lett. 19, 290--300. logy of Mauna Kea volcano, Hawaii: 38,000 yr. Peckover, R. S., D. J. Buchanan and D. Ashby 1973. record of mid-Pacific volcanism and ice-cap glacia• Fuel-coolant interactions in submarine vulcanism. tion. Geol Soc. Am. Bull. 90,609-11. Nature 245, 307-8. Postma, G. 1983. Water escape structures in the Penrose Conference 1972. Ophiolites. Geotimes 12, context of a depositional model of a mass flow domi• 24-5. nated conglomeratic fan-delta (Abrioja Formation Perret, F. A. 1937. The eruption of Mt. Pelie 1929-1932. Pliocene, Almeria Basin, SE Spain). Sedimentology Carnegie Inst. Washington Publn, no. 458. 30, 91-103. Peterson, D. W. and D. A. Swanson 1974. Observed Potter, P. E. and F. J. Pettijohn 1963. Atlas and glossary formation of lava tubes during 1970--71 at Kilauea of sedimentary structures. Berlin: Springer. volcano, Hawaii. Stud. Speleol. 2, 209-23. Press, F. and R. Siever 1978. Earth. New York: W. H. Peterson, D. W. and R. I. Tilling 1980. Transition of Freeman. basaltic lava from pahoehoe to aa, Kilauea volcano, Pyke, D. R., A. J. Naldrett and O. R. Ecktrand 1973. Hawaii: field observations and key factors. J. Archaean ultramafic flows in Munro Township, Volcanol. Geotherm. Res. 7, 271-93. Ontario. Geol Soc. Am. Bull. 84, 955-78. Pettijohn, F. J. 1975. Sedimentary rocks. New York: Harper & Row. Raam, A. 1968. Petrology and diagenesis of Broughton Pettijohn, F. J., P. E. Potter and R. Siever 1972. Sand Sandstone (Permian), Kiama district, New South and sandstones. New York: Springer. Wales. J. Sed. Petrol. 38, 319-31. Phillips, W. J. 1972. Hydraulic fracturing and mineral• Ragan, D. H. and M. F. Sheridan 1972. Compaction of isation. J. Geol Soc. Lond. 128, 337-59. the , California. Geol Soc. Am. Bull. 83, Pichler, H. 1965. Acid hyaloclastites. Bull. Volcanol. 28, 95-106. 293-310. Ramberg, I. B. and E. R. Neumann (eds) 1978. Pichler, H. and W. L. Friedrich 1980. Mechanism of Tectonics and geophysics of continental rifts, Part 2. the Minoan eruption of Santorini. In Doumas (1980), Dortrecht: Reidel. 15-30. Rampino, M. R., S. Self and R. W. Fairbridge 1979. Pichler, H. and S. Kussmaul 1980. Comments on the Can rapid climatic change cause volcanic eruptions? geological map of the Santorini Islands. In Doumas Science 206, 826--9. (1980), Vol. II, 413-27. Ramsay, J. G. 1967. Folding and fracturing of rocks. New Pike, R. J. and G. D. Clow 1981. Revised classification York: McGraw-Hill. 504 REFERENCES

Raymond, C. F. 1978. Mechanics of glacier movement. Middle Precambrian (Alphebian) Belcher Group, In Voight (1978), 793-833. Northwest Territories. Can. ]. Earth Sci. 19, Rea, W. J. 1974. The volcanic geology and petrology of 1275-94. , West Indies. ]. Geol Soc. Lond. 130, Ridge, J. D. 1973. Volcanic exhalations and ore deposi• 341-66. tion in the vicinity of the sea floor. M ineralium Reading, H. G. (ed.) 1978. Sedimentary environments Deposita 8, 332-48. and facies. Oxford: Blackwell Scientific. Riehle, J. R. 1973. Calculated compaction profiles of Reynolds, D. L. 1954. Fluidisation as a geological rhyolitic ash-flow tuffs. Geol Soc. Am. Bull. 84, process and its bearing on the problems of intrusive 2193-216. granites. Am. J. Sci. 252, 577-613. Rittmann, A. 1962. Volcanoes and their activity. New Reynolds, M. A. and J. G. Best 1976. Summary of York: Wiley. 1953-57 eruption of Tuluman volcano, Papua New Roberts, B. and A. W. B. Siddans 1971. Fabric studies Guinea. In Volcanism in Australasia, R. W. Johnson in the Llwyd Mawr ignimbrite, Caernarvonshire, (ed.), 287-96. Amsterdam: Elsevier. North Wales. Tectonophysics 12, 281-306. Reynolds, M. A., J. G. Best and R. W. Johnson 1980. Roberts, R. J. and D. W. Peterson 1961. Suggested 1953-57 eruption of Tuluman volcano: rhyolitic magmatic differences between welded 'ash' tuffs and volcanic activity in the northern Bismarck Sea. Geol welded crystal tuffs, Arizona and Nevada, D73-9. US Surv. Papua New Guinea Mem. 7. Geol Surv. Prof. Pap., no. 424--D. Rhodes, R. C. and E. I. Smith 1972. Distribution and Robson, G. R. 1967. Thickness of Etnean lavas. Nature directional fabric of ash-flow sheets in the north• 216, 251-2. western Mogollon Plateau, New Mexico. Geol Soc. Rodine, D. A. and A. M. Johnson 1976. The ability of Am. Bull. 83, 1863-8. debris, heavily freighted with coarse clastic materials, Richards, A. F. 1958. Trans-Pacific distribution of to flow on gentle slopes. Sedimentology 23, 213-34. floating pumice from Isla San Benedicto, Mexico. Rodolfo, K. S. 1969. Bathymetry and marine geology of Deep-Sea Res. 5, 29-35. the Andaman Basin, and tectonic implications for Richards, A. F. 1959. Geology of the Islas Revillagidedo, Southeast Asia. Geol Soc. Am. Bull. 80, 1203-30. Mexico, 1. Birth and development of Volcan Rona, P. A. 1984. Hydrothermal mineralisation at Barcena, Isla San Benedicto (1). Bull. Volcanol. 22, seafloor spreading centers. Earth Sci. Rev. 20, 1-104. 73-123. Roobol, M. J. 1976. Post-eruptive mechanical sorting of Richards, A. F. 1965. Geology of the Islas Revillagidedo, pyroclastic material - an example from Jamaica. 3. Effects of erosion on Isla San Benedicto 1952-61 Geol Mag. 113, 429-40. following the birth of Volcan Barcena. Bull. Volcanol. Roobol, M. J. and A. L. Smith 1976. Mount Pelee, 28, 381-403. Martinique: a pattern of alternating eruptive styles. Richardson, S. 1978. The geology of southern Lipari, with Geology 4, 521-4. particular reference to the rhyolite tholoids in the extreme Roobol, M. ]., J. V. Wright and A. L. Smith 1983. south of the island. Unpub!. B.Sc. thesis, University Gravity slides or calderas in the Lesser Antilles island of Leeds. arc?]. Volcanol. Geotherm. Res. 14, 121-l34. Richet, P., Y. Bottinga, L. Denielou, J. P. Petitet and Roobol, M. J., A. L. Smith and J. V. Wright 1985. C. Tequi 1982. Thermodynamic properties of Dispersal and characteristics of pyroclastic fall quartz, cristobalite and amorphous Si02: drop calori• deposits from Mt. Misery volcano, West Indes. Geol. metry measurements between 1000 and 1800 K and a Rundsch. 74, 321-335. review from 0 to 2000 K. Geochim. Cosmochim. Acta Rose, W. I., Jr 1972a. Santiaguito volcanic dome, 46, 2639-58. Guatemala. Geol Soc. Am. Bull. 83, 1413-34. Richter, D. H., J. P. Eaton, K. J. Murata, W. U. Ault Rose, W. I., Jr 1972b. Notes on the 1902 eruption of and H. J. Krivoy 1970. Chronological narrative of the Santa Maria volcano, Guatemala. Bull. Volcanol. 36, 1959--60 eruption of Kilauea volcano, Hawaii. US Geol 29-45. Surv. Prof. Pap., No. 537. Rose, W. I., Jr, S. Bonis, R. E. Stoiber, M. Keller and Rickard, M. J. 1984. Pluton spacing and the thickness T. Bickford 1973. Studies of volcanic ash from two of crustal layers in Baja, California. Tectonophysics recent Central American eruptions. Bull. Volcanol. 101, 167-72. 37, 338-64. Rickard, M. J. and P. Ward 1981. Palaeozoic crustal Rose, W. I., Jr, T. Pearson and S. Bonis 1977. Nuee thickness in the southern part of the Lachlan Orogen ardente eruption from the foot of a lava flow, deduced from volcano and pluton-spacing geometry. Santiaguito volcano, Guatemala. Bull. Volcanol. 40, ]. Geol Soc. Aust. 28, 19-32. 1-16. Ricketts, B. D., M. J. Ware and J. A. Donaldson 1982. Rose, W. I., Jr. A. T. Anderson, Jr, L. G. Woodruff Volcaniclastic rocks and volcaniclastic facies in the and S. B. Bonis 1978. The October 1974 basaltic REFERENCES 50S

tephra from Fuego volcano: description and history of Washington. Geol Soc. Am. Bull. 78, 1385-1422. the magma body. J. Volcanol. Geothenn. Res. 4, Schmincke, H.-U. 1974. Volcanological aspects of 3-53. peralkaline silicic welded ash-flows tuffs. Bull. Rosi, M., A. Sbiana and C. Principe 1983. The Volcanol. 38, 594-636. Phlegrean Fields: structural evolution, volcanic Schmincke, H.-U. 1977. Phreatomagmatische Phasen in history and eruptive mechanisms. J. Volcanol. quartaren Vulkanen der Osteifel. Geol. Jahrb. (A) Geothenn. Res. 17,273-88. 39, 3-45. Rosner, D. R. and M. Epstein 1972. Effects of interface Schmincke, H.-U. and D. A. Swanson 1967. Laminar kinetics, capillarity and solute diffusion on bubble viscous flowage structures in ash-flow tuffs from growth rates in highly supersaturated liquids. Chem. Gran Canaria, Canary Islands. J. Geol. 75, 641-64. Engng Sci. 27,69-88. Schmincke, H.-U., R. V. Fisher and A. C. Waters Ross, G. S. and R. L. Smith 1961. Ash-flow tuffs, their 1973. Antidune and chute and pool structures in base origin, geological relations and identification. US Geol surge deposits of the Laacher See area, Germany. Surv. Prof. Pap., no. 366. Sedimentology 20, 553-74. Rowley, P. D., M. A. Kuntz and N. S. MacLeod 1981. Schmincke, H.-U. et al. 1979. Basaltic hyalocHlstites Pyroclastic flow deposits. In Lipman & Mullineaux from Hole 396 B, DSDP Leg 46. In Initial reports of (1981),489-512. the Deep-Sea Drilling Project 46,341-56. Washington, Rundle, J. B. and J. C. Eichelberger 1983. Continental DC: US Government Printing Office. scientific drilling at Long Valley-Mono Craters. EOS Scholz, C. H., M. Barazangi and M. Sbar 1971. Late 64, 12-5. Cenozoic evolution of the Great Basin, western Ryerson, F. J. and P. C. Hess 1980. The role of P20 S United States, as an en sialic interarc basin. Geol Soc. in silicate melts. Geochim. Cosmochim. Acta 44, Am. Bull. 82, 2979-90. 611-24. Scholze, H. V. and H. O. Mulfinger 1959. Der Einbau des Wassers in Glasern, V. Die Diffusion des Sadler, P. M. 1981. Sediment accumulation rates and Wassers in Glasen bei hohen Temperaturen. Glastech. the completeness of stratigraphic sections. J. Geol. Ber. 3, 381-6. 89, 569-84. Sclater, J. G., J. W. Hawkins, J. Mammerickx and Sample, J. c. and D. E. Karig 1982. A volcanic C. G. Chase 1972. Crustal extension between the production rate for the Mariana island arc. J. Tonga and Lau Ridges: petrologic and geophysical Volcanol. Geothenn. Res. 13, 73-82. evidence. Geol Soc. Am. Bull. 83, 505-18. Sangster, D. F. 1972. Precambrian volcanogenic massive Scott, R. B. 1971. Alkali exchange during devitrification sulphide deposits in Canada: a review. Geol Surv. Can. and hydration of glasses in ignimbrite cooling units. Pap. 72-82. J. Geol. 79, 100-9. Sarna-Wojcicki, A. M., S. Shipley, R. B. Waitt, Jr, D. Scrope, G. P. 1858. The geology of extinct volcanoes of Dzurisin and S. H. Wood 1981. Areal distribution central France. London: John Murray. thickness, mass, volume, and grain-size of air-fall ash Searle, R. C. 1983. Submarine central volcanoes on the from the six major eruptions of 1980. In Lipman & Nazca Plate - high resolution sonar observations. Mullineaux (1981),577-600. Mar. Geol. 53, 77-102. Sato, T. 1977. Kuroko deposits: their geology, geo• Searle, R. 1984. GLORIA survey of the East Pacific chemistry and origin. In Volcanic processes in ore Rise near 3.5 S: tectonic and volcanic characteristics genesis, 153-61. Geol Soc. Lond. Spec. Publn, no. 7. of a fast spreading mid-ocean rise. Tectonophysics Scandone, R. 1979. Effusion rate and energy balance of 101, 319-44. Paricutin eruption (1943-1952), Michoacan, Mexico. Searle, R. C. and A. S. Laughton 1981. Fine-scale J. Volcanol. Geothenn. Res. 6, 49-59. sonar study of tectonics and volcanism on the Schmid, R. 1981. Descriptive nomenclature and classi• Reykjanes Ridge. In Geology of oceans, X. Le Pichon, fication of pyroclastic deposits and fragments: recom• J. Debyser and F. Vine (conveners), 5-13. mendations of the IUGS Subcommission on the Oceanologia Acta, 26th Int. Geol Congr., Symp. Systematics of Igneous Rocks. Geology 9, 41-3. No. C4. Schmincke, H.-U. 1967a. Fused tuff and peperites in Secor, D. T. 1969. Mechanics of natural extension of south-central Washington. Geol Soc. Am. Bull. 78, fracturing at depth in the earth's crust. In Research in 319-330. tectonics, A. J. Baer and D. K. Norris (eds) , 3-48. Schmincke, H.-U. 1967b. Graded lahars in the type Can. Geol Surv. Pap., 68-52. sections of the Ellensburg Formation, south-central Self, S. 1974. Explosive activity of Ngauruhoe, 27-30 Washington. J. Sed. Petrol. 37, 438-48. March, 1974. N.z. J. Geol. Geophys. 18, 189-95. Schmincke, H.-U. 1967c. Stratigraphy and petrography Self, S. 1976. The recent volcanology of Terceira, of four upper Yakima basalt flows in south-central Azores. J. Geol Soc. Lond. 132, 645-66. 506 REFERENCES

Self, S. 1983. Large-scale phreatomagmatic silicic Shepherd, J. B. and H. Sigurdsson 1982. Mechanism of volcanism: a case study from New Zealand. ]. the 1979 explosive eruption of Soufriere volcano, St. Volcanol. Geothenn. Res. 17,433-69. Vincent.]. Volcanol. Geothenn. Res. 13, 119-30. Self, S. and M. R. Rampino 1981. The 1883 eruption of Sheridan, M. F. 1970. Fumarolic mounds and ridges of Krakatau. Nature 294, 699-704. the Bishop Tuff, California. Geol Soc. Am. Bull. 81, Self, S. and R. S. J. Sparks 1978. Characteristics of 851-68. widespread pyroclastic deposits formed by the inter• Sheridan, M. F. 1979. Emplacement of pyroclastic action of silicic magma and water. Bull. Volcanol. 41, flows: a review. In Chapin & Elston (1979), 125-36. 196-212. Sheridan, M. F. 1980. Pyroclastic block flow from the Self, S. and R. S. J. Sparks (eds) 1981. Tephra studies. September, 1976, eruption of La Soufriere volcano, Dordrecht: D. Reidel. Guadeloupe. Bull. Volcanol. 43, 397-402. Self, S. and J. V. Wright 1983. Large wave-forms from Sheridan, M. F. and J. R. Marshall 1983. Interpreta• the Fish Canyon Tuff, Colorado. Geology 11, 443-6. tion of pyroclast surface features using SEM images. Self, S., R. S. J. Sparks, B. Booth and G. P. L. Walker ]. Volcanol. Geothenn. Res. 16, 153-9. 1974. The 1973 Heimaey strombolian scoria Sheridan, M. F. and D. M. Ragan 1976. Compaction of deposit, Iceland. Geol Mag. Ill, 539-48. ash-flow tuffs. In Compaction of coarse-grained sedi• Self, S., L. Wilson and I. A. Nairn 1979. Vulcanian ments, G. V. Chilingarian and K. H. Wolf (eds), eruption mechanisms. Nature 277, 440-3. Developments in sedimentology, Vol. 18b, 677-713. Self, S., J. Kienle and J. P. Huot, 1980. Ukinrek Amsterdam: Elsevier. maars, Alaska, II. Deposits and formation of the Sheridan, M. F. and R. G. Updike 1975. Sugarloaf 1977 craters.]. Volcanol. Geothenn. Res. 7,39-65. Mountain tephra - a Pleistocene rhyolitic deposit of Self, S., M. R. Rampino and J. J. Barbera 1981. The base-surge origin in Northern Arizona. Geol Soc. possible effects of large 19th and 20th century Am. Bull. 86, 571-81. volcanic eruptions on zonal and hemispheric surface Sheridan, M. F. and K. H. Wohletz 1981. Hydro• temperatures.]. Volcanol. Geothenn. Res. 11,41-60. volcanic explosions: the systematics of water• Self, S., M. R. Rampino, M. S. Newton and J. A. pyroclast equilibration. Science 212, 1387-9. Wolff 1984. Volcanological study of the great Sheridan, M. F. and K. H. Wohletz 1983. Hydro• Tambora eruption of 1815. Geology 12, 659-63. volcanism: basic considerations and review. ]. Selley, R. C. 1978. Ancient sedimentary environments, Volcanol. Geothenn. Res. 17, 1-29. 2nd edn. London: Chapman & Hall. Sheridan, M. F., F. Barberi, M. Rose and R. Santacroce Selley, R. C. 1982. Introduction to sedimentology. 1981. A model for plinian eruptions of Vesuvius. London: Academic Press. Nature 289, 282-5. Settle, M. 1978. Volcanic eruption clouds and the Shiki, T. and Y. Misawa 1982. Forearc geological thermal output of explosive eruptions.]. Volcanol. structure of the Japanese Islands. In Leggett (1982), Geothenn. Res. 3, 309-24. 63-73. Shand, S. J. 1947. Eruptive rocks. London: Allen & Shreve, R. L. 1968. The Blackhawk landslide. Geol Soc. Unwin. Am. Spec. Pap., no. 108. Shaw, H. R. 1963. Obsidian -H20 viscosities at 1000 Siebert, L. 1984. Large volcanic debris avalanches: and 2000 bars in the temperature range 700° to characteristics of source areas, deposits and asso• 900°C. ]. Geophys. Res. 68, 6337-43. ciated eruptions. ]. Volcanol. Geothenn Res. 22, Shaw, H. R. 1969. Rheology of basalt in the melting 163-97. range. ]. Petrol. 10, 510-35. Sigurdsson, H. 1972. Partly-welded pyroclastic flow Shaw, H. R. 1972. Viscosities of magmatic silicate deposits in Dominica, Lesser Antilles. Bull. Volcanol. liquids: An empirical method of prediction. Am. ]. 36, 148-63. Sci. 272, 870-93. Sigurdsson, H. 1981. Geologic observations in the crater of Shaw, H. R. 1980. The fracture mechanisms of magma Soufriere volcano, St. Vincent. Univ. West Indies transport from the mantle to the surface. In Seismic Res. Unit Spec. Publn, 1981/1. Hargraves (1980), 201-54. Sigurdsson, H. 1982. Tephra from the 1979 Soufriere Shaw, H. R., D. L. Peck and A. R. Okamura 1968. explosive eruption. Science 216, 1106-8. The viscosity of basaltic magma: an analysis of field Sigurdsson, H., R. S. J. Sparks, S. Carey and T. C. measurements in Makaopuhi lava lake, Hawaii. Am. Huang 1980. Volcanogenic sedimentation in the ]. Sci. 266, 225-64. Lesser Antilles arc.]. Geol. 88, 523-40. Sheffield, C. 1981. Earth Watch: a survey of the world Sillitoe, R. H. 1973. The tops and bottoms of porphyry from space. London: Sidgwick & Jackson. copper deposits. Econ. Geol. 68, 799-815. Sheffield, C. 1983. Man on Earth: The marks of man: a Sillitoe, R. H., E. M. Baker and W. A. Brook 1984. survey from space. London: Sidgwick & Jackson. Gold deposits and hydrothermal eruption breccias REFERENCES 507

associated with a maar volcano at Wau, Papua New in their emplacement. Bull. Volcanol. 41, 1-9. Guinea. Bcon. Geol. 79, 638-55. Sparks, R. S. J. 1986. The dimensions and dynamics of Simkin, T., L. Siebert, L. McClelland, D. Bridge, C. volcanic eruption columns. Bull. Volcanol. 48, 3-15. Newhall and J. H. Latter 1981. Volcanoes of the Sparks, R. S. J. and S. Carey 1978. Subaqueous World. A regional directory gazetteer and chronology of deposits and structures formed by the entry of volcanism during the last 10,000 years. Smithsonian pyroclastic flows into the sea in the Lesser Antilles Institution. Stroudsbourg, Pennsylvania: Hutchinson arc. (abstr.). Abstr. with Programme Joint Meeting & Ross. GAC, MAC, GSA, Toronto. Simpson, J. E. 1972. Effects of the lower boundary on Sparks, R. S. J. and T. C. Huang 1980. The volcano• the head of a gravity current. ]. Fluid Mech. 53, logical significance of deep-sea ash layers associated 759-68. with ignimbrites. Geol Mag. 117,425-36. Smith, A. L. and M. J. Roobol 1982. Andesitic pyro• Sparks, R. S. J. and H. Pinkerton 1978. Effects of clastic flows. In Orogenic andesites, R. S. Thorpe degassing on rheology of basaltic magma. Nature (ed.), 415-33. New York: Wiley. 276, 385-6. Smith, 1. E. M. 1976. Peralkaline rhyolites from the Sparks, R. S. J. and G. P. L. Walker 1973. The ground D'Entrecastreux Islands, Papua New Guinea. In surge deposit: a third type of pyroclastic rock. Nature R. W. Johnson (1976), 275-85. Phys. Sci. 241, 62-4. Smith, 1. E. M. and R. W. Johnson 1981. Contrasting Sparks, R. S. J. and G. P. L. Walker 1977. The rhyolite suites in the late Cenozoic of Papua New significance of vitric-enriched air-fall ashes associated Guinea. J. Geophys. Res. 86, 10257-72. with crystal-enriched ignimbrites. J. Volcanol. Smith, R. B. 1978. Seismicity, crustal structure, and Geotherm. Res. 2, 329-4l. intraplate tectonics of the interior of the western Sparks, R. S. J. and C. J. N. Wilson 1983. Flow-head Cordillera. In R. B. Smith and G. P. Eaton (1978), deposits in ash turbidites. Geology 11, 348-51. 111-44. Sparks, R. S. J. and L. Wilson 1976. A model for the Smith, R. B. and G. P. Eaton (eds) 1978. Cenozoic formation of ignimbrite by gravitational column tectonics and regional geophysics of the western collapse. ]. Geol Soc. Lond. 132, 441-52. Cordillera. Geol Soc. Am. Mem., no. 152. Sparks, R. S. J. and L. Wilson 1982. Explosive volcanic Smith, R. L. 1960a. Ash-flows. Geol Soc. Am. Bull. 71, eruptions - V. Observations of plume dynamics 795-842. during the 1979 Soufriere· eruption, St. Vincent. Smith, R. L. 1960b. Zones and zonal variations in welded Geophys. ]. R. Astr. Soc. 69, 551-70. ash-flows, 149-59. US Geol Surv. Prof. Pap., Sparks, R. S. J. and J. V. Wright 1979. Welded air-fall no. 354-F. tuffs. In Chapin & Elston (1979), 155-66. Smith, R. L. 1979. Ash-flow magmatism. In Chapin & Sparks, R. S. J., J. G. Moore and C. J. Rice 1986 (in Elston (1979), 5-27. press). The initial giant umbrella cloud of the May Smith, R. L. and R. A. Bailey 1966. The Bandelier 18th, 1980, explosive eruption of Mount St Helens. Tuff, a study of ash-flow eruption cycles from zoned ]. Volcanol. Geotherm. Res. magma chambers. Bull. Volcanol. 29, 83-104. Sparks, R. S. J., H. Pinkerton and G. Hulme 1976. Smith, R. L. and R. A. Bailey 1968. Resurgent Classification and formation of lava levees on Mount cauldrons. In Coats et al. (1968), 153-210. Etna, Sicily. Geology 4, 269-71. Sorem, R. K. 1982. Volcanic ash clusters: tephra rafts Sparks, R. S. J., S. Self and G. P. L. Walker 1973. and scavengers. J. Volcanol. Geotherm. Res. 13, Products of ignimbrite eruptions. Geology 1, 115-8. 63-71. Sparks, R. S. J., H. Sigurdsson and L. Wilson 1977. Sourirajan, S. and G. C. Kennedy 1962. The system Magma mixing: a mechanism for triggering acid H20-NaCl at elevated temperatures and pressures. explosive eruptions. Nature 267, 315-8. Am. J. Sci. 260, 115-4l. Sparks, R. S. J., L. Wilson and G. Hulme 1978. Sparks, R. S. J. 1975. Stratigraphy and geology of the Theoretical modelling of the generation, movement ignimbrites of Vulsini volcano, Central Italy. Geol. and emplacement of pyroclastic flows by column Rundsch. 64, 497-523. collapse. J. Geophys. Res. 83, 1727-39. Sparks, R. S. J. 1976. Grain size variations in ignim• Sparks, R. S. J., H. Sigurdsson and S. N. Carey 1980a. brites and implications for the transport of pyro• The entrance of pyroclastic flows into the sea, I. clastic flows. Sedimentology 23, 147-88. Oceanographic and geologic evidence from Dominica, Sparks, R. S. J. 1978a. The dynamics of bubble Lesser Antilles.]. Volcanol. Geotherm. Res. 7, 87-96. formation and growth in magmas: a review and Sparks, R. S. J., H. Sigurdsson and S. N. Carey 1980b. analysis.]. Volcanol. Geotherm. Res. 3, 1-37. The entrance of pyroclastic flows into the sea, II. Sparks, R. S. J. 1978b. Gas release rates from pyro• Theoretical considerations on subaqueous emplace• clastic flows: an assessment of the role of fluidisation ment and welding. J. Volcanol. Geotherm. Res. 7, 97-105. 508 REFERENCES

Sparks, R. S. J., L. Wilson and H. Sigurdsson 1981. its environs. Developments in geotectonics, Vol. 3. The pyroclastic deposits of the 1875 eruption of Amsterdam: Elsevier. Askja, Iceland. Phil Trans R. Soc. Lond. (A) 299, Suthren, R. J. and H. Fumes 1980. Origin of some 241-73. bedded welded tuffs. Bull. Volcanol. 43, 61-71. Sparks, R. S. J., S. Brazier, T. C. Huang and D. Suzuki, K. and T. Ui 1982. Grain orientation and Muerdter 1983. Sedimentology of the Minoan deep• depositional ramps as flow direction indicators of a sea tephra layer in the Aegean and eastern large-scale pyroclastic flow deposit in Japan. Geology Mediterranean. Mar. Geol. 54, 131-67. 10, 429-33. Spence, C. D. and A. F. de Rosen-Spence 1975. The Suzuki, T., Y. Katsui and T. Nakamura 1973. Size place of sulphide mineralisation in the volcanic distribution of the Tarumai Ta-b pumice-fall deposit. sequence at Noranda, Quebec. Econ. Geol. 70, Bull. Volcanol. Soc. Jap. 18, 47-64. 90-101. Swanson, D. A. 1972. Magma supply rate of Kilauea Spencer, K. J. and D. H. Lindsley 1981. A solution volcano, 1952-1971. Science 175, 169-70. model for coexisting iron-titanium oxides. Am. Swanson, D. A. 1973. Pahoehoe flows from the 1969-71 Mineral. 66, 1189-201. Mauna Ulu eruption, Kilauea volcano, Hawaii. Geol Sporli, K. B. 1980. New Zealand and oblique-slip Soc. Am. Bull. 84, 815-26. margins: tectonic development up to and during Swanson, D. A. and T. L. Wright 1981. The regional the Cainozoic. In Ballance & Reading (1980), approach to studying the Columbia River Basalt 147-70. Group. In K. V. Subbarao and R. N. Sukheswala Spry, A. 1962. The origin of columnar Jomtmg (1981), 58-80. particularly in basalt flows. J. Geol. Soc. Aust. 8, Swanson, D. A., T. H. Wright and R. T. Helz 1975. 191-216. Linear vent systems and estimated rates of magma Stanton, W. I. 1960. The Lower Palaeozoic rocks of production and eruption for the Yakima basalt on the south-west Murrisk, Ireland. Q. J. Geol Soc. Lond. Columbia Plateau. Am. J. Sci. 275, 877-905. 116, 269-96. Steven, T. A. and P. W. Lipman 1976. Calderas of the Tamaki, K. 1985. Two modes of back arc spreading. San Juan volcanic field, south-western Colorado. US Geology 13, 475-8. Geol Surv. Prof. Pap., no. 958. Tanner, P. W. G., B. C. Storey and D. I. M. Stoiber, R. E. and W. I. Rose 1969. Recent volcanic Macdonald 1981. Geology of an Upper Jurassic• and fumarolic activity at Santiaguito volcano, Lower Cretaceous island-arc assemblage in Hauge Guatemala. Bull. Volcanol. 33, 475-502. Reef, the Pickersgill Islands and adjoining areas of Stolper, E. 1982. Water in silicate glasses: an infrared South Georgia. Br. Antarct. Surv. Bull. 53, 77-117. spectroscopic study. Contrib. Mineral. Petrol. 81, Tasse, N., J. Lajoie and E. Dimroth 1978. The anatomy 1-17. and interpretation of an Archaean volcaniclastic Stolper, E. and D. Walker 1980. Melt density and the sequence, Noranda region, Quebec. Can. J. Earth average composition of basalt. Contrib. Mineral. Sci. 15, 874-88. Petrol. 74, 7-12. Taylor, B. and G. D. Karner 1983. On the evolution of Storey, B. C. and D. I. M. Macdonald 1984. Processes marginal basins. Rev. Geophys. Space Phys. 21, of formation and filling of a Mesozoic back arc basin 1727-41. on the island of South Georgia. In Kokelaar & Taylor, G. A. 1958. The 1951 eruption of Mount Howells (1984), 207-17. Lamington, Papua. Aust. Bur. Miner. Resour. Geol. Stow, D. A. V. and J. P. B. Lovell 1979. Contourites: Geophys. Bull. 38, 1-117. their recognition in modern and ancient sediments. Thompson, B. N., L. O. Kermode and A. Ewart (eds) Earth-Sci. Rev. 14,251-91. 1965. New Zealand volcanology. Central Volcanic Strangway, D. W. (ed.) 1980. The continental crust and Region. N.Z. Dept Sci. Ind. Res. Info. Ser. 50. its mineral deposits. Geol Assoc. Can. Spec. Pap. Thompson, M. D. 1985. Evidence for a Late Pre• no. 20. cambrian caldera in Boston, Massachusetts. Geology Streckeisen, A. 1979. Classification and nomenclature of 13, 641-3. volcanic rocks, lamprophyres, carbonatites, and Thorarinsson, S. 1953. The crater groups in Iceland. melilitic rocks: recommendations and suggestions of Bull. Volcanol. 14, 3-44. the IUGS Subcommission on the Systematics of Thorarinsson, S. 1954. The eruption of 1947-1948. Igneous Rocks. Geology 7, 331-5. II, 3, The tephra-fall from Hekla on March 29th, 1947. Subbarao, K. V. and R. N. Sukheswala (eds) 1981. Visindafelag Islendinga. Reykjavik: Leiftur. Deccan volcanism and related basalt provinces in other Thorarinsson, S. 1967. Surtsey: The new island in the parts of the world. Geol. Soc. India Mem. 3. North Atlantic. New York: The Viking Press. Sugimura, A. and S. Uyeda 1973. Island arcs. Japan and Thorarinsson, S. 1968. On the rate of lava- and tephra REFERENCES 509

production and the upward migration of magmas in Uyeda, S. and H. Kanamori 1979. Back-arc opening four Icelandic eruptions. Geol. Rundsch. 57, 705-18. and the mode of subduction. ]. Geophys. Res. 84, Thorarinsson, S. 1969. The Lakagigar eruption of 1783. 1049-6l. Bull. Volcanol. 33,910-27. Thorarinsson, S. 1981. Tephra studies and tephro• van Bemmelen, R. W. 1949. The geology of Indonesia chronology: a historical review with special reference and adjacent archipelago. The Hague: Government to Iceland. In Self & Sparks (1981), 1-12. Printing Office. Thorarinsson, S. and G. Sigvaldason 1962. The erup• van Bemmelen, R. W. 1961. Volcanology and geology tion in Askja, 1961. A preliminary report. Am. J. of ignimbrites in Indonesia, North Italy and U.S.A. Sci. 260, 641-51. Geol. Mijnbouw 40, 399-41l. Thorarinsson, S., T. Einarsson, G. E. Sigvaldason and van Bemmelen, R. W. 1974. Driving forces of orogeny, G. Ellison 1964. The off the with emphasis on blue-schist facies of metamorphism Vestmann Islands. Bull. Volcanol. 27,435-45. (Test-case III: Japan arc). Tectonophysics 22, 83-125. Thorarinsson, S., S. Steinthorsson, T. Einarsson, H. van der Lingen, G. J. and J. R. Pettinga 1980. The Kristmannsdottir and N. Oskarsson 1973. The Makara Basin: a Miocene slope-basin along the New eruption of Heimaey, Iceland. Nature 241, 372-75. Zealand sector of the Australian-Pacific obliquely con• Thorpe, R. S. (ed.) 1982. Andesites: orogenic andesites vergent plate boundary. In Ballance & Reading and related rocks. New York: John Wiley. (1980),191-216. Thurston, P. C. 1980. Subaerial volcanism in the van der Molen, I. and M. S. Paterson 1979. Experi• Archaean Uchi-Confederation . Precamb. mental deformation of partially-melted granite. Res. 12, 79-98. Contrib. Miner. Petrol. 70,299-318. Titley, S. R. 1982. The style and progress of mineral is a• Veevers, J. J. and D. Cotterill 1978. Western margin of tion and alteration in porphyry copper systems: Australia: evolution of a rifted arch system. Geol Soc. American Southwest. In Advances in geology of the Am. Bull. 89,337-55. porphyry copper deposits: southwestern North America, Verhoogen, J. 1951. Mechanics of ash formation. Am. S. R. Titley (ed.), 93-116. Tucson: University of ]. Sci. 249,729-39. Arizona Press. Vessell, R. K. and D. K. Davies 1981. Non-marine Turner, F. J. and J. Verhoogen 1960. Igneous and sedimentation in an active fore-arc basin. In Recent metamorphic petrology. New York: McGraw-Hill. and ancient non-marine depositional environments: Turner, J. S. and L. B. Gustafson 1981. Fluid motions models for exploration, F. G. Ethridge and R. M. and compositional gradients produced by crystallisa• Flores (eds), 31-45. SEPM Spec. Publn 3l. tion or melting at vertical boundaries. J. Volcanol. Vogt, P. R. 1974. Volcano spacing, fractures and Geotherm. Res. 11, 93-125. thickness of the lithosphere. Earth Planet. Sci. Lett. Turner, J. S., H. E. Huppert and R. S. J. Sparks 1983. 21,235-52. An experimental investigation of volatile exsolution Voight, B. (ed.) 1978. Rock slides and avalanches, I. in evolving magma chambers.]. Volcanol. Geotherm. Natural phenomena. Amsterdam: Elsevier. Res. 16, 263-78. Voight, B. 1981. Time scale for the first moments of the Tuttle, O. F. and N. L. Bowen 1958. Origin of granite May 18 eruption. In Lipman & Mullineaux (1981), in the light of experimental studies in the system 69-80. NaAlSi30s-KAlSi30s-SiOz-H20. Geol Soc. Am. Voight, B., H. Glicken, R. J. Janda and P. M. Mem.74. Douglass 1981. Catastrophic rockslide avalanche of May 18. In Lipman & Mullineaux (1981),347-77. Ui, T. 1971. Genesis of magma and structure of magma Von Huene, R. 1984. Tectonic processes along the front chamber of several pyroclastic flows in Japan. J. Fac. of modern convergent margins - research of the Sci. Tokyo Univ. Sec. II 36, 135-46. past decade. A. Rev. Earth Planet. Sci. 12,359-81. Ui, T. 1983. Volcanic dry avalanche deposits - Von Huene, R. and M. A. Arthur 1982. Sedimentation identification and comparison with nonvolcanic across the Japan Trench off northern Honshu Island. debris stream deposits. J. Volcano Geotherm. Res. 18, In Leggett (1982), 27-48. 135-50. Vuagnat, M. 1975. Pillow lava flows: isolated sacks or Urabe, T., S. D. Scott and K. Hattori 1983. A connected tubes? Bull. Volcanol. 39,581-9. comparison of footwall-rock alteration and geo• thermal systems beneath some Japanese and Wadge, G. 1978. Effusion rate and the shape of aa lava Canadian volcanogenic massive sulfide deposits. In flow-fields on Mount Etna. Geology 6, 503-6. Ohmoto and Skinner (1983), 345-64. Wadge, G. 1980. Output rate of magma from active Uyeda, S. 1983. Comparative subductology. Episodes 2, central volcanoes. Nature 288,253-5. 19-24. Wadge, G. 1982. Steady state volcanism: evidence from 510 REFERENCES

eruption histories of polygenetic volcanoes. J. Walker, G. P. L. and R. Croasdale 1972. Charac• Geophys. Res. 87,4035-49. teristics of some basaltic pyroclastics. Bull. Volcanol. Wadge, G., G. P. L. Walker and J. E. Guest 1975. The 35,303-17. output of the Etna volcano. Nature 213,484-5. Walker, G. P. L. and L. A. McBroome 1983. Mount Waitt, R. B. 1981. Devastating pyroclastic density flow St. Helens 1980 and Mount Peh!e 1902 - flow or and attendant air fall of May 18 - stratigraphy and surge? Geology 11,571-4. sedimentology of deposits. In Lipman & Mullineaux Walker, G. P. L. and L. Morgan 1984. Reply to Hoblitt (1981),439-58. & Miller (1984) and Waitt (1984). Geology 12, 693-5. Waitt, R. B. 1984. Comment on Walker & McBroome Walker, G. P. L. and C. J. N. Wilson 1983. Lateral (1983). Geology 12,693. variations in the Taupo ignimbrite. J. Volcanol. Walker, G. P. L. 1962. Tertiary welded tuffs in eastern Geothenn. Res. 18, 117-23. Iceland. Q.J. GeolSoc. Lond. 118,275-93. Walker, G. P. L., L. Wilson and E. L. G. Bowell 1971. Walker, G. P. L. 1963. The Breiddalur central volcano, Explosive volcanic eruptions - 1. The rate of fall of Eastern Iceland. Q.J. GeolSoc. Lond. 119,29--63. pyroclasts. Geophys.J. R. Astr. Soc. 22, 377-83. Walker, G. P. L. 1970. Compound and simple lava Walker, G. P. L., C. J. N. Wilson and P. C. Froggatt flows and flood basalts. Bull. Volcanol. 35,579-90. 1980a. Fines-depleted ignimbrite in New Zealand - Walker, G. P. L. 1971. Grainsize characteristics of the product of a turbulent pyroclastic flow. Geology pyroclastic deposits.J. Geol. 79,696--714. 8,245-9. Walker, G. P. L. 1972. Crystal concentration in ignim• Walker, G. P. L., R. F. Heming and C. J. N. Wilson brites. Contrib. Miner. Petrol. 36, 135-46. 1980b. Low-aspect ratio ignimbrites. Nature 283, Walker, G. P. L. 1973a. Lengths of lava flows. Phil 286--7. Trans R. Soc. Lond. 274, 107-18. Walker, G. P. L., S. Self and P. C. Froggatt 1981a. Walker, G. P. L. 1973b. Explosive volcanic eruptions The ground layer of the Taupo Ignimbrite: a striking - a new classification scheme. Geol. Rundsch. 62, example of sedimentation from a pyroclastic flow. J. 431-46. Volcanol. Geothenn. Res. 10,1-11. Walker, G. P. L. 1979. A volcanic ash generated by Walker, G. P. L., C. J. N. Wilson and P. C. Froggatt explosions where ignimbrite entered the sea. Nature 1981 b. An ignimbrite veneer deposit: the trail 281,642--6. marker of a pyroclastic flow. J. Volcanol. Geothenn. Walker, G. P. L. 1980. The Taupo pumice: product of Res. 9, 409-21. the most powerful known (ultraplinian) eruption? J. Walker, G. P. L., R. F. Heming, T. J. Sprod and Volcanol. Geothenn. Res. 8,69-94. H. R. Walker 1981c. Last major eruptions of Rabaul Walker, G. P. L. 1981a. Characteristics of two phreato• volcano. In R. W. Johnson (1981),181-93. plinian ashes, and their water flushed origin. J. Walker, G. P. L., J. V. Wright, B. J. Clough and B. Volcanol. Geothenn. Res. 9, 395-407. Booth 1981d. Pyroclastic geology of the rhyolitic Walker, G. P. L. 1981b. Plinian eruptions and their volcano of La Primavera, Mexico. Geol. Rundsch. 70, products. Bull. Volcanol. 44, 223-40. 1100-18. Walker, G. P. L. 1981c. The Waimihia and Hatepe Walker, G. P. L., S. Self and L. Wilson 1984. plinian deposits from the rhyolitic Taupo volcanic Tarawera, 1886, New Zealand - a basaltic plinian centre. N.Z.J. Geol. Geophys. 24, 305-24. fissure eruption. J. Volcanol. Geothenn. Res. 21, Walker, G. P. L. 1981d. New Zealand case histories of 61-78. pyroclastic studies. In Self & Sparks (1981), 317-30. Walker, R. G. 1965. The origin and significance of the Walker, G. P. L. 1981e. Generation and dispersal of internal sedimentary structures of turbidites. fine ash and dust by volcanic eruptions. J. Volcanol. Yorkshire Geol Soc. Proc. 35, 1-32. Geothenn. Res. 11,81-92. Walker, R. G. 1975. Generalised facies models for Walker, G. P. L. 1983. Ignimbrite types and ignimbrite resedimented conglomerates of turbidite association. problems.J. Volcanol. Geothenn. Res. 17,65-88. Geol Soc. Am. Bull. 86, 737-48. Walker, G. P. L. 1984a. Downsag calderas, ring faults, Walker, R. G. 1978. Deep-water sandstone facies and caldera sizes, and incremental caldera growth. J. ancient submarine fans: models for exploration for Geophys. Res. 89, 8407-16. stratigraphic traps. Am. Assoc. Petrol. Geol. Bull. 62, Walker, G. P. L. 1984b. Topographic evolution of 932--66. eastern Iceland. Joku1l32, 13-20. Walker, R. G. (ed.) 1984. Facies models, 2nd edn. Geol Walker, G. P. L. 1985. Origin of coarse lithic breccias Assoc. Can., Geosci. Can. Repr. Ser. l. near ignimbrite source vents. J. Geothenn. Volcano Waters, A. C. 1960. Determining direction of flow in Res. 25, 157-71. basalts. Am. J. Sci. 258A, 350--66. Walker, G. P. L. and R. Croasdale 1971. Two Plinian• Waters, A. C. 1961. Stratigraphic and lithologic varia• type eruptions in the Azores. J. Geol Soc. Lond. 127, tions in the Columbia River basalt. Am. J. Sci. 259, 17-55. 583--611. REFERENCES 511

Waters, A. C. and R. V. Fisher 1971. Base surges and emplacement of pyroclastic flows. Ph.D. thesis, their deposits: Capelinhos and Taal volcanoes. J. Imperial College, University of London. Geophys. Res. 76, 5596--614. Wilson, C. J. N. 1984. The role of fluidisation in the Watkins, N. D. and T. C. Huang 1977. in emplacement of pyroclastic flows, 2: experimental abyssal sediments east of the North Island, New results and their interpretation.J. Volcanol. Geotherm. Zealand: chronology, paleowind velocity, and Res. 20, 55-84. paleo-explosivity. N.z. J. Geol. Geophys. 20, Wilson, C. J. N. 1985. The Taupo eruption, New 179-98. Zealand II. The Taupo ignimbrite. Phil. Trans. R. Watkins, N. D., R. S. J. Sparks, H. Sigurdsson, T. C. Soc. Lond. A.314, 229-310. Huang, A. Federman, S. Carey and D. Ninkovich Wilson, C. J. N. and G. P. L. Walker 1981. Violence 1978. Volume and extent of the Minoan tephra from in pyroclastic flow eruptions. In Self & Sparks Santorini volcano: new evidence from deep-sea cores. (1981),441-8. Nature 271, 122-26. Wilson, C. J. N. and G. P. L. Walker 1982. Ignimbrite Wellman, P. 1974. Potassium-argon ages on the depositional facies: the anatomy of a pyroclastic flow. Cainozoic volcanic rocks of eastern Victoria, J. Geol Soc. Lond. 139, 581-92. Australia. J. Geol Soc. Aust. 21, 359-76. Wilson, C. J. N. and G. P. L. Walker 1985. The Taupo Wellman, P. and 1. McDougall 1974. Cainozoic igneous eruption, New Zealand 1. General aspects. Phil. activity in eastern Australia. Tectonophysics 23, Trans. R. Soc. Lond. A.314, 199-228. 49-65. Wilson, J. T. 1963. Evidence from islands on the Westgate, V. A. and M. P. Gorton 1981. Correlation spreading of ocean floors. Nature 197, 536--8. techniques in tephra studies. In Self & Sparks Wilson, L. 1972. Explosive volcanic eruptions - II. (1981), 73-94. The atmospheric trajectories of pyroclasts. Geophys. White, W. S. 1960. The Keweenawan lavas of Lake J. R. Astr. Soc. 30, 381-92. Superior, an example of flood basalts. Am. J. Sci. Wilson, L. 1976. Explosive volcanic eruptions - III. 258A, 367-74. columns. Geophys. J. R. Astr. Soc. Whitford, D. J., 1. A. Nicholls and S. R. Taylor 1979. 45, 543-56. Spatial variations in the geochemistry of Quaternary Wilson, L. 1978. Energetics of the Minoan eruption. In lavas across the Sunda arc in Java and Bali. Contrib. Thera and the Aegean World. Vol. 1. In C. Doumas Miner. Petrol. 70, 341-56. (1978), 221-28. Whitford-Stark, J. L. 1982. Factors influencing the Wilson, L. 1980a. Relationships between pressure, morphology of volcanic landforms: an Earth-Moon volatile content and ejecta velocity in three types of comparison. Earth Sci. Rev. 18, 109-68. volcanic explosion. J. Volcanol. Geotherm. Res. 8, Whitham, A. and R. S. J. Sparks in press. Pumice. 297-313. Bull. Volcanol. Wilson, L. 1980b. Energetics of the Minoan eruption: Williams, H. 1932. The history and characters of some revisions. In Doumas (1980), 31-5. volcanic domes. Univ. Calif. Publn Bull. Dept Geol Wilson, L. and J. W. Head 1981. Ascent and emplace• Sci. 21, 51-146. ment of basaltic magma on the Earth and Moon. J. Williams, H. 1941. Calderas and their origin. Univ. Geophys. Res. 86, 2971-300l. Calif. Publn Bull. Dept Geol Sci. Bull. 25, 239-346. Wilson, L., R. S. J. Sparks, T. C. Huang and N. D. Williams, H. 1942. The geology of Crater Lake National Watkins 1978. The control of Park, Oregon, with a reconnaissance of the Cascade heights by eruption energetics and dynamics. J. Range southward to Mt Shasta. Carnegie Inst. Geophys. Res. 83, 1829-36. Washington Publn 540. Wilson, L., R. S. J. Sparks and G. P. L. Walker 1980. Williams, H. and A. R. McBirney 1979. Volcanology. Explosive volcanic eruptions - IV. The control of San Francisco: Freeman, Cooper. magma properties and conduit geometry on eruption Williams, H., F. J. Turner and C. M. Gilbert 1954. column behaviour. Geophys. J. R. Astr. Soc. 63, Petrography. An introduction to the study of rocks in 117-48. thin section. San Francisco: W. H. Freeman. Windley, B. F. and F. B. Davies 1978. Volcano Williams, S. N. 1983. Plinian airfall deposits of basaltic spacings and lithospheric/crustal thickness in the composition. Geology 11, 211-4. Archaean. Earth Planet. Sci. Lett. 38, 291-7. Williams, S. N. and S. Self 1983. The October 1902 Wohletz, K. H. 1983. Mechanisms of hydrovolcanic plinian eruptions of Santa Maria volcano, Guatemala. pyroclast formation: grain-size, scanning electron J. Volcanol. Geotherm. Res. 16, 33-56. microscopy, and experimental studies. J. Volcanol. Wilson, C. J. N. 1980. The role of fluidisation in the Geotherm. Res. 17, 31-63. emplacement of pyroclastic flows: An experimental Wohletz, K. H. and M. F. Sheridan 1979. A model of approach. J. Volcanal. Gootherm. Res. 8, 231-49. pyroclastic surge. In Chapin & Elston (1979), Wilson, C. J. N. 1981. Studies on the origins and 177-94. 512 REFERENCES

Wohletz, K. H. and M. F. Sheridan 1983. Hydro• in welded ash-flow tuffs from Northern Snowdonia, volcanic explosions II. Evolution of basaltic tuff rings North Wales. Geol Mag. 114, l33-40. and tuff cones. Am. ]. Sci. 283, 385-4l3. Wright, J. V. and E. Mutti 1981. The Dali Ash, Island Wolf, T. 1878. Der und seinletzte Eruption of Rhodes, Greece: a problem in interpreting am 26. Juni, 1877. Neues ]ahrb. Mineral. Geol. submarine volcanigenic sediments. Bull. Volcanol. P alantol. 1l3-67. 44, 153-67. Wolfe, J. A. and S. Self 1982. Structural lineaments and Wright, J. V. and G. P. L. Walker 1977. The ignim• Neogene volcanism in South-western Luzon. In The brite source problem: significance of a co-ignimbrite tectonic and geologic evolution of the South-east Asia lag-fall deposit. Geology 5, 729-32. seas and islands, 157-72. Geophys. Mon. Ser., Wright, J. V. and G. P. 1. Walker 1981. Eruption, no. 27. transport and deposition of ignimbrite: a case study Wolff, J. A. and J. V. Wright 1981. Rheomorphism of from Mexico.]. Volcanol. Geotherm. Res. 9, 111"-31. welded tuffs.]. Volcanol. Geotherm. Res. 10, l3-34. Wright, J. V., A. 1. Smith and S. Self 1980. A working Wolff, J. A. and J. V. Wright 1982. Formation of the terminology of pyroclastic deposits. ]. Volcanol. Green Tuff, Pantelleria. Bull. Volcanol. 44, 681-90. Geotherm. Res. 8, 315-36. Wood, B. J. and S. Banno 1973. Garnet-orthopyroxene Wright, J. V., S. Self and R. V. Fisher 1981. Towards and orthopyroxene-climopyroxene relationships in a facies model for ignimbrite-forming eruptions. simple and complex systems. Contrib. Mineral. In Self & Sparks (1981), 433-9. Petrol. 42, 109-24. Wright, J. V., M. J. Roobol, A. 1. Smith, R. S. J. Wood, C. A. 1977. Non-basaltic shield volcanoes. Sparks, S. A. Brazier, W. I. Rose, Jr and H. Abstr. Planet. Geol. Field Conf. Snake River Plain, Sigurdsson 1984. Late Quaternary explosive silicic Idaho, 35, NASA TM-78, 436. volcanism on St. Lucia, West Indies. Geol Mag. 121, Wood, C. A. 1978. Morphometric evolution of com• 1-15. posite volcanoes. Geophys. Res. Lett. 5, 437-9. Wyllie, P. J. 1977. Crustal anatexis: an experimental Wood, C. A. 1979. Monogenetic volcanoes of the review. Tectonophysics 43, 41-71. terrestrial planets. Proc. 10th Lunar Planet. Sci. Vol. 3, 2815-40. Conf. Yamada, E. 1973. Subaqueous pumice flow deposits in Wood, C. A. 1980a. Morphometric evolution of cinder the Onikobe Caldera, Miyagi Prefecture, Japan. ]. cones.]. Volcanol. Geotherm. Res. 7, 387-4l3. Geol Soc. lap. 79, 585-97. Wood, C. A. 1980b. Morphometric analysis of cinder Yamada, E. 1984. Subaqueous pyroclastic flows: their cone degradation. ]. Volcanol. Geotherm. Res. 8, development and their deposits. In Kokelaar & l37-60. Howells (1984), 29-35. Wood, C. A. 1984. Continental rift jumps. Tectono• Yamazaki, T., I. Kato, I. Muroi and M. Abe 1973. physics 94, 529-40. Textural analysis and flow mechanisms of the Wood, C. A. Maars. In in press. Encyclopedia of Donzurubo subaqueous pyroclastic flow deposits. Volcanology, J. Green (ed.). Bull. Volcanol. 37, 231-44. Wood, C. P. 1980. Boninite at a continental margin. Yoder, H. S. and C. E. Tilley 1962. Origin of basaltic Nature 288, 692-4. magmas: an experimental study of natural and Worzel, J. 1. 1959. Extensive deep-sea sub-bottom synthetic rock systems. ]. Petrol. 3, 342-532. reflections identified as white ash. Proc. Natn. Acad. Yokoyama, S. 1974. Flow and emplacement mechanism 45, 349-55. Sci. USA of the Ito pyroclastic flow from Aira caldera, Japan. Wright, A. E. and D. R. Bowes 1963. Classification of Tokyo Kyoiku Daigaku Sci. Rep., Sec. C. 12, 17-62. volcanic breccias: a discussion. Geol Soc. Am. Bull. Young, A. 1969. Present rate of land erosion. Nature 74, 79-86. 224, 851-2. Wright, J. V. 1978. Remanent magnetism of poorly sorted deposits from the Minoan eruption of Santorini. Bull. Volcanol. 41, l31-5. Zeil, W. 1979. The Andes: a geological review. In Wright, J. V. 1980. Stratigraphy and geology of the Beitrage zur Regionalen Geologie der Erde, F. Bender, welded air-fall tuffs of Pantelleria, Italy. Geol. V. Jacobshage, J. D. de Jong & G. Luttig (eds), Rundsch. 69, 263-91. Vol. 13. Berlin: Gebriider Borntrager. Wright, J. V. 1981. The Rio Caliente ignimbrite: Zoback, M. 1., R. E. Anderson and G. A. Thompson analysis of a compound intraplinian ignimbrite from 1981. Cainozoic evolution of the state of stress and a major late Quaternary Mexican eruption. Bull. style of tectonism of the Basin and Range province of Volcanol. 44, 189-212. the western United States. Phil Trans R. Soc. Land. Wright, J. V. and M. P. Coward 1977. Rootless vents (A) 300, 407-34. ACKNOWLEDGEMENTS

Many authors, organisations and publishers have Earth Mineral Sci. (Penn. Sf. Univ.) 41, 69-70 by generously consented to the use of their work. It is permission of the author and the Editor; Figure 3.4 with great pleasure and gratitude that we acknow• reproduced from R. S. J. Sparks,J. Volcanol. Geotherm. ledge the following copyright holders: Res. 3, 1-37 by permission of the author and Elsevier Science Publishers; Figures 3.5 and 6.12 reproduced from L. Wilson,]. Volcanol. Geotherm. Res. 8, 297-313 Plate 2 reproduced from Volcanism of the Eastern Snake by permission of the author and Elsevier Science River Plain, Idaho: a comparative planetary geology Publishers; Figure 3.6 reproduced from B. P. Kokelaar, guidebook CR. Greeley) by permission of the author and ]. Geol. Soc., Lond. 139, 21-33 by permission of NASA; Figure 2.1 reproduced from A. Streckeisen, Blackwell Scientific Publications; Figure 3.7 reproduced Geology 7, 331-5 by permission of the author and the from A. R. McBirney, Bull. Volcanol. 26, 455-69 by Geological Society of America; Figures 2.2 and 2.6 permission of the author and the publisher; Figure 3.8 reproduced from T. Murase and A. R. McBirney, Geol. reproduced from S. Sourirajan and G. C. Kennedy, Am. Soc. Am. Bull. 84, 3563-92 by permission of A. R. J. Sci. 260, 115-41 by permission of S. Sourirajan and McBirney and the Geological Society of America; Figures the publisher; Figures 3.9 and 7.39 reproduced from 2.3 and 6.46b reproduced from J. A. Wolff and K. H. Wohletz,J. Volcanol. Geotherm. Res. 17,31-63 by J. V. Wright, J. Volcanol. Geotherm. Res. 10, 13-34 permission of the author and Elsevier Science Publishers; by permission of J. V. Wright and Elsevier Science Figures 3.20, 5.1, 6.2a and 6.25 reproduced from J. V. Publishers; Figure 2.4 reproduced from Physical processes Wright et al., J. Volcanol. Geotherm. Res. 8, 315-36 by of sedimentation - an introduction (J. R. L. Allen) by permission of J. V. Wright and Elsevier Science Pub• permission of the author and Allen & Unwin; Figure 2.7 lishers; Figures 3.21 and 6.37 reproduced from R. S. J. reproduced from 1. Kushiro et al., J. Geophys. Res. 81, Sparks et al., Phil Trans R. Soc. A299, 241-73 by 6351-6 by permission of 1. Kushiro and the publisher, permission of R. S. J. Sparks and the Royal Society. © 1976 by the American Geophysical Union; Figure 2.8 Figure 4.1a reproduced from S. Thorarinsson, Bull. reproduced from T. Murase, Hokkaido Univ. Fac. Sci. Volcanol. 33, 910-27 by permission of the publisher; ]., Ser. 7, 1 487-584 by permission of the author; Figures 4.1b and 13.7 reproduced from D. A. Swanson Figures 2.12a and c reproduced from Physical processes et al., Am.]. Sci. 275, 877-905 by permission of D. A. in geology CA. R. Johnson) by permission of the author Swanson and the publisher; Figure 4.2 reproduced from and Freeman, Cooper and Company; Plate 3 reproduced G. P. L. Walker, Phil Trans R. Soc. A274, 107-18 by from Volcano: ordeal by fire in Iceland's Westmann Islands permission of the author and the Royal Society; Figures CA. Gunnarsson) by permission of S. J6nasson and the 4.3b and c reproduced from G. P. L. Walker, Bull. publisher. Volcanol. 35, 579-90 by permission of the author and the Figures 3.1 and 3.2 reproduced from C. W. Burnham, publisher; Figure 4.4 reproduced from J. P. Lockwood

513 514 ACKNOWLEDGEMENTS and P. W. Lipman, Bull. Volcanol. 43, 609-15 by duced from Pictorial history of the Lassen volcano (B. F. permission of P. W. Lipman and the publisher; Figure Loomis) by permission of the Loomis Museum Associa• 4.9 reproduced from R. S. J. Sparks et al., Geology 4, tion; Figure 5.7b reproduced from R. L. Christiansen 269-71 by permission of R. S. J. Sparks and the Geo• and D. W. Peterson, U.S. Geol. Survey Prof. Paper No. logical Society of America; Figures 4.l1 and 4.13 1250, 17-30 by permission of J. W. Vallance and the reproduced from R. Hargreaves and L. D. Ayres, Can. U.S. Geological Survey; Figure 5.8 reproduced from J. Earth Sci. 16, 1452-66 by permission of L. D. Ayres; A. M. Sarna-Wojcicki et al., U.S. Geol. Survey Prof. Figure 4.15 reproduced from P. Lonsdale and R. Batiza, Paper No. 1250, 577-600 by permission of A. M. Sarna• Geol. Soc. Am. Bull. 91, 545-54 by permission of P. Wojcicki and the U.S. Geological Survey; Figure 5.9 Lonsdale and the Geological Society of America; Figures reproduced from L. Wilson et al.,]. Geophys. Res. 83, 4.16and4.17reproducedfromJ. G.JonesandP. H. H. 1829-36 by permission of L. Wilson and the publisher, Nelson, Geol. Mag. 107, 13-2l by permission of J. G. © 1978 by the American Geophysical Union; Figure Jones and Cambridge University Press; Figures 4.18c, 5.lOb reproduced from R. L. Christiansen and D. W. 5.7b and 5 . lOb reproduced from R. L. Christiansen and Peterson, U.S. Geol. Survey Prof. Paper No. 1250, D. W. Peterson, U.S. Geol. Survey Prof. Paper 1250, 17-30 by permission of P. W. Lipman and the U.S. 17-30 by permission of M. Kraft, K. Kraft and the U.S. Geological Survey; Figure 5.l5b reproduced from P. W. Geological Survey; Academie des Sciences d'Outre-Mer, Francis et al., Geol. Rundschau 63,357-88 by permission Paris (4.18d, 5.lOa); Figure 4.l9 reproduced from H. of P. W. Francis and the publisher; Figures 5.15c and Sigurdsson, Univ. West Indies Seismic Res. Spec. Publ. 5.20 reproduced from R. V. Fisher and G. Heiken, J. No. 198111 by permission of the author and the publisher; Volcanol. Geotherm. Res. 13, 339-71 by permission of Figure 4.20 reproduced from T. Minakami et al., Bull. R. V. Fisher and Elsevier Science Publishers, Figure Volcanol. 11,45-160 by permission ofT. Minakami and 5.20 also from R. V. Fisher et al., Geology 8, 472-6 by the publisher; Figures 4.2la, 4.22c and e reproduced by permission of R. V. Fisher and the Geological Society of permission of B. Clough; Figure 4.29 reproduced from America; Figure 5.l7, 5.l8a, 5.19a, band d reproduced H. Pichler, Bull. Volcanol. 28,293-310 by permission of from J. G. Moore, Bull. Volcanol. 30,337-63 by permis• the author and the publisher; Figure 4.30 reproduced sion of the author and the publisher; Figure 5.18b from R. Cas, Geol. Soc. Am. Bull. 89, 1708-14 by reproduced from A. C. Waters and R. V. Fisher, ]. permission of the author and the Geological Society of Geophys. Res. 76, 5596-614 by permission of R. V. America; Figure 4.31 reproduced from C. H. Donaldson, Fisher and the publisher, © 1971 by the American in Komatiites (N. T. Arndt and E. G. Nisbet, eds) by Geophysical Union; Figure 5.18c reproduced from J. permission of the author; Figure 4.32 reproduced from Kienle et al., J. Volcanol. Geotherm. Res. 7, 11-37 by N. T. Arndt et al., J. Petrol. 18, 319-69 (1977) by permission of J. D. Faro and Elsevier Science Publishers. permission ofN. T. Arndt and Oxford University Press; Figure 6.4 reproduced from S. Self et al., Geol. Mag. Table 4.2 reproduced from C. G. Newhall and W. G. 111, 539-48 by permission of S. Self and Cambridge Melson,]. Volcanol. Geotherm. Res. 17, 111-31 by University Press; Figure 6.5 reproduced from B. F. permission of C. G. Melson and Elsevier Science Houghton and W. R. Hackett,]. Volcanol. Geotherm. Publishers. Res. 21, 207-31 by permission of B. F. Houghton and Figures 5.3a and 7.13 reproduced from G. P. L. Elsevier Science Publishers; Figures 6.7 and 6.31 re• Walker,]. Geol. 79,696-714 by permission of the author produced from G. P. L. Walker and R. Croasdale, Bull. and the Editors, © 1971 by the University of Chicago, Volcanol. 35, 303-17 by permission of G. P. L. Walker Figure 5.3a also from G. P. L. Walker et al., Geology 8, and the publisher; Figures 6.9a, b, 6.l1, 6.2l and 6.29 245-9 by permission of G. P. L. Walker and the Geo• reproduced from S. Self, ]. Geol. Soc., Land. 132, logical Society of America; Figures 5.3b and 5.14 645-68 by permission of the author and Blackwell reproduced from J. V. Wright, Bull. Volcanol. 44, Scientific Publications, Figure 6.11 also from B. Booth et 189-2l2 by permission of the author and the publisher; al., Phil Trans R. Soc. A288, 271-319 by permission of Figure 5.5 reproduced from D. K. Davies et al., Geol. G. P. L. Walker and the Royal Society, and G. P. L. Soc. Am. Bull. 89,369-84 by permission ofthe Geological Walker, Geol. Rundschau 62, 431-46 by permission ofthe Society of America; Figures 5.6a and 13.32 reproduced author and the publisher; Figure 6.9c--e reproduced from from R. K. Vessell and D. K. Davies, SEPM Spec. B. Booth et al., Phil Trans R. Soc. A288, 271-319 by P1.!bl.~ 1, 31-45 by permission ofthe Society of Economic permission of G. P. L. Walker and the Royal Society; Paleontologists and Mineralogists; Figure 5. 7a repro- Figures 6.13a and 6.15 reproduced from G. P. L. ACKNOWLEDGEMENTS 515

Walker and R. Croasdale, ]. Geol. Soc., Lond. 127, author and Elsevier Science Publishers; Figure 7.7 by 17-55 by permission of G. P. L. Walker and Blackwell C. J. N. Wilson; Figures 7.17, 7.18b and 8.7a-c repro• Scientific Publications; Figure 6.13d reproduced from K. duced from R. S. J. Sparks, Geol. Rundschau 64,497-523 Bloomfield et al., Geol. Rundschau 66, 120-46 by by permission of the author and the publisher; Figures permission of K. Bloomfield and the publisher; Figures 7.18a and 8.3 reproduced from S. Yokoy'ama, Tokyo 6.16a-d and 13.37-40 reproduced from G. P. L. Walker Kyoiku Sci. Rep., Sect. C 12, 17--62 by permission of the et al., Geol. Rundschau 70, 1100-18 by permission of author; Figure 7.19 reproduced from J. V. Wright and G. P. L. Walker and the publisher; Figures 6.17-19 G. P. L. Walker,]. Volcanol. Geothenn. Res. 9, 111-31 reproduced from G. P. L. Walker,]. Volcanol. Geothenn. by permission of J. V. Wright and Elsevier Science Res. 8, 69-94 by permission of the author and Elsevier Publishers; Figures 7.21-23 and 8.9 reproduced from Science Publishers, Figures 6.18 and 6.19 also from R. S. J. Sparks et al., J. Geophys. Res. 83, 1727-39 by G. P. L. Walker, Bull. Volcanol. 44,223-40 by permission permission of R. S. J. Sparks; Figures 7.25 and 7.29 of the author and the publisher; Figure 6.20 reproduced reproduced from C. J. N. Wilson and G. P. L. Walker, from L. Wilson, Geophys.]. R. Astr. Soc. 45, 543-56 by ]. Geol. Soc., Lond. 139, 581-92 by permission of permission of the author and Blackwell Scientific Pub• Blackwell Scientific Publications; Figures 7.26a and lications; Figure 6.22 reproduced from S. Self, N.z. ]. 8.32a reproduced from G. P. L. Walker et al., J. Geol. Geophys. 18, 189-95 by permission of the author Volcanol. Geothenn. Res. 9 , 409-21 by permission of and the publisher; Figure 6.23 reproduced from K. J. G. P. L. Walker and the publisher, © 1978 by the Murata et al., Bull. Volcanol. 29,765-96 by permission of American Geophysical Union; Figures 7.36 and 7.48 the publisher; Figures 6.26 and 6.28 by S. Self et al., reproduced from G. P. L. Walker and L. A. McBroome, reprinted from Nature Vol. 277, pp. 440-3 by permission Geology 1, 571-4 by permission of G. P. L. Walker and of S. Self and the publisher, copyright © 1979 Macmillan the Geological Society of America; Figures 7.38 and 7.43 Journals Limited; Figure 6.27 reproduced from I. A. reproduced from K. H. Wohletz and M. F. Sheridan, Nairn and S. Self,]. Volcanol. Geothenn. Res. 3, 39--60 Geol. Soc. Am. Spec. Paper No. 180, 177-94 by by permission of S. Self and Elsevier Science Publishers; permission of M. F. Sheridan and the Geological Society Figures 6.30a-c reproduced from H. Sigurdsson, Science of America; Figure 7.44 reproduced from J. R. L. Allen, 216 (4 June 1982), 1106--8 by permission of the author Developments in sedimentology - 30 B. Sedimentary structures and the publisher, © 1982 by the AAAS; Figures by permission of the author and Elsevier Science 6.33-36 reproduced from S. Self and R. S. J. Sparks, Publishers. Bull. Volcanol. 41, 196--212 by permission of S. Self and Figure 8.1 reproduced from T. A. Steven and P. W. the publisher; Figures 6.38 and 7.27 reproduced from Lipman, U.S. Geol. Survey Prof. Paper No. 958, 1-35 G. P. L. Walker, in Tephra studies (S. Self and R. S. J. by permission of P. W. Lipman and the U.S. Geological Sparks, eds), 317-30 by permission of the author and D. Survey; Figure 8.2 by P. W. Francis et al., reprinted Reidel Publishing Company, Figure 6.38 also from S. N. from Nature Vol. 301, 51-3 by permission of the author Carey and H. Sigurdsson, J. Geophys. Res. 87, 7061-72 and the publisher, copyright © 1983 Macmillan Journals by permission of the author and the publisher, © 1982 Limited; Figure 8.5 reproduced from C. N. Fenner, J. by the American Geophysical Union; Figures 6.40 and Geol. 28, 569--606 by permission of the Editors, © 1920 6.42-45 reproduced from R. S. J. Sparks and J. V. by the University of Chicago, also from G. H. Curtis, Wright, Geol. Soc. Am. Spec. Paper No. 180, 155--66 by Geol. Soc. Am. Mem. No. 116, 153-210 by permission permission of R. S. J. Sparks and the Geological Society of the author and the Geological Society of America; of America; Figure 6.46a reproduced from J. V. Wright, Figures 8.6 and 8.35 reproduced from P. D. Rowleyet Geol. Rundschau 69, 263-91 by permission of the author al., U.S. Geol. Survey Prof. Paper No. 1250,489-512 by and the publisher. permission ofP. D. Rowley and the Geological Society of / Figure 7.1 b reproduced from L. Wilson and J. W. America; Figures 8.10 and 8.11a reproduced from L. Head, U.S. Geol. Survey Bull. No. 1250, 513-24 by Wilson et al., Geophys. J. R. Astr. Soc. 63, 117-48 by permission ofL. Wilson and the U.S. Geological Survey; permission of L. Wilson and Blackwell Scientific Pub• Figures 7.2 and 7.3 reproduced from R. S. J. Sparks, lications; Figure 8.11b reproduced from S. N. Williams Sedimentology 23, 147-88 by permission of the author, and S. Self,]. Volcanol. Geothenn. Res. 16, 33-56 by the Editor and Blackwell Scientific Publications; Figures permission of S. Self and Elsevier Science Publishers; 7.4,7.5, 7.6b and 7.8 reproduced from J. N. Wilson,]. Figure 8.11c reproduced from L. Wilson, in Thera and Volcanol. Geothenn. Res. 8, 231-49 by permission of the the Aegean World, 31-5 by permission of the author and 516 ACKNOWLEDGEMENTS the publisher; Figures 8.12, 8.31, 8.33 and 8.47a the Geological Society of America; Figures 9.1 band c reproduced from J. V. Wright, Bull. Volcanol. 44, reproduced from E. Yamada, Journal of the Geological 189-212 by permission of the author and the publisher; Society ofJapan 79, 585-97 by permission of the author Figure 8.16 reproduced from C. H. Bacon, J. Volcanol. and the publisher; Figures 9.1d and 9.2 reproduced from Geothenn. Res. 18, 57-115 by permission of the author J. V. Wright and E. Mutti, Bull. Volcanol. 44,153--67 by and Elsevier Science Publishers; Figure 8.17 reproduced permission of J. V. Wright and the publisher; Figures from S. Self and J. V. Wright, Geology 11, 443--6 by 9.1e, 9.5 and 9.12 reproduced from R. S. Fiske and T. permission of J. V. Wright and the Geological Society of Matsuda, Am. J. Sci. 262,76--106 by permission of R. S. America; Figure 8.19 reproduced from J. V. Wright and Fiske and the publisher; Figure 9.3 reproduced from G. P. L. Walker, Geology 5, 729-32 by permission of S. N. Carey and H. Sigurdsson, J. Volcanol. Geotherm. J. V. Wright and the Geological Society of America; Res. 7, 67-86 by permission of H. Sigurdsson and Figures 8.20c, 8.21-23 and 13.27 reproduced from T. H. Elsevier Science Publishers; Figure 9.4 reproduced from Druitt and R. S. J. Sparks, J. Volcanol. Geotherm. Res. H. Sigurdsson et al., J. Geol. 88, 523-40 by permission 13,147-71 by permission ofR. S. J. Sparks and Elsevier of the author and the Editors, © 1980 by the University Science Publishers; Figure 8.24 reproduced from D. of Chicago; Figure 9.6 reproduced from M. F. Howells Ninkovich et al., Bull. Volcanol. 41,286--98 by permission et al., Geol. Soc. Lond. Spec. Pub I. No.8, 611-8 by of D. Ninkovich and the publisher; Figure 8.25 repro• permission of M. F. Howells; Figures 9.7 and 9.8 duced from R. S. J. Sparks and T. C. Huang, Geol. reproduced from E. H. Francis and M. F. Howells, J. Mag. 117,425-36 by permission of R. S. J. Sparks and Geol. Soc., Lond. 129, 621-41 by permission of M. F. Cambridge University Press; Figure 8.30 reproduced Howells and Blackwell Scientific Publications; Figure 9.9 from J. V. Wright et al., in Tephra studies (S. Self and reproduced from J. V. Wright and M. P. Coward, Geol. R. S. J. Sparks, eds), 433-9 by permission of J. V. Mag. 114, 133-40 by permission of J. V. Wright and Wright and D. Reidel Publishing Company; Figures Cambridge University Press; Figure 9.10 by S. Self and 8.32b and 8.48 reproduced from G. P. L. Walker et al., M. R. Rampino, reprinted from Nature Vol. 294, J. Volcanol. Geotherm. Res. 10, 1-11 by permission of pp. 699-704 by permission of S. Self and the publisher, G. P. L. Walker and Elsevier Science Publishers; Figure copyright © 1981 Macmillan Journals Limited; Figure 8.32c reproduced from G. P. L. Walkeretal., Geology 8, 9.14 by N. D. Watkins et al., reprinted from Nature 245-9 by permission of G. P. L. Walker and the Geo• Vol. 271, pp. 122-6 by permission of R. S. J. Sparks logical Society of America; Figure 8.37 reproduced from and the publisher, copyright © 1978 Macmillan Journals P. W. Lipman and R. L. Christiansen, U.S. Geol. Limited; Figure 9.15 reproduced from D. Ninkovich and Survey Prof Paper No. 501B, 74-8 by permission of N. J. Shackleton, Earth Planet. Sci. Leu. 27,20-34 by P. W. Lipman and the U.S. Geological Survey; Figures permission of D. Ninkovich and Elsevier Science 8.40 and 8.41 reproduced from D. H. Ragan and M. F. Publishers; Figures 9.16--18 reproduced from M. T. Sheridan, Geoi. Soc. Am. Bull. 83,95-106 by permission Ledbetter and R. S. J. Sparks, Geology 7, 240-4 by of M. F. Sheridan and the Geological Society of America; permission of R. S. J. Sparks and the Geological Society Figure 8.42 reproduced from R. L. Smith and R. A. of America. Bailey, Bull. Volcanol. 29, 83-104 by permission ofR. L. Figures 10.1, 13.33 and 13.34 reproduced from W. D. Smith and the publisher; Figure 8.45 reproduced from Kuenzi and O. H. Horst, Geol. Soc. Am. Bull. 90, M. F. Sheridan, Geol. Soc. Am. Bull. 81, 851-68 by 827-38 by permission of O. H. Horst and the Geological permission of the author and the Geological Society of Society of America; Figure 10.4 reproduced from B. L. America; Figures 8.5la and 1.4 reproduced from G. P. L. Jones et al., Geology 12,209-11 by permission of B. L. Walker, N.z.J. Geol. Geophys. 24, 304-24 by permission Jones and the Geological Society of America; Figure of the author and the publisher; Figures 8.S1b, c and 10.6a reproduced from B. Voight, U.S. Geol. Survey 8.53 reproduced from G. P. L. Walker, J. Volcanol. Prof. Paper No. 1250, 69-80 by permission of G. Geotherm. Res. 9, 395-407 by permission of the author Rosenquist and the U.S. Geological Survey; Figure and Elsevier Science Publishers; Figure 8.54 reproduced 1O.6b reproduced from P. W. Lipman and D. R. from G. P. L. Walker, J. Volcanol. Geotherm. Res. 8, Mullineaux, U.S. Geol. Survey Prof. Paper No. 1250 by 69-94 by permission of the author and Elsevier Science permission of the U.S. Geological Survey; Figure 10.8 Publishers. reproduced from T. Ui, J. Volcanol. Geotherm. Res. 18, Figure 9.1a reproduced from R. S. Fiske, Geol. Soc. 135-50 by permission of the author and Elsevier Science Am. Bull. 74, 391-406 by permission of the author and Publishers; Figures 10.10 and 1O.14a reproduced from ACKNOWLEDGEMENTS 517

R. K. Fahnestock, in Rockslides and avalanches, 1 . Natural C. A. Wood, in Encyclopedia of volcanology 0. Green, phenomena, by permission of Elsevier Science Publishers, ed.) by permission of the author; Figure 13.19 repro• and from D. R. Crandell and R. K. Fahnestock, U.S. duced from S. Self et al.,]. Volcanol. Geotherm. Res. 7, Geol. Survey Bull. 1221-A, 1-30 by permission of D. R. 39-65 by permission of S. Self and Elsevier Science Crandell and the U.S. Geological Survey; Figure 1O.14c Publishers; Figure 13.21 reproduced from K. H. Wohletz by F. W. Williams; Figure 10.17 reproduced from J. c. and M. F. Sheridan, Am. ]. Sci. 283, 385-413 by Harms et al., Structures and sequences in clastic rocks, permission of M. F. Sheridan and the publisher; Figure SEPM short course No.9 by permission ofR. G. Walker 13.27 reproduced from H. Pichler and S. Kussmaul, and the Society of Economic Paleontologists and Miner• Thera and the Aegean world by permission of H. Pichler alogists; Figures 1O.26a and b reproduced from R. A. F. and the publisher; Figure 13.32 reproduced from R. K. Cas,]. Sediment. Petrol. 49, 29-44 by permission of the Vessell and D. K. Davies, SEPM Spec. Publ. 31,31-45 author and the Society of Paleontologists and Miner• by permission of the Society of Economic Paleontologists alogists; Figure 10.27 reproduced from R. A. F. Cas,]. and Mineralogists; Figure 13.35 reproduced from J. V. Geol. Soc. Austral. 24, 381-401 by permission of the Wright et al., Geol. Mag. 121, 1-15 by permission of author and the publisher; Figure 10.29a reproduced from J. V. Wright and Cambridge University Press; Figure G. V. Middleton and J. B. Southard, Mechanics of 13.36 reproduced from J. A. Wolfe and S. Self, Geophys. sediment movement, SEPM short course No. 3 by per• Mon. Ser. 27, 157-72 by permission of S. Self and the mission of G. V. Middleton and the Society of Economic publisher, © 1982 by the American Geophysical Union; Paleontologists and Mineralogists; Figure 1O.29b repro• Figure 13.39 reproduced from G. P. L. Walker et al., duced from R. G. Walker, Am. Assoc. Petrol. Geol. Bull. Geol. Rundschau 70, 1100-18 by permission of G. P. L. 62,932-66 by permission of the author; Figure 10.29c by Walker and the publisher, Figure 13.39 also from G. A. R. A. F. Cas. Mahood,]. Volcanol. Geotherm. Res. 8, 199-230 by Figure 11.1 reproduced from R. Schmid, Geology 9, permission of the author and Elsevier Science Publishers; 41-3 by permission of the author and the Geological Figure 13.42 reproduced from R. L. Smith and R. A. Society of America; Figure 11.4 reproduced from R. S. J. Bailey, Geol. Soc. Am. Mem. No. 116, 153-210 by Sparks and G. P. L. Walker,]. Volcanol. Geotherm. Res. permission of R. L. Smith and the Geological Society of 2, 329-41 by permission of R. S. J. Sparks and Elsevier America; Figures 13.45 and 13.46b by B. Clough et al., Sciel,1ce Publishers; Figure 11.5 by G. P. L. Walker, reprinted from Nature Vol. 289, pp. 49-50 by permission reprinted from Nature Vol. 281, pp. 642-6 by permission of B. Clough and the publisher, copyright © 1981 of the author and the publisher, © 1979 Macmillan Macmillan Journals Limited; Figure 13.48 reproduced Journals Limited. from R. D. Ballard and T. H. van Andel, Geol. Soc. Am. Plates 13 and 15 reproduced from Man on Earth - the Bull. 88, 523-30 by permission of R. D. Ballard and the marks of man: a survey from space (c. Sheffield) by Geological Society of America; Figure 13.49 by K. C. permission of Sidgwick & Jackson; Figure 13.1b repro• MacDonald, reproduced from the Annual Review of duced from P. W. Lipman, Bull. Volcanol. 43,703-25 by Earth and Planetary Sciences Vol. 10, 155-90 by per• permission of the author and the publisher; Figure 13.4 mission of the author and the publisher, © 1982 by reproduced from S. C. Porter, Geol. Soc. Am. Bull. 83, Annual Reviews Inc.; Figure 13.50 by J. G. Jones, re• 3607-12 by permission of the author and the Geological printed from Nature Vol. 212, pp. 586-8 by permission Society of America; Figure 13.6 by P. Mohr, reprinted of the author and the publisher, copyright © 1966 from Nature Vol. 303, pp. 577-84 by permission of the Macmillan Journals Limited; Figure 13.51 reproduced author and the publisher, copyright © 1983 Macmillan from G. Jones,]. Geol. Soc., Land. 124, 197-211 by Journals Limited; Figures 13. lOa and 13.12 reproduced permission of the author and Blackwell Scientific Pub• from C. A. Wood,]. Volcanol. Geotherm. Res. 8, 137-60 lications; Figure 13.52 reproduced from H. Furnes et al., by permission of the author and Elsevier Science ]. Volcanol. Geotherm. Res. 8,95-110 by permission of Publishers; Figure 13.11 reproduced from G. Kieffer, in H. Furnes and Elsevier Science Publishers. Symp. ]. ]ung-geol., geomorph., struct. profonde du Massif Figure 14.12a reproduced from R. A. F. Cas,]. Geol. Central franr.;ais, 479-510 by permission of the author; Soc. Austral. 24, 381-401 by permission of the author and Figures 13.13 and 13.16 reproduced from E. B. Joyce, in the publisher; Figure 14.12b reproduced from R. A. F. Quaternary studies CR. P. Suggate and M. M. Creswell, Cas et al.,]. Geol. Soc. Austral. 28,271-88 by permission eds), 169-76 by permission of the author and the Royal of R. A. F. Cas and the publisher; Figure 14.13 repro• Society of New Zealand; Figure 13.18 reproduced from duced from R. W. Hutchinson, Eean. Geol. 68, 1223-45 518 ACKNOWLEDGEMENTS by permission of the Editor. Dickinson, Pacific coast palaeogeographic symp. No.3, Figure 15.1a and b reproduced from E. M. Moores, 1-13 by permission of the author and the publisher; Rev. Geophys. Space Phys. 20, 735-60 by permission of Figure 15.7 reproduced from D. E. Karig, Geol. Soc. the author and the publisher, © 1982 by the American Am. Bull. 82,323-44 by permission of the author and the Geophysical Union; Figure 15.1c by R. N. Anderson et Geological Society of America; Figure 15.8 reproduced al., reprinted from Nature Vol. 300, pp. 589-94 by from K. B. Sporli, Int. Assoc. Sedimentologists Spec. permission of R. N. Anderson and the publisher, copy• Publ. No.4, 147-70 by permission of the author, the right © 1982 Macmillan Journals Limited; Figure 15.2 Editor and Blackwell Scientific Publications; Figure 15.9 by D. E. Karig, reproduced from the Annual Review of by J. c. Moore et al., reprinted from Nature Vol. 281, Earth and Planetary Sciences Volume 2, 51-75 by pp. 638-42 by permission of J. c. Moore and the permission of the author and the publisher, © 1974 by publisher, copyright © 1979 Macmillan Journals Annual Reviews Inc.; Figure 15.3 reproduced from G. Limited; Figure 15.10 reproduced from A. Nur and Z. Di Paola, Bull. Volcanol. 36,517-60 by permission of the Ben-Avraham, Tectonophysics 99, 355-67 by permission author and the publisher; Figure 15.4a reproduced from of A. Nur and Elsevier Science Publishers; Figure 15.12 B. H. Baker et al., Geol. Soc. Am. Spec. Paper No. 136, reproduced from D. E. Karig, J. Geophys. Res. 75, 1-67 by permission of B. H. Baker and the Geological 239-54 by permission of the author and the publisher, Society of America; Figure 15.4b reproduced from P. © 1970 by the American Geophysical Union. Mohr and C. A. Wood, Earth Planet. Sci. Lett. 33, Figure 1.2 reproduced from G. P. L. Walker et al., 126-44 by permission of P. Mohr and Elsevier Science Geophys J. R. Astr. Soc. 22, 377-83 by permission of Publishers; Figure 15.5a by G. P. Eaton, reproduced G. P. L. Walker and Blackwell Scientific Publications; from the Annual Review of Earth and Planetary Sciences Figure 1.3 reproduced from L. Wilson, Geophys. J. R. Volume 10,409-40 by permission of the author and the Astr. Soc. 30, 381-92 by permission of the author and publisher, © 1982 by Annual Reviews Inc.; Figure Blackwell Scientific Publications. Fig. 1.4 reproduced 15.5b reproduced from G. P. Eaton, Tectonophysics 102, from G. P. L. Walker, N.z.;. GEOL. Geophys. 24, 275-95 by permission of the author and Elsevier Science 305-24, by permission of the author and publisher. Publishers; Figure 15.6 reproduced from W. R. INDEX

Numbers in italic type refer to text figures, and numbers in bold type refer to text sections. aa lavas 4.S.1, 481, 4.5 lithic 334 basaltic lavas Acatlan ignimbrite 194,237-8,5.16, loss from eruption columns 242 eruption of 4.4 7.19,7.20,8.19 phreatomagmatic 3.18, 3.25 features of subaerial lavas 4.S accessory lithics 54 turbidites 9.2.2, 287-9 fire fountains 64 accidentallithics 54 vitric 335 massive 73 accretionary lapilli S.S, 356 ash cloud surge S.6.2, 7.7.3 passage into water 4.7 accretionary prisms, forearc settings deposits S.7.3, 7.10, 484, 485, 5.20, pillow 73 IS.I, IS.7-9, 15.2, 15.9 5.23 sheet 73 achneliths 49, 134,3.17 ash fall deposits submarine 4.6 acidic rocks distal silicic 6.9 basaltic pyroclasts 48-9 definition 17 ash flow tuff (see also ignimbrite) 225 basaltic shield volcanoes 13.2, 13.1-5 mineralogy 17 Askja 65,116,143,159,166,168,3.21, Galapagos type 13.2.2 356, 12.5, 481 6.17,6.33,6.37,6.44 Hawaiian type 13.2.1 agglutinated lavas (see also clastogenic Aso caldera 103, 395 Icelandic type 13.3.3 lavas) 64 aspect ratio 62, 64, 71, 89 basaltic successions facies models agglutinates 48,134,481,6.8,13.24 Ata caldera 395 continental 14.S.1, 14.7 Agua de Pau 384, 6.15, 13.29 Augustine volcano 154 description 427 Aira caldera 233,395,8.3,8.20 autobreccia 3.7, 481, 3.27 economic significance 427 alkali basalt 17 nomenclature 12.7 facies model 14. 7 andesitic lavas 4.S, 4.18 auto brecciation 3.7 basanite 17 Angahook Basalt member 3.11 autoclastic base surge 114--15, 7.7.1,5.18,5.19 Angra ignimbrite 342 processes 34 depositional processes 7.9 arc volcanism - tectonic setting rocks 4 deposits S.7.1, 7.10, 484, 485, 5.19, continental margin 446, IS.9, 15.9, avalanches 300-3, 330, 10.3, 10.4, 5.21,5.22,6.10,7.35,7.37-44, 15.10 10.8-10 13.23 island arc 446, IS.7, 15.2, 15.7, 15.8, dry 115,206 15.12 ballistic fragments (see also bombs) 133, subaqueous 9.7 microcontinental446, IS.S, 15.8, 15.9 6.24,13.20 transport mechanics 7.S area plots 146,470, 6.1S, 6.19 clast trajectory - velocity calculations wet 115,206 armoured lapilli 126 470 basement 455,458 ash 47, 485 ranges Table I.l types as indicators IS.10 classification 11.1 Bandai-san 351 basic rocks crysta1335 Bandelier tuffs 232, S.7.1, 256-8, definition 16 deep-sea layers 9.6 Plate 13,400,3.24,6.14,6.17, Basin and Range Province 446, IS.6, duration of large magnitude explosive 6.19, Plate 8, 8.20, 8.26-30, 8.36, 15.5,15.6 eruptions from deep-sea ash layers 8.42,8.44,8.46, /.1, Table 1.2 bentonite 244 288 ash cloud surges 120, 341-2,5.23, Bezymianny 107 elutriation from pyroclastic flows 103, 8.28 Big Glass Mountain 180,242 Barcena volcano 296 obsidian flow complex Plate 2, 86

519 520 INDEX bimodal volcanism 455 genetic 12.2.1, Tables 12.1-5 airfall 341 Bingham substances 21, 22, 2.3, 2.12 grainsize 353, 358 ignimbrite 342 Bishop Tuff 6.14,8.40,8.41,8.45 hyaloclastites 12.7 pyroclastic flow deposits 342-3 block and ash flows 107 lithological 12.2.2 pyroclastic origin 11.5.1 deposits 5.5.2, 483, 5.14, 5.15 modern pyroclastic deposits 12.2 surge deposits 341-2 block lavas 65, 76 non-genetic Table 12.7 crystal concentration blocks 47 peperite 361 determinations 475-6 Blow Hole Latite3.11 pyroclastic fall deposits 350 epiclastic processes 11.4.3 boccas 64 pyroclastic flow deposits 351-3 eruption-related processes 11.5.2 Bombo 2.11,3.12 pyroclastic surge deposits 353 factors affecting 11.4, 11.6 bombs 47,134,3.14,6.10,13.20 sorting 358 ignimbrites 242 sag structures 13 .20 'tuff, use of 12.5 in magmas 11.4.1, 11.3 boninites 457 'vulcanian breccia', use of 12.5 pyroclastic flows 103, 11.4, 11.5 Boyd Volcanic Complex 85, 3.10, 3.26, welding 355,358 crystal content of magma, 11.3 14.4 clastogenic lavas 65, 134,373,13.24 effects on viscosity 2.5.5 breadcrust texture 3.15,6.24,10.31 climatic effects crystal-rich volcaniclastics Ch. 11, Bridgewater volcano 3.18, 5.24 volcanic eruptions 103 Plate 11, 11.2 cognate lithics 54 airfall deposits 341 Cader Rhwydog Tuff 280,281 co-ignimbrite ash-fall deposits 103, 8.6 deposits 11.5 caldera collapse 233, 234, 398 co-ignimbrite breccias 8.5, 483, 484, epiclastic origins 345 breccias 242,398,481 8.20,8.21 fragmentation modes 11.3 calderas 79, 8.1, 8.2, 13.3, 13.26, 13.27, co-ignimbrite lag-fall deposit 237, 483 ignimbrite 342 13.31,13.37,13.38,13.41,13.42 colonnade 71, 4.10 mixed pyroclastic and epiciastic origin size 8.13 Columbia River plateau Plate 4, 369, 11.5.2 Campanian ash 243, 8.25 4.19,4.10,13.7 pyroclastic origin 11.5.1 Campanian ignimbrite 395, 7.13, 8.25 column collapse 5.4.2, 150,8.3 surge deposits 341-2 Capel Curig Volcanic Formation 276, columnar jointing 71, 4.10 terminology 344 283,9.6,9.7 ignimbrite 252, 8.39 crystallisation Capelhinos 45, 115, 5.18 comendite 17 effects on exsolution 35 component proportion analysis in second boiling 35 exsolution of 34 modern pyroclastic deposits App. Cyprus type massive sulphide deposits Carpenter Ridge ignimbrite 342 1.1.4 405 volcano 13.27 composite volcanoes see stratovolcanoes Cerro Galan 232,234,395,8.2 composition 9 Cerro Negro 384, 6.25 of volcaniclastic 12.4.2 dacitic lavas 4.8, 4.18, 4.19 Chao dacite flow 62, 76 compound lavas 63 Dali Ash 271-5, 280, 323, 344,3.23, Circle Creek Rhyolite 81 confining pressure 9.1,9.2 classification definition 34, 35 Deborah Volcanics 2.13, 3.11 components in pyroclastic deposits effects on exsolutionlvesiculation 34, debris flows 29,323-5,2.13,10.30 Table 12.6 35,36 cohesive 29, 323 grain size classes, non-genetic continental margin arc volcanism 446, dead zones 29 Tables 12.7, 12.8, App. II 15.9,15.9,15.10 deposits 323-5, 480, 483,10.31 pyroclastic falls and their deposits, continental rift volcanism - tectonic flow state 29 genetic Table 12.1 setting grain dominant 325 pyroclastic flows and their deposits, broad zones 446,15.6,15.5,15.6 interior channels 29 genetic Tables 7.1,12.2,12.3 narrow linear zones 446,15.5,15.3, laminar flow 29 pyroclastic surges and their deposits, 15.4 levees 29, 325 genetic Table 12.4 cooling units 255 mobility 7.2 pyroclasts Table 12.5 cored lapilli 126 plug flow zones 29, 325, 2.13 sediment transport processes Cotopaxi 108, 110 turbulent flow 29 Table 10.1 coulees 81, 87,4.22,4.27,4.28 yield strength 29, 325 classification of magmas, igneous rocks Crater Elegante 13.14 Deccan Traps 61, 369 chemical 2.1.1, Table 2.1 Crater Lake 233,235,251,386,13.25, decompression of magma 36, 40 mineralogical 2.1.1, 2.1 13.26 decompressional vesiculation 35, 36 classification of volcaniclastic deposits critical point deep-sea ash layers 9.6 Ch.12 pure water 38, 3.6 bioturbation of 288 'agglomerate' , use of 12.5 salt water 38, 40, 3.8 estimating duration of large ancient volcaniclastic rocks 12.3 cross stratification 309 magnitude explosive eruptions 289, auto breccias 12.7 low angle 98,213, 311 9.16-18 composition 12.4.2 surge deposits 98,212,311 Deep-Sea Drilling Project 447 constituent fragments 355 cryptodome 78, 4.20 deformation of volcanic successions descriptive lithological aspects, rhyolitic 82 415-16.,14.3.7,14.6 ancient volcaniclastic rocks 12.4 crystal ash/tuff 334, 335, 11.5, 11.1, 11.2 degassing of magma 60 INDEX 521 density upper convection plume 98 marine stratovolcanoes 14.8.6, 14.10 determinations for modern pyroclastic eruption rate 38, 289 mid-oceanic ridge volcanism 14.8.4, deposits App. 1.1.6 andesitic lava Table 4.2 13.49,15.1 juvenile fragments 3.20 basic lava Table 4.1 intra-subglacial volcanism 14.8.9, magmas 2.3 dacite lava Table 4.2 13.51 pumice 3.21, Table 7.2 explosive eruption columns 100-2 Precambrian volcanism 14.8.10, devitrification 8.10.3, 415, 416, 14.3.2, flood basalt 63 14.13,14.11 14.4 ignimbrite 63 submarine felsic volcanic centres associated vapour phase crystallisation silicic lavas 63, Table 4.2 14.8.7,14.11 419 eruption velocities 38 uses 14.7 chemical effects 419 Ethiopian flood basalt province 369, volcanic centres/successions Ch. 14, in ignimbrites 419, 8.37, 8.45 13.6 14.8 spherulites 419,14.4 Ethiopian Rift Valley 15.3 felsic 17 stages 418 eutaxitic texture 166,8.38 felsic volcanoes-continental see rhyolite diagenesis of volcanic successions 415, pseudo- 270, 417 volcanoes 14.3.5 explosive fragmentation of magma 3.2 associated deep marine facies 14.8.8 diamictite 307, 483 open vent 3.2.2 . felsic volcanoes-submarine-facies models diatremes 377 role of magma mixing 3.3 description 435-6 diffusion coefficient 36 sealed magma chamber 3.2.1 economic significance 436 diffusion of volatiles 36 subaerial vents 36-8 facies model 14.11 basalts 36 subaqueous vents 38-41 fiamme 166,251,255,8.38,8.43 effect of viscosity 36 vesicle growth 3.3, 3.4 fines depletion processes in pyroclastic rhyolites 36 exsolution of volatiles 3.1,3.2 deposits 7.46 domes 81, 4.18, 4.21-4, 4.29 carbon dioxide 34 fire fountains 64 caldera 13.9.4 crystallisation induced 35 first boiling 35 collapse 5.4.1 decompressional 35, 40 Fish Canyon Tuff 232,342,8.17,8.18 cratered 81 factors controlling 34, 35 vent system 8.4.3 marginal talus deposits 481 first boiling 35 Fishguard Volcanic Group 280 resurgent 400 water 34 fissure vents 64 rhyolitic 83, 87 flood basalt Plate 4, 60,4.5.2 subaqueous silicic 88 fabric 10 aspect ratio 71 Donzurobo Formation 281 facies eruption of 64 double grading 275 analysis 4-12 paleoflow indicators 73 Dyffryn Mymbyr Tuff 9.7 associations of 6, 11, 424 vents 64,13.3,13.7, Table 13.1 concept 1.2 flood lavas Plate 4 East Africa Rift Plate 15,453,15.3,15.4 definition 5 area 60,369 EI Chichon 223 description of 1.3, 14.6 basalts 4.5.2 ensialic marginal basin 451,460 descriptive lithological aspects 12.4 Columbia River Plateau 61,369,4.10 entablure 71, 4.10 fossils in 1.3.5 Deccan Traps 61, 369 epiclastic geometry of 1.3.1, 14.2 discharge rate 63 definition 4, 8, 34, 56, 294, 360 interactive stratigraphic/facies eastern Iceland 61 deposits Ch. 10, App. II. diagrams 415 effusion rate 63 fragmentation 34, 3.8 interpretation 14.6 eruption duration 61, 63, 369 epiclastic processes Ch. 10 of 1.3.2, 12.2.2, 12.4, 14.3 Ethiopian flood basalt province 369, response to volcanic events 295 palaeocurrents of 1.3.4. 13.6 rhyolitic volcanoes 401 palaeoenvironmental indicators 14.5 flow distances 61 sediment transport 10.3 post -depositional modification 14.3 length 60 stratovolcanoes 13.7.4 sedimentary structures of 1.3.3 thickness 61 epithermal mineralisation 416 stratigraphic relationships 4, 14.2, vents 60,64,370,13.7, Table 13.1 erosion 1.1,1.2 volume 63, 369 in volcanic terrains 10.2 trends 425 flow banding 28, 78, 84, 87,2.10,2.11, rates 295 facies models 4.23 eruption column 5.2.1, 5.7, 5.8, 8.8, basaltic seamounts 14.8.5, 13.50 flow-foot breccias 75, 4.16, 4.17 8.9,8.11, Table 5.2 continental basaltic volcanic flow fragmentation 34 ash loss 242 successions 14.8.1, 14.7 flow regime 310 collapse 5.4.2, 150,8.3 continental silicic volcanoes 14.8.3, fluid flow states 15,2.7 duration Table 5.2 14.9 fluidisation effect of wind 102, 13.28 continental stratovolcanoes 14.8.2, ash elutriation 180 gas thrust zone 98 13.32,14.8 curves 7.3,7.5,7.6 height 38, 42, 98-103, 5.9, 6.20, deep marine distal volcanics 14.8.8, experimental rig 7.4 Table 5.2 14.12 in pyroclastic flows 7.2 phreatomagmatic 103 functions 425 minimum fluidisation velocity 180, umbrella region 99 ignimbrite 8.7 7.3 522 INDEX

of sediments 43 Halemaumau crater 365 compound 8.33 fluidised sediment flows 320 Hanauma Bay crater complex 5.21 cooling units 255 Fogo plinian deposit 150, 341, 6.15, Harman Valley lava flow 4.5 crystal concentration 242, 342 6.17,13.29 Hatepe ash 158-61,261,8.49,8.52, definition 110, 224 Fogo volcano 143 8.53 density 8.40, Table 7.2 Fort Rock tuffring 13.14 Hatepe plinian pumice deposit 260, 470, deposits 5.5.3, 7.3 fragmentation 1.4, Table 1.5 devitrification 8.10.3 of magmas Ch. 3 Hawaiian-Emperor seamount chain 452 distances travelled Table 8.2 Froude Number 310 Hawaiian fall deposits 131,6.3.1 eruption rate 63, 8.7.3, 8.34 Fuego volcano 108, 153,295,384,392, classification 6.3.3 eruption sequence Plate 8,8.18 5.6,6.25,13.32 Hawaiian shield volcanoes 13.2.1 facies model 8.7, 7.27,8.30 fuel-coolant interaction 43, 45 growth stages 366 fiamme 251, 255 Fuji 383 summit calderas 365 fines depleted 199, 248, 480, 483, fumarolic pipes 258, 8.45-7 superimposed volcanoes 365 7.28 Furnas 384 volume 365 fumarolic pipes 258 Hawaiian style eruptions 129,6.2 gas segregation pipes 7.3.4,7.7, Galapagos rift 74 mechanisms and dynamics 6.3.2 7.14-16 Galapagos shield volcanoes 13.2.3 head deposits grade 255 Galiarte cone 6.9, 6.11 pyroclastic flows 197, 202 grain size characteristics 7.9, 7.11, Garth Tuff 276, 9.7, 9.8 Heimay Plate 3, 137-40,364,6.11 7.13,7.18,7.36,7.45, Table 1.2 gas bubbles Hekla volcano Plate 6, 143, 144 ground breccia, layer 119, 198,202, effects on viscosity 2.5.6 Helgafell Plate 3 241,483, 7.26,8.20 gas segregation pipes 96, 181, 7.3.4, Hibok-Hibok 107 head deposits 198, 202 7.7, 7.14-16 hornitos 69 intracaldera 227, 235 geochemical fingerprinting of modern hyaloclastite 45,54,75-6,88,360-1, intraplinian ignimbrite 232 pyroclastic deposits 478 409,481,3.10,3.12,3.26,13.52 lag breccias 238, 483, 8.19, 8.20, 8.22 geothermal systems 401 hydraulic fracturing 415, 14.3.4 landsat image 8.2 Gerringong Volcanics 3.11, 3.12, 10.13, breccias 482,14.5 lateral grading 7.3.5 10.19 hydraulic sorting 294 lithic concentration zones 188,482, glacial sediment transport 305-8, 10.14, hydrostatic pressure 7.10 10.15 effect on explosive fragmentation 36, maps 8.1,8.3-6,8.32 deposits 305-8, 483, 10.13, 10.14 40 occurrence 8.2 diamictite 307, 483 pressure gradient 38 outflow sheets 227, 8.17 till, tillite 307, 483, 10 .15 hydrothermal alteration 415,14.3.1 palaeocurrent indicators 8.8 grading associated mineralisation 416 pumice concentration zones 188,480 gravity-density 190 effects on deformation 14.3.8 rheomorphism 255 lateral in pyroclastic flow deposits minerals 415 rootless explosion craters 251 7.3.5 textural effects 417, 14.2, 14.3 258 reverse 188, 189,304,323 hydrothermal explosions 3.4.5 simple 8.33 shear induced 190, 305 craters 404 size 224, 8.13 vertical in pyroclastic flow deposits deposits 3.4.5, 482 source vents 8.4 7.3.3 vents 405 stratigraphy 8.7, 8.17 grain flow 303-4,310,320,10.11 hydrovolcanic activity 42,3.4,55, 157 thickness 7.3.1,7.9,8.4,8.31 grainsize 9, 358 eruption mechanisms 6.8.3 valley pond 200, 247, 7.31,8.32 classification, non-genetic Tables vapour phase crystallisation 8.10.2, 12.7, 12.8, App. II Ice Harbour flows 370 8.42,8.45,8.46 classification of pyroclasts Table 12.6 Icelandic shield volcanoes 367, 13.2.2 veneer deposit 200, 247,7.30,7.31, determination App. 1.1.3 ignimbrite Ch. 8, App. 11,5.14,5.16, 8.32 distribution App. 1.1.3 7.1 vents 8.4, 8.14, 8.16 Folk and Ward statistical parameters aspect ratio 8.34 vertical grading 7.3.3 474 associated secondary deposits 8.9 vitrophyre 252 graphical standard deviation 472 basal layers 7.3.2, 7.9 volume Table 8.1 Inman statistical parameters 472 bedforms 200 welding 8.10.1, ,8.37-44 maximum App. 1.1.2 chemical analyses 8.11 ignimbrite forming eruptions Ch. 8 median diameter 472 co-ignimbrite breccias 8.5, 247,483, Inman grainsize statistical parameters pyroclastic fragments 353 484,8.20-22 472 sieving methods 471 co-ignimbrite lag breccia 238, 483 graphical standard deviation 472 sorting statistic 472 co-ignimbrite lag-fall deposit 237, 483 median diameter 472 Green Tuff, Pantelleria 168, 6.46, 6.47 columnar jointing 252 sorting 472 ground layer 119, 198,202,482 compaction 8.36, 8.40, 8.41 interactive stratigraphic diagrams 13 .30, ground surge 5.6.2, 7.7.2 composition 224 13.39,14.1 deposits 5.7.2, 7.10, 484, 485 compositional zoning 7.3.6, 7.19, intermediate rocks 7.20 definition 16 INDEX 523

mineralogy 16 lava flows Ch. 4 magma intermediate-silicic multivent centres aa lavas 4.5.1, 4.6 density of 2.3,2.2 13.8 andesitic 4.8 mixing 15,3.3 intraglacial volcanism see subglacial basalts 60--2 network modifying elements 26 intra-plate volcanism - tectonic setting Bingham substance 64 network structural units 26 continental 446, 15.5 block lavas 65 polymerisation in 26 oceanic 446, 15.4 caves 67,4.7 properties of Ch. 2 inverse volcanoes 395 compound 63, 4.3 rheology of 15 Irazu volcano 153,6.23,6.25 dacitic 4.8 solubility of water 24, 3.1 island arc volcanism 446,15.7,15.2, dead zones 64 temperature of2.2, Tables 2.2, 2.3, 15.7,15.8,15.12 degassing of 65 2.4 isopach maps 469,6.15,6.21,6.22, dimensions 4.2 viscosity of2.4, 2.6, 2.7, 2.8, 6.29,6.34,6.44,6.45,8.4,8.31, effect of slope 64 Table 2.4 8.32,8.51,8.54 effusion rate 4.3.1, Tables 4.1, 4.2 yield strength 2.4, Table 2.4 isopleth maps 470, 6.15, 8.31,8.32, eruptive conditions 59 magmastatic pressure 36 8.53,8.54 fire fountains 64 magmatic associations 2.1.2 Ito pyroclastic flow 7.18, 8.3, 8.20 flood lavas 63 magmatic explosions 3.2, 34 flow distance 62 mantle bedding (air-fall deposits) 96 Jeffreys equation 22 lengths 60--1 marginal basin volcanism 446, 15.3, jokulhlaups 317, 409, 10.24 levees 64,70--1,4.9 15.2,15.7 juvenile fragments 3.5.1 massive 73 Marianas Island Arc 15.7 pahoehoe lavas 4.5.1, 4.5 mass flow/movement 297, 298, 304, Kaingaroa ignimbrite 3.23 palaeoflow indicators 67, 73, 87 307-8,316--29,330, App. 11,10.29 Karoo basalts 369 62 Mauna Iki 4.5, 4.7 Katla volcano Plate 6 physical properties 4.3.2 Mauna Kea 364, 366, 13.4 Kauai 299 pillow lava 73 Mauna Loa 62,365,4.6 Kawera geothermal field 404 pressure ridges 69, 4.8 Mauna Vlu 67,69,73,76,365,369,4.5 keratophyre 19 rheology of 65 Mayon volcano 108 Kilauea 45, 140,364-5,369,4.5,6.11, rhyolite 62, 4.9 Mayor Island 173 13.2,13.3 sheet 73 Megalo Vourno 6.6 Koko crater 5.24 simple 62, 4.3 Merapi 107 Komagatake 110 size and form 4.2 Merrions Tuff 88, 273, 281, 282, 323, komatiite lavas 30, 60, 4.12, 4.31,4.32 submarine basaltic 4.6 Plate 11,343-4,4.30,10.27,14.4 eruption temperatures 90 thickness 64 mesa lavas 81 Reynolds Numbers 90 62 metamorphism of volcanic successions rheology 90 tumulus 69, 4.8 415, 14.3.6 thickness 90 viscosity 60 microcontinental arc volcanism 446, viscosities 90 volume 60--1 15.8,15.8,15.9 komatiitic basalts 89 width 64 microlites 8 Kos 345, 402, 13.44 lava fountains 64, 134-7 mid-oceanic ridge, 13.48, 13.49 Kowmung Volcaniclastics 344, Plate 14 lava lakes 65,71 central volcanoes 405 Krakatau 110, 151,223,281-2,386, lava tubes 67-9, 4.7 hawaiian type shield volcanoes 406 391,9.10 levees 29, 70 hydrothermal vents 405 Kuroko ores 40,395,401 Lipari, Aeolian Islands 80,4.21,4.22, lavas 75 Kyushu caldera 395 4.23,4.26 median rift valley 405--6 liquefied sediment flows 320 mineralisation 406 233, 8.17 lithic ash/tuff 334 tectonic setting 446, 15.2 La Primavera volcano 79,85,88,375, lithology 1.3.2, 12.2.2 vents 74, 13.48 397-400,13.9.4,4.21-3,6.17, lithophysae 84, 4.25 volcanic activity 75, 446, 15.2 6.19,8.12,8.31,13.37,13.39, lithostatic load volcanoes 13.10.1, 13.48, 13.49 13.45-7 role in vesiculation 34, 36 mid-oceanic ridge rift volcanism-facies Laacher See littoral cones 76, 13.6,13.24 models Tephra 244 loess 10.32 description 432 volcano 244 Long Valley calderas 79,81 economic significance 432 Laguna de Bay 394,13.36 Los Chocoyos ash 289 facies model 13.50, 15.1 lahars 323-7, 480, 483 milling 47 Lake Atitlan 289, 7.13 maars 13.5, 13.14-17, 13.21,13.22, Mineral King Roof Pendant 282 243, 397,8.24 Table 13.2 mineralisation Laki basalt flow 61,63,4.1 deposits 378, 7.37, 7.40, 7.41, continental basaltic volcanic laminar flow 15,2.7 13.20-22 successions 427-8 landslides 299-300, 10.5-7 dimensions 377, 13.18 continental silicic volcanoes 430--2 lapilli 47 eruptive activity 379 continental stratovolcanoes 428 lava deltas 75 mafic 17 deep marine distal felsic volcanics 436 524 INDEX

hydraulic fracture breccias 420 nomenclature of pyroclastic and magma rising into a hydrothermal intra-subglacial basaltic and rhyolitic epiclastic volcaniclastic deposits see system 3.4.5 volcanism 437 classification pyroclastic flows moving into water or marine stratovolcanoes 434 Novarupta 233 over water-saturated sediments mid-oceanic ridge rift volcanism 432 nuees ardentes 107, 225, 351-3 3.4.4 oceanic basaltic seamounts 432 surges 5.6.1 Precambrian volcanism 441 obsidian 83-5, 2.10, 4.23, 4.25 water: magma mass ratio 42,45,3.9 submarine felsic volcanic centres 436 definition 18 phreatoplinian fall deposits 131, 6.8.2, Minoan deep-sea ash layer 9.14 flow, Big Glass Mountain Plate 2 261,6.33-5 Minoan eruption 232, 237 oceanic crust 404 coarse-tail grading 158 Minoan ignimbrite 242, Plate 9, 7.9-12, geochemistry 449 D-F plots 6.36 7.15,8.4,11.4 seismic stratigraphy 447,15.1 grainsize characteristics 6.3 7 mixed pumice 41, 170,3.22 stratigraphy 447-9,15.1 phreatoplinian style eruptions 6.8.2 moberg 409 ogives Plate 2, 85 mechanisms 6.8.3 Mono Craters 79-81,85 Ohakune craters 6.5, 6.8 physical constituents 8 Monte Somma 384 Ohanapecosh Formation 284-5,9.1 Picture Gorge Basalt 4.10 Mt Eccles 379, 4.5,13.13,13.22 Okataina volcanic centre 143, 234, 397, pillow lava 73, 4.11-14 Mt Egmont Plate 10,6.25,10.31,13.25 Plate 1,2.10,4.23,6.14,8.14 intrusive 3.11 Mt Elephant 3.14,13.9,13.13 Older Volcanics 374 plains basalt 4.5.3 Mt Etna 62-3, 71, 383,4.9 Olekele avalanche 299 rift zones 371 Mt Hamilton 4.5 Onikobe caldera 9.1 vents 13.3 Mt Lamington 107, 108, 118 ophiolite 404, 447-50 plate margins and volcanism Mt Leura 380, 3.14a, 6.6, 6.8, 6.10, stratigraphy 447, 15.1 stress field conditions 15.11 7.44,13.13,13.22,13.23 Oruanui Formation 158-9,6.33,6.35 plate tectonics Mt Mazama 235 Oruanui ignimbrite 5.2, 5.14, 5.24 setting for volcanism 15.1 Mt Misery 387, 5.15,6.32,13.28 Plateau Ignimbrite 283, 402, 13.44 Mt Napier 3.13 pahoehoe lava 4.5.1, 4.5 Platoro caldera complex 342, 8.38 Mt Pelee 107, 110, 118, 119, 130,202, channels 67 pipe vesicles 73 218,225,351,386,3.20,3.24, lava caves 67 pitchstone 18 5.10,5.15,5.20 lava tubes 67 Pitts Head Tuff279, 9.9 Mt Rainier 301-2, 307, 325, 10.10, palaeoflow indicators 67 plinian fall deposits Plate 6,131,229, 10.14 ropy 67 482,6.13-15,8.12 Mt Ruapehu see Ruapehu shelly 67 area plots 6.18, 6.19 Mt St Helens 45 transition to aa lava 70 basaltic 140 ash cloud surges 120 palaeocurrents 1.3.4 compositional zoning 145 ash fall deposits 165,243,5.8 in ignimbrites 8.8 grain size characteristics 6.16, 6.17, avalanche 300-2 palagonite 382 6.37,6.38 blast deposit 118, 218-19,7.45 palagonitisation 415, 14.3.3 internal and lateral changes 6.4.2 debris flow deposits 191, 325, 351 chemical effects 420 internal stratification 144, 150 dome collapse 107 Pantelleria 166, 168, 173, 6.46, 6.47 intaplinian ignimbrite 232 glaciers 307 pantellerite 17 reverse grading 144 ignimbrites 1l0, 179,202,223, 7.1, Panum Craters 80 volume estimates Table 6.2 8.6,8.35 Paricutin volcano 140, 364, 374, 6.11 zoned deposits 6.14 lahars 325 particle free fall 10.2 plinian style eruptions 129,6.4,239 landslide 299, 386, 10.6 particulate sediment transport 297-8, column collapse 150-1,8.3,8.8-11 phreatic explosion craters 46, 251, 305-7,308-15,329-30 duration Table 6.4 280,8.35 Pele's hair, tears 134 eruption rates Table 6.3 plinian fall deposits 144 pelean style eruptions 129 general features 6.4.1 pyroclastic flows 5.10, 5.12,7.1 peperites 43, 46, 55, 361 mechanisms and dynamics 6.4.3 Mt Shasta 13.25 perlite 83-5 muzzle velocities Table 6.3 323-5, App. II phenocrysts 8 polymerisation in magmas 24, 26 muzzle velocity 6.2,470,6.20 Phlegrean volcanic field 394 polyphase alteration see hydrothermal Mweelrea Group 280 17 alteration phreatic explosions 34, 3.4, 42 porosity determination App. 1.1.6 17 craters 8.35 Precambrian volcanism-facies models Newberry Crater 4.23 phreatomagmatic deposits 6.29-32 description 440-1 Newer Volcanics volcanic province 374, phreatomagmatic explosions 34, 40, 42, economic significance 441 379,13.13,13.15,13.16,13.22 157 facies model 14.11, 14.13 Newtonian substances 21, 22, 2.3 eruption column height 103 pressure turbulence criterion (Reynolds interaction with groundwater 3.4.1 effects on viscosity 2.5.1 Number) 27, 28, 2.9 interaction with surface water 3.4.2 pressure ridges 69, 4.8 Ngauruhoe 108, 154, 190,386,6.25, lava flowing into water or over water- pseudocraters 76, 13.6 6.27,6.28, 7.1, 13.43 saturated sediments 3.4.3 pseudoplastic substances 22, 2.3 INDEX 525

Pukeonake scoria cone 5.24,10.12 pyroclastic fall deposits 5.1.1, 5.3, thickness 7.3.1 pumice 36, 49, 3.19 Ch. 6,5.1,5.2,5.4 valley pond ignimbrite 200 concentration zones in ignimbrites area plots 146,470,6.18,6.19 yield strength 183 188,480 ash cloud deposits 5.2.2 pyroclastic flow forming eruptions 5.4 crystal content App. 1.1.5 ash-fall deposits 104 column collapse 5.4.2, 150,8.3,8.8, diapirs 86 associated surges 120 8.9,8.10,8.11 density 3.21, Table 7.2 ballistic fragments 133 lava dome collapse 5.4.1 fall deposit (see also plinian fall classification of 130, 351, 6.2, subaqueous 9.4 deposits) 5.4 Table 12.1 pyroclastic flows 7.8 flotation 315, 10.21 D-F plots, 6.1, 6.2, 6.11, 6.25, 6.36 ash elutriation 103, 180 flow deposits (see also ignimbrites) grain size characteristics 5.3, 6.3, 6.7, block and ash flows 107 5.5.3 6.9,6.11,6.13,6.15,6.16,6.21, classification of types Table 7.1, flow transport mechanics 7.4, 8.23 6.25,6.31,6.35,6.37,6.38,6.43, Tables 12.2, 12.3 giant pumice beds 403,484,13.45, Table I.2, Table I.3 crystal concentration 103 13.46 mantle bedding 96, 5.1,5.2 definition 181 mixed 41,170,3.22 methods of study for modern deposits distances travelled Table 8.2 recognition in the rock record 14.4 App. I entry into water 9.11,9.13 terminal fall velocity 7.23 pumice fall deposits 104 fluidisation 7.2 vesicle nucleation size 36 scoria fall deposits 104 form 7.5,7.24 • pumice cones 13.4, 374 thermal facies model Table 6.6 mobility 7.2 Purrumbete, Lake 380, 5.21,7.37, pyroclastic fall forming eruptions 5.2 nuees ardentes 107,225,351-3 13.13,13.15,13.22 explosive eruption columns 5.2.1 passage from air into water 9.5 Puu Hou 382 hawaiian 104 relationship to surges 7.12 Puu Ki littoral cones 13.24 phreatoplinian 104 subaerial Ch. 7 Puu Waawaa pumice cone 366, 374 plinian 104 subaqueous Ch. 9 pyroclastic strombolian 104 submarine eruption 9.4 definition 4, 8, 350 sub-plinian 104 temperature Table 5.1 nomenclature/classification of deposits surtseyan 104 transport and deposition Ch. 7 12.2,360 terminal fall velocity 94 transport mechanics 7.4,7.25,7.29, pyroclastic deposits - modern ultraplinian 104 7.32,8.23 area plots 470 vulcanian 104 violent flows 96, 179 ballistic clast trajectory-velocity pyroclastic flow deposits (see also viscosity 193 studies 470 ignimbrite) 5.1.2, 5.5, 7.3, Ch. 8, yield strength 183 classification Tables 7.1,12.1-5 5.5,5.6,5.12-16 pyroclastic surge 98, 5.6, 7.6-12 component proportion analysis App. basal layers 7.3.2, 197 ash cloud surge 5.6.2, 7.7.3 1.1.4 bedforms base surge 5.6.1,7.7.1 components Table 12.6 deposits 5.5.1 classification Table 12.4 dating 478 classification 351, Tables 7.1,12.2, depositional processes 7.9 density App. 1.1.6 12.3 energy chain 7.33 fines depletion processes 7.46 coarse-tail grading 96 ground surge 5.6.2,7.7.2,7.34 geochemical fingerprinting 478 compositional zoning 7.3.6 initiation 7.7 grain size characteristics (see also crystal-rich 342 transport mechanics 205 pyroclastic fall, flow, and surge fines depleted ignimbrite 199 pyroclastic surge deposits 5.1.3, 5.7, deposits) 5.3, 1.1, App. 1.1.3, fossil pipes 96 7.10 Table I.2 gas segregation pipes 96, 181,7.3.4 ash cloud surge 5.7.3 grainsize determination App. 1.1.3 grading 186, 7.3.3 base surge 5.7.1,7.35,7.40,7.43, isopach maps 469 grainsize characteristics 5.3,7.13, 7.44 isopleth maps 470 7.17,7.18,7.36,7.45,8.22, Table bomb sags 217 mass calculations 1.4, Table 1.5 I.2, Table I.3 chute and pool structures 98 maximum grain size studies App. 1.1.2 ground layer 198, 202 classification 353, Table 12.4 methods of study App. 1 head deposits 198, 202 comparison with turbidity current muzzle velocity 470 ignimbrite 5.5.3, Ch. 8 7.11 physical analysis App. I.1 ignimbrite veneer deposit 200 depositional structures 7.10.6 porosity App. 1.1.6 lateral grading 7.3.5 dune-form structures 98,210,213, relationship to topography 5.1 lithic concentration zones 188 214 sieving 471 methods of study for modern deposits geometry 7.10.1 sorting classes 472-3, Table 1.4 App.1 grain size characteristics 7.10.2, 7.39, stratigraphic analysis App. 1.2 pumice concentration zones 188 7.41, Tables I.2, I.3 tephrochronology 477 pumice flow deposits 5.5.3 ground surge 5.7.2 terminal fall velocity 475 scoria and ash flow deposits 5.5.2 low angle cross stratification 98, 213 thickness A pp. 1.1.1 reverse grading 188 methods of study for modern deposits volume calculations 470, 1.4, thermal oxidation 96 App. I Table I.5 thermal remanent magnetisation 98 relationship with pyroclastic flows 7.12 526 INDEX

sorting 7.10.3 domes 13.9.4 eruption duration 372 pyroclasts 3.5 epiclastic processes 401 vents 371 bombs 47,134,3.14 eruption styles 13.9.3 scoria flow deposits 5.5.3, 480, 483, classification of grainsize and evolutionary cycles 400 5.14,5.15,7.1 nomenclature Table 12.5 facies models 13.37, 14.9, 14.11 scoria concentration zones 480 crystals 3.5.2 geothermal systems 401 seamounts 13.10.2,4.15,13.50 juvenile fragments 3.5.1, 3.20 giant pumice beds 403 caldera collapse 407 lithic fragments 3.5.3 hydrothermal explosion craters 404 dimensions 407 phreatomagmatic 3.18, 3.25 life expectancy 13.9.2 eruption and growth 408 maps 13.37, 13.38, 13.42 seamounts basaltic-facies models quartz keratophyre 19 morphometry 13.9.1 description 432 Queen Mary's Peak 384 output rates 13.9.2 economic significance 433 quench fragmentation 34, 40, 42, 43-5 repose periods 13.9.2 facies model 13.50 products 54--6 resurgent domes 400 second boiling 35 Quill, St Eustatius 116,5.22,6.31 rhyolitic tuff rings 404 sector collapse 107 Quizapu volcano 143, 164 ring fractures 398 sedimentary processes in volcanic shadow zones 401 terrains Ch. 10 Rabaul ignimbrite 198,201 stratigraphy 13.39, 13.40 sediment transport processes in volcanic Racks Tuff 276,9.7 submarine calderas 401, 13.44 terrains 10.3, Table 10.1 ramp structures ring plains 383 air as an essential interstitial medium in rhyolite lavas 86--7 Rio Caliente ignimbrite 232, 237, 244, 10.3.4,10.32 Ramsey Island volcanic succession 276, 8.7.2,258,402,5.3,5.16,8.12, avalanches 300-3, 330, 10.3, 10.4, 280 8.20,8.31 10.8,10.9,10.10 Red Rock Volcanic Complex 6.8 Rocche Rosse coulee, Lipari 87 bedload 309 resurgent domes 400-1 Roches lava, Montserrat 78 debris flow 323-7,10.29-31 reverse grading 304,323,10.12 rock fall 298-9, 10.3, 10.4 flotation 311-14, 10.21 basal layers of pyroclastic flows 188, rootless vents 46,279,382,9.9 fluidised flows 320 189 Roseau ash 9.4 glacial transport 305-8, 10.13-15 Reynolds Number 15, 28 Roseau subaqueous pyroclastic deposits grain flow 303-5, 310, 320-1, 10.11 rheology 9.3,9.4 ice rafting 305, 10.13 definition 16 Roseau Tuff 226, 271, 283, 9.3 involving ice as an essential interstitial of fluidised pyroclastic flows 183 Rotoehu ash 46, 339, 341, 11.5 medium 10.3.2 oflavas 65 Rotoiti Breccia 339, 11.5 lahar 323-7 of magmas 15, 16,21 Rotongaio ash 158,260,8.49,8.52,8.53 landslides 299-301, 10.5, 10.6 rheomorphism 168, 173,255,8.43 rounding 10, 359 liquefied flows 320 rhyolite lavas 4.21~ Roza Member, Columbia River Plateau mass movement 297,298-305,307-8, basic inclusions 85 61,63,369,4.1,13.7, Table 13.1 316--29,330 cryptodomes 82 Ruapehu 45,116,173, Plate 12,383, mud flow 323-7 domes 81 3.27,6.39,10.31,13.25,13.43 not dependent on an interstitial eruption of 4.9 medium 10.3.1 features of 4.10 Saidmarreh landslide 179 particle creep 298 flow directions 87 salic 17 particle free fall 298, 10.2 flow fronts 87 San Francisco volcanic field 373, 6.8, particulate 297-8,305-7,308-15, growth 4.10.4 13.8,13.12 329-30 internal structure 4.10.4 San Juan volcanic field 397, 8.1 permafrost creep 308 lithology 4.10.2 San Pedro volcano 5.15 rockfall 298-9, 10.3, 10.4 ramp structures 85-7, 4.27 sandurs 317, 409 saltation 309 ring fractures 398 Santa Maria volcano 63, 143,229,295, sheetflood 316--17 stony 83-4, 4.23 392,10.1 slides 299-301,10.5-7 subaerial4.9 Santaguito dacite dome 63, 199 slumps 328 subglacial 88 Santorini 116, 143, 158, 166,223,233, slurry flows 320 surface features 4.10.3 237,241, Plate 9, 343-4,5.4,6.3, soil creep 328 talus aprons 87 6.8,6.40-42,7.9,7.10,7.12,7.15, solution 316,10.22 thickness 81 8.2,8.3,8.4,11.4,13.30,13.31 subaqueous granular mass flow vents of 4.9 scoria 36, 48,3.16 317-23 rhyolitic volcanoes/centres 13.9, concentration zones 480 suspension 311,329-30,10.20 13.37-43,14.9 fall deposits see strombolian fall torrent flow 316--18,10.23 associated craters 13.9.5 deposits traction 308-14, 329-30, 10.16-19 bimodal associations 401 vesicle nucleation size 36 turbidity currents 318-20, 10.20, caldera collapse 398 scoria cones 13.4, 13.4, 13.8, 13.9, 10.25-9 caldera collapse breccias 398 13.13,13.26 water as an essential interstitial caldera sediments 13.9.4 dimensions 372, 13.10, 13.12 medium 10.3.3 deposits 13.9.3 erosion 372, 13.11 sediment movement patterns 1.3.4 INDEX 527

sedimentary structures 1.3.3 deposits 13.7.3 sub-intraglacial basaltic and rhyolitic tractional 309-14 dimensions Table 13.3 volcanism-facies models sedimentary-volcanic cycles 10.2, epiclastic processes 13.7.4 description 437, 13.11 13.7.4, Table 13.5 eruption styles 13.7.3 facies models 13 .51, 13.52 Serra Gorda 6.9,6.11 facies model 13.32, 14.8, 14.10 sub-plinian fall deposits 131,6.5,6.21 Sete Cidades 384 life expectancy 13.7.2 basaltic lSI shape 10, 358 marine 391, 14.10 sub-plinian style eruptions 6.5 shard 51-2, 3.23-5 mass wastage 13.7.4 Summerfield Formation 345 sheet flood, flow 316-17 mineralisation 391 Sunset Crater 6.11 shield volcanoes 13.2, 13.1-5 morphometry 13.7.1 surges see pyroclastic surge Shuveluch 108 output rates 13.7.2, Table 13.4 Surtsey 45,364,367,407,420 sideromelane 382, 420 parasitic centres 386 surtseyan fall deposits 131,6.8.1,6.29, silicic ash fall deposits 6.9 repose periods 13.7.2 6.31 silicic-intermediate volcanic centres (see ring plains 383 surtseyan style eruptions 6.5.1 also rhyolite volcanoes) 13.8 summit caldera 13.26, 13.27, 13.31 mechanisms 6.8.3 silicic lavas stratovolcanoes-continental-facies models suspended sediment transport 311-14, eruption rate 63 description 436 329-30,10.20 subaqueous 4.11 economic significance 429 silicic magmas facies model 14.8 Taa145, 115,394,5.19,13.36 temperatures 20 stratovolcanoes-marine-facies models tachylite 420 silicic rocks description 433-4 Tambora 110,223 definition 16, 17 economic significance 434 Tarawera 3.15, 5.15, 6.14, 10.12 mineralogy 17 facies model 14 .10 Tarumai 143 silicic volcanoes-continental-facies strength of magmas 2.6 Taupo AD 186 eruption 158,223,237, models see rhyolite volcanoes stress field 8.12 associated deep marine facies 14.8.8, conditions for volcanism 15.1, 15.11 early airfall phases 8.12.1, 8.51 14.12 igneous rocks as indicators 15.12 eruption sequence 8.49, 8.50 description 436-40 Stromboli 137,386,10.5 giant pumice bed 403 economic significance 430--2 strombolian fall deposits 131,482,5.4, stratigraphy 8.48,8.49 facies model 14 . 9 6.5-11,13.23 ultraplinian fall deposit 8.12.2, 8.49, silicic volcanoes-submarine-facies classification 6.3.3 8.54 models see felsic volcanoes volume estimates Table 6.1 Taupo ignimbrite Plate 7,181,198, sillar 258, 8.7,8.47 strombolian style eruptions 129 199-200,244,8.7.2,251,261, sinter 10.22,13.47 gas velocities 137 8.12.3,5.16, 7.25--J, 7.30, 7.31, Skjaldbreidur 13.5 mechanisms and dynamics 6.3.2,6.12 8.20,8.49,8.50 slides 299-301,10.5-7 subaerial vents Taupo (ultraplinian) pumice 153,261, slumps 328 explosive fragmentation of magma 8.12.2,3.19,6.17,6.18,7.26,8.49, slurry flows 320 36-8 8.50 Snake River Plain 73,371 subaqueous granular mass flow 317-23 Taupo volcanic centre 394, 397, 13.38, Snowy River Volcanics 3.27, 5.24,7.35, subaqueous ignimbrites 9.3 13.41,13.43 10.19,14.1 subaqueous lavas Taupo Volcanic Zone 79,397,15.8 somma 384 basaltic 4.6 tectonic setting and volcanism Ch. 15 sorting 10, 294, 358 silicic 4.11 evaluation for ancient volcanic differences between epiclastic and subaqueous pyroclastic flows Ch. 9 successions 15.13 pyroclastic deposits 473, Table 1.4 deposits 9.2.1 temperature Folk and Ward statistical parameter passage from air into water 9.5,9.11, effects on viscosity 2.5.2 474 9.13 of magmas 2.2, Tables 2.2-4 Inman statistical parameter 472 submarine eruption of9.4, 9.12 pyroclastic flows Table 5.1 Soufriere 78, 103, 116, 157, 276, 386, subaqueous surges 9.7 tensile strength of country rock 4.19,6.30 subaqueous vents effect on explosive fragmentation 35 spatter 48, 3.13 explosive fragmentation of magma tephra 47 cones 64, 134 38-40,3.7 tephrochronology 477 ramparts 64, 134 subaqueous welding 9.3 terminal fall velocity 94, 6.2, 475, 6.4, spherulites 83-4, 419, 4.25 subduction 7.23,1.2, I.3 spilite 18 Andean type 464-5 texture 9 spinifex texture·90, 4.31 Marianas type 464-5 definition 9 spiracles 73 sub-intraglacial basaltic and rhyolitic fabric 10 spreading ridges, mid-oceanic see mid- volcanism 13.11, 13.51,13.52 grainsize 9 oceanic ridges basaltic 408 rounding 10 steam explosions 3.4 moberg 409 shape 10 stony rhyolite 83-4 rhyolitic 88, 409 sorting 10 stratovolcanoes 13.7, 13.25 tindas 408 Thera welded tuff 166,168,6.3, composition 382 tuyas 408, 13.51 6.40-43,13.31 528 INDEX

thermal oxidisation 96 ignimbrite sources 8.4, 8.14, 8.16 tectonic setting Ch. 15 thermal remanent magnetisation 98, 281 plains basalt provinces 13.3 volcanoes Ch. 13 tholeiite 17 ring fissure 8.4.2 basaltic shield 13.2, 13.1-5 temperature of magmas 19, 20 subaerial explosive activity 36-8 facies models Ch. 14 till, tillite 307, 494 subaqueous explosive activity 38-40 . intermediate-silicic multivent centres tindas 408 vesicles 13.8 Toba deep-sea ash layer 289, 8.24 factors affecting growth 37 intraglacial/subglacial13.11, 13.51, Toba Tuff 243 growth 36, 3.3, 3.4 13.52 Tongariro 6.39, 13.43 nucleation size 36 littoral cones 13.6, 13.24 Tokiwa Formation 271,284--5,9.1 pipe 73 maars 13.5, 13.14-22 Toledo caldera 244,398,13.42 vesiculated tuffs 124 monogenetic 364 Tonga-Kermadec arc 15.12 vesiculation 35, 36 polygenetic 364 tonsteins 244 first boiling 35, 40 pseudocraters 13.6 torrent flow 316-18, 10.23 growth of vesicles 36 pumice cones 13.4 Tower Hill Volcanic Centre 380-2, nucleation size 36 rhyolitic volcanoes/centres 13.9, 5.21,6.10,7.40,7.41,13.15, of magma subaqueously 38-40 13.37-42 13.20,13.22,13.23 second boiling 35, 40 scoria cones 13.4, 13.4, 13 .8-13 tractional sediment transport 308-16, vesuvian style eruptions 129 seamounts 13.10.2, 13.50 329-30,10.16 Vesuvius 116, 129, 143, 158,223,384, shield 13.2, 13.1-5 tractional sedimentary structures 7.13 spreading ridge 13.10.1, 13.48, 13.49 309-14, 10.17-19 viscosity 15,2.4,2.3,2.5--8 stratovolcanoes 13.7, 13.25-7,13.30-2 Treasure Mountain Tuff 342,8.38 Bingham 21, 2.3, Table 2.4 tuff cones 13.5, 13.14, 13.17, 13.21 tuff cones 13.5, 13.14, 13.17, 13.21, calculated 21 tuff rings 13.5, 13.14, 13.17, 13.21, Table 13.2 effects on lavas 21 13.23 deposits 378 experimentally determined 21 volcano-tectonic depressions 394, 13.36 eruptive activity 379 factors controlling 2.5 vulcanian fall deposits 131,6.7,6.22-4 tuffrings 13.5, 13.14, 13.17, 13.22, measured Table 2.4 D-F plots 6.25 13.23, Table 13.2 of tholeiite 21, Table 2.4 nomenclature 12.5 deposits 378, 13 .23 plastic 21 vulcanian style eruptions 6.7, 6.26--8 eruptive activity 379 pyroclastic flows 193 Vulcano volcano 154, 6.24 rhyolitic 404 vitric ash/tuff 335 Vulsini8.7 'tuff, use of 12.5 vitrophyre 252 Tuluman Islands 79, 88, 403 volatile content Waiareka Volcanics 2.13, 3.11,7.43, tumuli 69, 4.8 effect on viscosity 2.5.3 10.19, 10.31 turbidite 318-20, 10.26-9 gas pressure 3.5 Waidara Tuff 284,9.1,9.5 ash 9.2.2, 286-7 volcanic centres Ch. 13 Waimihia plinian deposit 470, 3.22,6.19 turbidity currents 318-20, 10.25, 10.26, facies models Ch. 14 Wairakei Formation 158 10.29 volcanic eruptions water turbulent flow 15,2.7 climatic effects 103 effect on magma viscosity 23, 24 tuyas 408,13.51 effects on sedimentary processes 10.2, exsolution of 34, 35 13.7.4, Table 13.5 solubility in magmas 23,25,3.1 Ukinrek maars 115, 382, 13.14, 13.19 volcanic rocks water: magma mass ratio 42, 45, 3.9 ultrabasic chemical classification 2.1.1, Table 2.1 weathering 294 definition 16 crystal contents 11.3 welded air-fall tuffs 6.10, 6.39-47, komatiites 4.12 mineralogical classification 2.1.1, 2.1 Table 6.5 lavas 89 volcanic - sedimentary cycles 10.2, characteristics and examples 6.10.1 ultramafic 17, 90 13.7.4, Table 13.5 conditions of formation 6.10.2 ultraplinian eruptions 6.6 volcanic successions thermal facies model 6.10.3, ultraplinian fall deposits 131, 6.6 facies models Ch. 14 Table 6.6 Taupo pumice 153,8.12.2 rock types in 4 welding 165, 8.10.1, 270, 355, 358, Usu volcano 78, 4.20 stratigraphic relationships 4, 14.2, 8.37-44 1.1,1.2 subaqueous 9.3 244, Plate 13,398-400, volcaniclastic Worzel 8.20,13.42 crystal-rich deposits Ch. 11, Plate 11, D ash layer 289,9.18 Valley ofTen Thousand Smokes 11.2 L ash layer 288,9.15 ignimbrite 233, 8.5 definition 8 vapour phase crystallisation 8.10.2,419, deposits Ch. 3 xenocryst 8, 54 8.42,8.45,8.46,8.47 modes of fragmentation Ch. 3 xenolith 8, 54 variolites 420 nomenclature/classification of deposits vents Ch.12 Yali 402,13.44 central 8.4.4 volcanism Yellowstone volcanic centre 397 flood basalt provinces 13.3, 13.7 plate tectonics 15.1 yield strength 2.4, 64 ignimbrite fissure vents 8.4.1, 8.14 stress field conditions 15.11, 15.11 of fluidised pyroclastic flows 183